Corso di Laurea: Ingegneria Informatica

 $Testo\ n.99$ - Esame di Fisica Generale sessione del 12/06/2020

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

Il disco forato in Figura è di spessore trascurabile, di materiale omogeneo, ha raggio R=29~cm e massa M=2.5~kg. I fori praticati nel disco corrispondono a due circonferenze di raggio (R/4) e due finestre rettangolari di dimensioni $(R/8)\times(R/2)$ e sono disposti come in Figura.

I centri dei fori circolari e rettangolari giacciono su di una circonferenza (tratteggiata in Figura) di raggio r=R/2.

Al centro del disco è attaccata una molla di massa trascurabile e di costante elastica k=208 N/m.

Nell'ipotesi in cui il disco rotola senza strisciare sulla superfice orizzontale, si calcoli:

1) La massa rimossa dal disco pieno (m_{2r}) corrispondente ai 2 fori rettangolari

$$m_{2r} = \dots$$

2) Il momento di inerzia del disco forato per rotazioni rispetto al punto di contatto con la superficie orizzontale, (I_{pc})

$$I_{pc} =$$

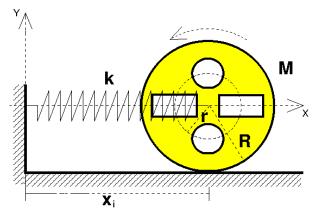
Suggerimento: per una lastra rettangolare sottile di massa m, lati a e b e densità di massa superficiale costante $\sigma = \frac{m}{ab}$, il momento di inerzia I_{cm}^r rispetto ad un asse ortogonale al piano che contiene la lastra e passante per il suo CM al centro del rettangolo è dato da:

$$I_{cm}^{r} = \frac{m}{12} (a^{2} + b^{2})$$

Il disco è lasciato libero da fermo dalla posizione (x_i) in cui la molla è allungata di $\Delta x = 27.3$ cm

3) Si calcoli l'energia cinetica di rotazione del disco (E_k^{rot}) nell'istante in cui il centro di massa del disco forato passa per la posizione di equilibrio della molla, per la quale l'allungamento della molla è nullo.

$$E_k^{rot} = \dots$$



(Figura qualitativa e non in scala a scopo illustrativo)

ESERCIZIO.2 – Elettromagnetismo

Nella Figura(a) è rappresentata una spira MNPQ con i lati NP, PQ e QM di lunghezza variabile nel tempo. Il lato MN ha una lunghezza L=147 cm e una resistenza elettrica R=482 m Ω .

Questa spira variabile giace in un piano orizzontale ed è immersa in un campo magnetico uniforme e costante di intensità B = 11.4 T diretto come in Figura(a).

Le equazioni orarie delle coordinate orizzontali degli estremi del lato PQ sono rispettivamente:

- $x_P(cm) = 588.0 + 73.5 \cos(0.285 t)$
- $x_Q(cm) = 588.0 + 73.5 \cos(0.683 t)$

La spira, instantaneamente indeformabile, è vincolata a giacere nel piano xy e non può ne ruotare ne traslare.

1) Determinare l'espressione del flusso del campo magnetico (Φ_m) attraverso la spira in funzione del tempo.

$$\Phi_m = \dots$$

2) Determinare la f.e.m. indotta nella spira MNPQ all'istante $t^*=22.0$ s

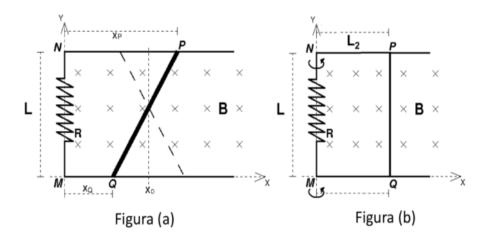
$$fem(t^*) =$$

Consideriamo ora una spira che si ottiene da quella di prima con le lunghezze dei lati uguali $NP=MQ=73.5~{\rm cm}$, immersa come la prima nello stesso campo magnetico di intensità B = 11.4 T vedi Figura(b)

Per t=0 s la spira viene messa in rotazione con una velocità angolare $\overrightarrow{\Omega}=0.691~\hat{y}$ rad/s

3) Determinare la potenza dissipata nella resistenza all'istante $t^{**}=24.9 \text{ s}$

$$P(t^{**}) = \dots$$



(Figure qualitative e non in scala a scopo illustrativo)

Soluzione Esercizio 1

Domanda.1

Il disco ha uno spessore trascurabile, quindi calcoliamo la densità superficiale σ (massa per unità di superficie) come il rapporto tra la massa M del disco forato di raggio R e la sua superficie (data dalla superficie del disco senza fori meno la superficie dei fori, che corrispondono a due circonferenze di raggio (R/4) e a due rettangoli di dimensioni (R/8)×(R/2)):

$$\sigma = \frac{M}{\pi R^2 - \pi \frac{R^2}{8} - \frac{R^2}{8}} = \frac{8M}{R^2} \frac{1}{(7\pi - 1)} \to \sigma \approx 0.3811 \frac{M}{R^2}$$
 (1)

Nota σ , la massa rimossa dal disco di ciascun foro circolare (m_c) e di ciascun foro rettangolare (m_r) valgono rispettivamente:

$$m_c = \pi \sigma \frac{R^2}{16} \approx 0.0748 M$$
 $m_r = \sigma \frac{R^2}{16} \approx 0.0238 M$ (2)

Domanda.2

I fori sono simmetrici, pertanto il centro di massa del disco che prima di praticare i fori coincide con il centro del disco, non si sposta a causa dei fori.

Il momento di inerzia del disco forato rispetto al CM del disco (I_{CM}^{tot}) si può ottenere considerando un disco pieno (di massa M^* e raggio R, con $M^* = \sigma \pi R^2$), e i fori come due dischi (di massa $-m_c$ e raggio R/4), e due rettangoli (di massa $-m_r$ e dimensioni $(R/8)\times(R/2)$).

Il calcolo è fatto rispetto al centro del disco.

I tre contributi da considerare al momento di inerzia sono vedi (3): (I_{disc}) per il disco di raggio R di massa M^* ; (I_{circ}^{hole}) per i due dischi di raggio (R/4), ciascuno di massa $-m_c$, il cui CM ruota a (R/2) dal centro del disco pieno; (I_{rect}^{hole}) , per le due lastre rettangolari di dimensioni (R/8)×(R/2) ciascuna di massa $-m_r$ il cui CM ruota a (R/2) dal centro del disco pieno.

Per ciascun disco massa $-m_c$ il momento di inerzia (I_{circ0}^{hole}) rispetto al centro del disco di massa M^* è dato da (Teorema di Steiner):

$$I_{circ0}^{hole} = -\frac{m_c}{2} \left(\frac{R}{4}\right)^2 - m_c \left(\frac{R}{2}\right)^2$$

Sfuttando il suggerimento del testo, per ciascun rettangolo di massa $-m_r$ il momento di inerzia (I_{r0}^{hole}) rispetto al centro del disco di massa M^* (sempre dal Teorema di Steiner) è dato da:

$$I_{r0}^{hole} = -m_r \frac{1}{12} \left[\left(\frac{R}{8} \right)^2 + \left(\frac{R}{2} \right)^2 \right] - m_r \left(\frac{R}{2} \right)^2$$

ottenendo:

$$I_{disc} = M^* \frac{R^2}{2} = \pi \sigma \frac{R^4}{2} \qquad \rightarrow I_{disc} \approx 0.5987 \ MR^2$$

$$I_{circ}^{hole} = 2I_{circ0}^{hole} = -2 \ m_c \ R^2 \left(\frac{1}{2} \left(\frac{1}{16}\right) + \frac{1}{4}\right) = -\frac{18}{32} \ m_c \ R^2 \qquad \rightarrow I_{circ}^{hole} \approx -0.0421 \ MR^2$$

$$I_{rect}^{hole} = 2I_{r0}^{hole} = -2 \ m_r \ R^2 \left(\frac{1}{12} \left(\frac{1}{64} + \frac{1}{4}\right) + \frac{1}{4}\right) = -\frac{209}{384} \ m_r \ R^2 \qquad \rightarrow I_{rect}^{hole} \approx -0.0130 \ MR^2$$

$$I_{CM}^{tot} = I_{disc} + I_{circ}^{hole} + I_{rect}^{hole} = \left(0.5987 - 0.0421 - 0.0130\right) MR^2 \qquad \rightarrow I_{CM}^{tot} = 0.5436 \ MR^2$$

$$I_{pc} = I_{CM}^{tot} + MR^2 \rightarrow I_{pc} = 1.5436 \ MR^2$$

Domanda.3

Nel moto di puro rotolameno il punto di contatto è fermo, pertanto la forza di attrito non compie lavoro e l'energia si conserva (è costante). Di conseguenza, poichè all'inizio il sistema disco forato più molla è fermo, l'energia iniziale del sistema coincide con l'energia potenziale della molla, $\frac{1}{2}$ k Δx^2 . Mentre quando il disco passa per la posizione di equilibrio della molla l'allungamento della molla è nullo e l'energia potenziale della molla è stata convertita in energia cinetica e rotazionale del disco forato. Pertanto, indicando con ω la velocità angolare del disco e ricordando che la condizione di rotolamento puro implica che per il punto di contatto del disco sia $v_{cm} = \omega R$, dalla conservazione dell'energia otteniamo:

$$\frac{1}{2} k \Delta x^{2} = \frac{1}{2} M v_{cm}^{2} + \frac{1}{2} I_{CM}^{tot} \omega^{2} = \frac{1}{2} \left(M v_{cm}^{2} + 0.5436 M R^{2} \frac{v_{cm}^{2}}{R^{2}} \right)
\Rightarrow k \Delta x^{2} = 1.5436 M v_{cm}^{2}$$
(4)

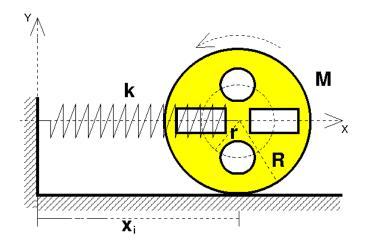
Questa relazione fornisce v_{cm}^2 necessaria per calcolare l'energia cinetica di traslazione ovvero di rotazione:

$$v_{cm}^{2} \approx 0.6478 \frac{k}{M} \Delta x^{2}$$

$$E_{k}^{tra} \approx 0.3239 k \Delta x^{2}$$

$$E_{k}^{rot} \approx 0.1761 k \Delta x^{2}$$

$$(5)$$



Soluzione Esercizio 2

Domanda.1 Notiamo, dalla Figura (a), che i vertici oscillanti del trapezio hanno una ascissa iniziale (x_0) e una ampiezza massima (x_m) di oscillazione in comune. Possiamo quindi scrivere:

$$x_p = x_0 + x_m \cos(\omega_p t)$$

$$x_q = x_0 + x_m \cos(\omega_q t)$$
(6)

Indicando con A l'area istantanea della spira, che quando x_p è diverso da x_q è quella di un trapezio, il flusso del campo magnetico attraverso la spira vale :

$$\Phi_m = B A = B \frac{L}{2} (x_p + x_q)$$

$$\Phi_m = B \frac{L}{2} \left(2 x_0 + x_m \left(\cos(\omega_p t) + \cos(\omega_q t) \right) \right)$$
(7)

Domanda.2 L'area variabile della spira immersa nel campo magnetico uniforme e costante da luogo a una forza elettromotrice indotta (fem(t)) nella spira che, dalla legge di Faraday Neuman Lenz, è data dalla derivata dell'equazione (7) rispetto al tempo cambiata di segno:

$$fem(t) = -\frac{d\Phi_m}{dt} = -B \frac{L}{2} x_m \left(-\omega_p \sin(\omega_p t) - \omega_q \sin(\omega_q t) \right)$$
 (8)

Notiamo anche (vedi Figura (a)) che il campo magnetico è entrante nel piano del foglio ma non sempre il verso della corrente indotta sarà orario poichè anche la variazione di flusso concatenato (Φ_m) ha una espressione sinusoidale perdiodica e quindi non necessariamente sempre positiva.

Essendo la spira costituita da conduttori, possiamo calcolare a partire dalla (8) la fem indotta al tempo t^* (V) e, dal valore (R) della resistenza del lato MN della spira dato nel testo, rispettivamente la relativa corrente indotta (i) e la potenza assorbita dalla resistenza (P)

$$V = fem(t^*)$$

$$i = \frac{|V|}{R}$$

$$P = R i^2 = \frac{V^2}{R}$$
(9)

Domanda.3 La spira ruota con velocità angolare costante, pertanto scelta la normale alla superficie della spira al tempo t=0 (messa in rotazione) diretta e orientata come il campo magnetico, l'angolo che essa forma con il campo magnetico \overrightarrow{B} in funzione del tempo è $\theta(t) = \Omega t$.

Indicando con Φ_B Il flusso attraverso la spira in rotazione, e con fem la forza elettomotrice indotta si ottiene:

$$\Phi_B = BLL_2 cos(\Omega t)$$
 $fem = -\frac{d\Phi_B}{dt} = -BLL_2 \Omega sin(\Omega t)$

dove LL_2 è l'area della spira rettangolare.

per cui:

Pertanto, la corrente indotta nella spira, I(t) e la potenza dissipata nella resistenza R, P(t), in funzione del tempo sono rispettivamente date da:

$$I(t) = \frac{|fem|}{R} = \frac{BLL_2\Omega|sin(\Omega t)|}{R} \qquad P(t) = I^2R = \frac{(BLL_2\Omega sin(\Omega t))^2}{R}$$

$$I_{rot} = I(t_1) = \frac{BLL_2\Omega|sin(\Omega t_1)|}{R} \qquad P_{rot} = I_{rot}^2R$$

$$V = I_{rot}^2R$$

Figura (a)

Figura (b)