Higgs Searches at LEP, Tevatron and LHC

Particle Physics Course "Dottorato di Ricerca Internazionale"

LECTURE 2.

Prof. Rino Castaldi

INFN-Pisa

<u>rino.castaldi@pi.infn.it</u>

CATANIA 2009

The Standard Model and the Higgs mechanism

One pseudo-scalar doublet Φ (4 degrees of freedom)

V (Φ) = $\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$; $\mu^2 < 0 \lambda > 0$

After spontaneous symmetry breaking:

- W[±] and Z acquire masses (3 degrees of freedom)
- the last remaining degree of freedom (4-3=1): scalar CP-even Higgs of unknown mass

After the LEP limit (m_H>114.4), the Higgs hunting requires an higher energy Collider !

What do we know on Higgs mass

Precision electroweak data are sensitive to Higgs mass

 $\Delta r = f(m_{top}^2, \log m_H)$

Global SM electroweak fits provide (recent) upper limit :

(July 2008, with recent Tevatron results)

After the LEP limit (m_H>114.4), the Higgs hunting requires an higher energy Collider !

What type of particle to store in a Collider?

- Particles must be
 - charged
 - accelerated by electric fields (Energy = charge * Voltage-difference)
 - steered and focused using magnetic fields ($p = q \ 0.3 \ R \ B$)
 - long lived
 - best : infinite life-time
 - but : due to Lorentz factor $\gamma \tau$, the life-time in the accelerator can be reasonably long
 - example :
 - **Pions**, $\tau=2.6x10^{-8}$ sec, E=200 GeV, $\gamma = E/m = 200/0.140 = 1428.6$, $\gamma \tau = 0.04$ msec, $v \cong c$, \Rightarrow average distance travelled = c $\gamma \tau = 11$ km, good enough for fixed target experiments (**CERN**, **PSI**,...)
 - **Muons**, $\tau = 2.2 \times 10^{-6}$ sec, E=200 GeV, m = 0.1 GeV/c² $\Rightarrow \gamma \tau = 4.4$ msec !, average distance travelled = **1320 km!** (there are ideas for a **muon collider!**)
- In practice for colliders up to now:
 - electrons, anti-electrons, protons, anti-protons

Lepton vs Hadron Colliders Synchrotron Radiation

• Energy loss per revolution

$$\Delta E = \frac{e^2}{3\varepsilon_0} \frac{\beta^3 \gamma^4}{2\pi R} \qquad \beta = \frac{v}{c} \qquad \gamma = \frac{E}{m} \qquad R = \text{orbit radius}$$
$$\Delta E[GeV] = 5.7 \times 10^{-7} \frac{E^4[GeV]}{R[km]}$$

Example : LEP, 2πR=27km, E=100 GeV (in 2000)
ΔE = 2 GeV!!

□ LEP at limit, need more and more energy just to compensate energy loss

• Note : for ultrarelativistic protons/electrons ($\beta \cong 1$) $\Delta E[p] / \Delta E[e] = (m_e/m_p)^4 = 10^{-13} \parallel 10^{-$

How much beam energy is really available for producing new particles?

- In an e⁺e⁻ collider :
 - practically all of it
 - However: Photon radiation in the initial state can reduce the effective E_{CM}
 - particularly important when close (in energy) to a resonance
- Advantages:
 - energy very precisely adjustable, for example, to be at a resonance (e.g. Z: 91 GeV, Upsilon: 9.46 GeV) where the cross section is large
- Disadvantages:
 - When looking for new particles with unknown mass: Have to scan "manually" the beam energy

[qd]

Fotal Cross Section

Center of Mass Energy [GeV]

Proton structure

(Anti-) Protons are a quarkgluon soup

- □ 3 valence quarks bound by exchange of gluons
- □ Gluons are colored and interact with other gluons
- Virtual quark pair loops can pop-up generating additional quark content (sea-quarks)
- Proton momentum is shared among all constituent 9 partons (quarks& gluons)

Virtual quark loop

How much beam energy is really available for producing new particles?

- In an proton collider :
 - hard interaction due to partons
 - Effective $E_{CM}^2 = x_a x_b E_{CM}^2$
 - $-x_{a}, x_{b} << 1$
- Advantages:
 - because in every collision the x_i are chosen "at random", there is a natural scan of effective E_{CM} : good for exploration of new energy regime (for new particles)
- Disadvantages:
 - effective E_{CM} not adjustable by operator
 - since in general $x_a \neq x_b$: centre-of-mass system boosted w.r.t. to lab system

Lepton vs Hadron Colliders

- take e⁺e⁻ annihilation to quarks
 - e⁺, e⁻ are **point-like** particles (to our present knowledge)
 - colliding particles do not carry colour charge ⇒ no interference between initial space and final state because of strong interaction (gluon emission)
 - → theoretical calculations are "easy" and precise
- take proton-proton collisions:
 - protons are made out of quarks and gluons, actual interaction is between these partons
 - parton distributions cannot be computed from first principles, only determined from experiments
 - □ colliding particles carry **colour charge** ⇒ interference
 - □ ⇒ theoretical calculations are very "difficult", and not very precise

x = momentum fraction

Fermilab TeVatron

Tevatron Collider

Collider Run II Integrated Luminosity

THE TEVATRON AT FERMILAB

• $p \bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

- Peak luminosity $\approx 360 \times 10^{30} \text{cm}^{-2} \text{ s}^{-1}$
- Tevatron delivered ≈5.5 fb⁻¹
- DØ collected ≈4.7 fb⁻¹
- CDF collected ≈4.5 fb⁻¹
- Tevatron is performing extremely well
 - Integrated over 250 pb⁻¹ of data in January 2009
 - Expected 6-8 fb⁻¹ by end of 2009
 - Run in 2010

Collider Run II Integrated Luminosity

MAIN INJECTOR RECYCLER **TEVATRON** DZERO TARGET HALL ANTIPROTON SOURCE CD BOOSTER LINAC COCKCROFT-WALTON PROTON Direction MESON NEUTRING Femilab 00-635

FERMILAB'S ACCELERATOR CHAIN

Tevatron Accelerator

	1992-1996 2001-2006		2006-?	
	Run I	Run IIa	Run IIb	
Bunches in Turn	66	36 36	36 36	
s (TeV)	1.8	1.96	1.96	
Typical L (cm ⁻² s ⁻¹)	1.6 10 ³⁰	1x10 ³²	2.8 10 ³²	
Ldt (pb ⁻¹ /week)	3	15-20	50-60	
Bunch crossing (ns)	3500	396	396	
Interactions/crossing	2.5	2.5	7.0	

Current status:

Typical instantaneous luminosity: >3.0x10³² cm⁻²s⁻¹

Record inst. lum.: 3.6x1032 cm-2s-1

- Integrated lum./week: ~60-70 pb⁻¹
- Delivered ~6 fb⁻¹

The Detectors

Large tracking volume
Vertex trigger
Large trigger bandwidth

Higgs Production

- dominated by $gg \rightarrow H$,
- sizeable contributions from WH/ZH
- use all contributions in analyses
- $\sigma(p\overline{p} \rightarrow H + X) \approx 1 \text{ pb } @ 115 \text{ GeV}$

SM Higgs search at Tevatron

Y. Enari 3 /18

Low mass Higgs Search at Tevatron

Production 1. Gluon fusion (0.8 2. WH associated pro- (0.2~0.03pb) 3. ZH associated pro- (0.1~0.01pb) Decay $- m_H < 135 \text{ GeV}$ $H \rightarrow bb \text{ is domina}$ $- m_H > 135 \text{ GeV}$ $H \rightarrow WW$	~ 0.2 pb) roduction
nalysis Strategy n _H < 135 GeV WH/ZH + H→ bb	Background top, Wbb, Zbb
n _H > 135 GeV Sluon fusion + H→WW	WW, WZ Drell-Yann

Low Mass SM Higgs Searches

- WH $\rightarrow e(\mu)v + b\overline{b}$
- $ZH \rightarrow (ee/\mu\mu)vv + bb$
- Measurements rely on
 - b-tagging
 - Lepton identification + Missing-E_T resolution
 - Dijet mass resolution and light/b-jet calibration
 Z → bb
 - Understanding of backgrounds
 - W/Z + heavy-flavor/light jets

b-tagging (B lifetime (1.57±0.01 ps) Based on signed impact parameter resolution Jet Lifetime Impact Parameter algorithm

Based on decay length resolution Secondary Vertex Algorithm

Identification of b-quarks (b-tagging)

- Most sensitive channels have $\text{H}{\rightarrow}\text{bb}$
- Silicon detectors used to find secondary vertices
- Efficiency ~40 70%

Displaced tracks

Decay lifetime

d0

Primary vertex

- Fake rate (mistags) typically 0.5 5%
- D0 uses Neural Network tagger based on b-lifetime information. Can use multiple operating points.
- CDF utilizes secondary vertex and Jet Probability algorithms + additional NN flavor separator

0.6

0.5

0.4

0.3

0.2

0.1

b-tag efficiency

Jet

• Use either single tag or looser double tag

Secondary vertex

"b-tag" = Identified

2nd vertex

Prompt tracks

• The Challenge:

extract Higgs signal from a background 10 orders of magnitudes larger

1. Trigger

- High $p_T e, \mu$ triggers
- MET + Jets triggers
- Track + MET + Ecal τ-trigger

2. Reconstruct final state

- Leptons ID (optimized on large W/Zsamples)
- Efficient b-jet tagging (NN tagger based on b-lifetime information)
- Good jet resolution
- MET reconstruction

3. Background estimation is crucial

- MC predictions: W/Z+jets, diboson, top,...
- Data driven: mistags, QCD
- Exhaustive checks in control regions

4. Advance analysis techniques to separate signal from background

 Neural Network, Matrix Elements, Boosted Decision Trees,...

Y. Enari 7 /18

Low mass Higgs Search at Tevatron

In order to maximize sensitivity

- Neural Network (NN)
 - Well known technique.
- Boosted Decision Tree (BDT)
 - Relatively new.
 - BDT is fast
 - → can handle more inputs.
- Matrix Element (ME)
 - Event probability can be obtained by integrating ME.
 - Input is 4 momentum vector for each objects.
 - Need huge CPU power.

These three approaches are often combined by Neural Net / BDT.

Major Inputs

- Dijet mass
- Pt of dijet
- Wpt, Zpt
- Sphericity
- **q x** η
- Δ**R**jj, Δφjj, Δηjj

How to search higgs at low mass?

Y. Enari 4 /18 Low mass Higgs

Search at Tevatron

Extension: $ZH \rightarrow vv bb WH \rightarrow lv bb$ ZH→II bb MET+bb I+MET+bb 2l(e/µ)+bb $H \rightarrow \gamma \gamma$ Rich signal Rich signal less signal $VH \rightarrow \tau + jets$ ttH→ttbb 1-lepton 2-lepton 0-lepton Signal from Multi-Jet (MJ) BG: gg->H, VH, VBF HIGH LOW

Two charged leptons: $ZH \rightarrow \ell^+ \ell^- b\bar{b}, \ \ell = e, \mu$

- Fully reconstructed final state
 - Two resonances: $H \rightarrow bb$ and $Z \rightarrow ll$
 - The dilepton mass cut $M_{ll} \approx M_Z$
- Dominant backgrounds:
 - Z+jets (irreducible Z+bb), top, dibosons
- Small σ×Br: ~1 event/fb⁻¹
 - Acceptance is crucial: employ loose b-tagging
 - Analyze events with at least one b-jet

Special techniques:

- Correct jet E_T's using MET=> JER improves from 18% to 11%
- Lepton coverage: stubless µ's, forward e's: improve limit by 10%

Two charged leptons: $ZH \rightarrow \ell^+ \ell^- b\bar{b}, \ \ell = e, \mu$

2 lepton: ZH→Ilbb MVA and result

Y. Enari 9 /18

Low mass Higgs Search at Tevatron

DØ: NN, BDT(part of μ channel)

CDF: 2 dimensional NN

Result: No significant excess. Limit / SM @ m_H=115GeV DØ 2.3 fb⁻¹: exp: 12.3 obs: 11.0 CDF 2.7 fb⁻¹:

exp : 9.9 obs : 7.1

One charged lepton: $WH \rightarrow \ell v b \bar{b}, \ \ell = e, \mu$

- *"Large"* σ×Br, clean signature
 - Acceptance to about 3-4 events/fb⁻¹
 - High P_T leptons, MET and ≥ 2 jets
- Dominant backgrounds:
 - W+bb, top, diboson, QCD multi-jet

- Special techniques:
 - CDF/DØ: at least 1 b-tag, loose double-tag
 - CDF/DØ: ME to discriminate signal from bckg
 - CDF: loose muons, NN-based jet correction
 - DØ: forward electrons, events with 3 jets

One charged lepton: $WH \rightarrow \ell v b \bar{b}, \ \ell = e, \mu$

1 lepton: WH→Iv bb result

Y. Enari **11** /18 Low mass Higgs Search at Tevatron

<u>Result:</u> No significant excess.

Limit / SM @m_H=115GeV

DØ 2.7 fb⁻¹: exp : 6.4 obs : 6.7

Obs

6.2

5.2

CDF 2.7 fb⁻¹:

exp: 4.8

obs: 5.6

BDT

NN

exp

5.2

5.8

CDF : NEAT with MEBDT + NN

- ▶ Large signal acceptance: $ZH \rightarrow \nu\nu b\bar{b} / WH \rightarrow \notin \nu b\bar{b}$
 - Acceptance to about 3-4 events/fb⁻¹
 - Large MET and ≥2 jets
 - Information of W/Z missed: no strong constraints
- Dominant backgrounds:
 - QCD with fake MET, W/Z+jets, top, diboson

Special techniques:

- CDF/DØ: data-driven QCD model, track MP_T
- CDF: at least 1 b-tag, 3 tagging channels, NN-based event selection (QCD rejection NN), track-based jet corrections
- CDF: accept $WH \rightarrow \tau v b \bar{b}$ with hadronic τ

Search tau + jet final states from all production: Gluon fusion, W/Z associated, Vector Boson Fusion production

CDF 2 fb⁻¹: ττ+ 2jet Train 3 NNets against 3 BG (tt, Z, MJ)

Additional channels

- DØ: ttH->lubbbbqq (2.1fb⁻¹)
 - Scan the distribution of H_T: scalar sum of jet
 - 4 or 5 jets, 1-3 b-tagged jets
 - Exp (Obs) Limit: 45.3 (63.9)*SM
- DØ: H->YY (4.2 fb⁻¹)
 - Scan the Diphoton mass
 - Exp (Obs) Limit: 18.5 (15.8)*SM
- CDF: VH->qqbb (2.0fb⁻¹)
 - Good signal acceptance: large BR(W/Z->qq)
 - Employ ME technique, 2 b-tagged jets
 - Exp (Obs) Limit 37 (38)*SM

All limits on this page at

No significant excess is observed.

95% C.L. limit / SM @ m_H =120 GeV exp: 17.5 obs: 13.1

List of searches at low mass.

σ_H: NNLO JHEP 0307, 028 (2008)

Production	Decay	CDF		DØ		
		Lumi	Limit/SM exp (obs)	Lumi	Limit/SM exp (obs)	
WH	lv bb	2.7	4.8 (5.6)	2.7	6.4 (6.7)	
ZH	ll bb	2.7	9.9 (7.1)	2.3	12.3 (11.0)	
VH	vv bb	2.1	5.6 (6.9)	2.1	8.4 (7.5)	
All	$\tau + jets$	2.0	30 (24)	1.0	28 (27)	
All	γγ			4.2	17.5 (13.1)	
Not included						
WH	qqbb					
ttH	Injjbbbb	0.32	168	2.1	45(64)	

Y. Enari **17** /18 Low mass Higgs Search at Tevatron

Tevatron combination for Moriond 09 is not available yet.
 Will be available by end of conference.

Limit / SM @ m_H = 115 GeV DØ : exp 4.6 obs 5.3

Limit / SM @ m_H = 115 GeV CDF : exp 3.2 obs 3.8

- Higgs group working very hard in both CDF and DØ to find last missing piece of SM.
- No excess from BG expectation is observed yet.
- Cross section limit / SM @ 95 C.L. :
 - CDF: 3.2 (3.8) Dzero: 4.6 (5.3) @ m_H=115

Combined result will be released end of Moriond EW!

2xCDF Preliminary Projection, m_H=115 GeV

Analyzable ∫*L dt* will be reached more than 5 fb⁻¹ very soon, This Summer!.

Tevatron CDF & D0 combined (March 2009)

95% CL Limit/SM 0 EP Exc Expe Obse ±1σ Ε +2σ I $m_{\rm H} < 135 \; GeV/c^2$ 1 SM 100 110 120 130

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

m_H(GeV/c²)

Conclusions for low mass Higgs at TEVATRON

- Higgs physics at the Tevatron is getting exciting!
- •Low mass region has large backgrounds, but can be suppressed by multivariant techniques and understood in control regions
- Additional improvements actively in progress
 - Further extending signal acceptance for leptons and b tagging
 - Improved jet resolution
 - Extended b-tagging and flavour separators
- Expect 2-3 times current analyzed lumi (more if we run in 2010)
- Details on each analysis is available at:
 - CDF: <u>http://www-cdf.fnal.gov/physics/new/hdg/hdg.html</u>
 - D0: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm

SM Higgs search at Tevatron

Y. Enari 3 /18

Low mass Higgs Search at Tevatron

Production 1. Gluon fusion (0.8 2. WH associated pro- (0.2~0.03pb) 3. ZH associated pro- (0.1~0.01pb) Decay $- m_H < 135 \text{ GeV}$ $H \rightarrow bb \text{ is domina}$ $- m_H > 135 \text{ GeV}$ $H \rightarrow WW$	~ 0.2 pb) roduction
nalysis Strategy n _H < 135 GeV WH/ZH + H→ bb	Background top, Wbb, Zbb
n _H > 135 GeV Sluon fusion + H→WW	WW, WZ Drell-Yann

WH \rightarrow WWW, ZH \rightarrow WWW, V.B.F H \rightarrow WW Vert New dedicated analyses in different 0, 1, 2 jet bins.

Analyses optimized for each jet bin.

Both experiments approaching SM sensitivity

Bárbara Álvarez- U. de Oviedo

$H \rightarrow WW$

- Most sensitive Higgs channel at the Tevatron.
 - Highest sensitivity around M_{μ} =160 GeV.
- Signature two high p_{τ} leptons ($\ell = e \text{ or } \mu$) and missing E_{τ} .
- Backgrounds: WW, WZ, ZZ, tt, W+ γ /jets, Z $\rightarrow \ell\ell$, Z $\rightarrow \tau\tau$, QCD.
- Strategies.
 - Good lepton id and missing E_{T} resolution.
 - *WW* is a fundamental physics background, and one of the largest backgrounds. Spin correlation $(\Delta \phi_{\ell\ell})$ is the best single variable for discriminating *H* and *WW*.
 - All subchannels and both experiments make use of advanced multivariate techniques to get best possible signal / background discrimination.

LaThuile 2000

Spin Correlation in $H \rightarrow WW$

Leptons from H→WW→ℓℓ tend to be emitted in the same direction (i.e. small Δφ(ℓ,ℓ)).

Multivariate Analysis Techniques

- Neural Networks (NN).
 - Works well. Time-tested have been used successfully for many years.
- Boosted Decision Trees (BDT).
 - Relatively recent. Popularity has grown enormously recently.
- Matrix Element (ME).
 - Highly efficient for specific signals / backgrounds.
 - Computationally costly.
 - Can be used as input to other techniques.

$H \rightarrow WW$ Event Selection

	ee	еµ	μμ
Leptons (preselection)	$p_T(\mu) > 10 \text{ Ge}$	$V, p_T(e) > 15 \text{ GeV}, M$	$f_{\ell\ell} > 15 \text{ GeV}$
$\not\!$	>20	>20	>20
$\mathbf{\not \! E}_r^{' \mathrm{Scaled}}$	>7	>6	>5
$M_T^{\min}(\ell, E_T)$ (GeV)	>20	>30	>20
$\Delta \phi(\ell, \ell)$	<2.0	<2.0	<2.5

	$e\mu$ pre-selection	$e\mu$ final	ee pre-selection	ee final	$\mu\mu$ pre-selection	$\mu\mu$ final
$Z \rightarrow ee$	209.0 ± 3.0	0.72 ± 0.16	160463 ± 264	73.6 ± 5.1	-	
$Z ightarrow \mu \mu$	151.1 ± 0.6	2.14 ± 0.06	-		256432 ± 230	957 ± 14
$Z \rightarrow \tau \tau$	2312 ± 2	2.45 ± 0.05	835 ± 8	1.0 ± 0.3	1968 ± 11	5.5 ± 0.5
tī	187.5 ± 0.2	54.2 ± 0.1	96.9 ± 0.2	28.5 ± 0.1	19.4 ± 0.1	10.1 ± 0.1
W + jets	163.4 ± 5.3	60.1 ± 3.2	174 ± 7	72.0 ± 4.3	149 ± 3	85.8 ± 2.1
WW	285.6 ± 0.1	108.0 ± 0.1	127.5 ± 0.4	45.7 ± 0.2	162.9 ± 0.5	91.3 ± 0.3
WZ	14.8 ± 0.1	4.9 ± 0.1	89.6 ± 0.8	7.6 ± 0.2	51.6 ± 0.5	16.2 ± 0.3
ZZ	3.47 ± 0.01	0.49 ± 0.01	73.5 ± 0.3	5.4 ± 0.1	43.0 ± 0.2	13.5 ± 0.1
Multi-jet	190 ± 168	1 ± 8	2322 ± 193	4.3 ± 8.3	945 ± 31	63.6 ± 8.0
Signal $(m_H = 160 \text{ GeV})$	9.0 ± 0.1	6.9 ± 0.1	4.40 ± 0.01	3.49 ± 0.01	4.7 ± 0.1	4.09 ± 0.06
Total Background	3516 ± 168	234 ± 9	164181 ± 327	238 ± 11	259770 ± 232	1242 ± 16
Data	3706	234	164290	236	263743	1147

$H \rightarrow WW NN$ Analysis

Neural network analysis makes use of 14 input variables.

$H \rightarrow WW$ Result

• Upper limit on $\sigma \times BR$ set using entire NN output distribution for all channels using modified frequentist method (CLs method).

LaThuile 2009

$H \rightarrow WW$ Event Selection

- Separate NN analysis for 0, 1, and ≥2 jets.
- 1 and 2 jets includes VBF and VH contributions to signal.
- Also separate NN analysis for high and low S/B events based on lepton quality for 0 and 1 jets.

$H \rightarrow WW 0$ jets NN Analysis

- Neural network analysis makes use of 5 input variables, including $\Delta \phi_{\ell\ell}$ and *H* vs. *WW* matrix element likelihood ratio (LRHWW).
- Separate NN for high and low S/B lepton id.

LaThuile 2009

$H \rightarrow WW$ 1 jets NN Analysis

- Neural network analysis makes use of 8 input variables (LRHWW not included for >0 jets).
- Separate NN for high and low S/B lepton id.

H. Greenlee

LaThuile 2009

$H \rightarrow WW2 + jets NN Analysis$

- Neural network analysis makes use of 8 input variables.
- High and low S/B lepton id not used for ≥ 2 jets.

CDF Run II Preliminary	$\int \mathcal{L} = 3.6 \; \mathrm{fb}^{-1}$				
$M_H = 160 \text{ GeV}/\tilde{c}^2$					
tt	100	±	17		
DY	- 33	\pm	11		
WW	17.6	\pm	4.0		
WZ	3.76	±	0.52		
ZZ	1.62	\pm	0.22		
W+jets	14.7	1	4.0		
$W\gamma$	2.12	±-	0.70		
Total Background	173	±	23		
$gg \rightarrow H$	1.75	\pm	0.30		
WII	1.39		0.18		
ZH	0.693	+-	0.090		
VBF	0.70	+	0.11		
Total Signal	4.53		0.52		
Data		169]		

OS 2+ Jeta

$H \rightarrow WW$ Result

Upper limit on σ×BR obtained likelihood fit of all five NN output distributions.

Expected limit is 1.48 times SM at $M_{\rm H}$ =160 GeV

$WH \rightarrow WWW \rightarrow \ell^+ \ell^+$

- Signature two like-sign high p_T leptons ($\ell = e$ or μ).
- Smaller $\sigma \times BR$ than $H \rightarrow WW$ but very low SM background.
- Backgrounds: *WZ*, *ZZ*, *W*+γ/jets, QCD, charge flips.
 - Instrumental backgrounds (fakes and charge flips) are dominant.

$WH \rightarrow WWW \rightarrow \ell^+ \ell^+$

- Event selection: $p_T(e) > 15 \text{ GeV}, p_T(\mu) > 15 \text{ GeV}.$
- Upper limit on $\sigma \times BR$ from 2D multivariate likelihood fit.

- Expected limit is 17 times SM at M_{H} =160 GeV.

H. Greenlee

LaThuile 2009

$WH \rightarrow WWW \rightarrow \ell^+ \ell^+$

- Event selection: $p_{TI} > 20 \text{ GeV}, p_{T2} > 20 \text{ GeV}.$
- Multivariate analysis using 13-variable NN.
 - Expected limit is 7.2 times SM at M_{H} =160 GeV.

H. Greenlee

LaThuile 2009

Tevatron CDF & D0 combined March 2009

Prospects

- Tevatron and experiments are running well.
- Experiments have ~6 fb⁻¹ delivered today (~5.3 fb⁻¹ recorded).
- Expect 8-9 fb⁻¹ of integrated luminosity per experiment delivered (7-8 fb⁻¹ recorded) by end of FY10 (more if Tevatron runs in 2011).
- Analysis improvements will likely improve Higgs sensitivity faster than luminosity scaling.

Higgs searches at TEVATRON

Summary

- SM Higgs excluded at 95% C.L. in the range 160 < $M_{\rm H}$ < 170 GeV
- Tevatron and experiments are continuing to run well
 - CDF and D0 currently have recorded about 5 fb⁻¹ of data
 - Expect 7-8 fb⁻¹ or more of analized data by the end of 2010

1 lepton: **WH** \rightarrow **I** $_{\rm V}$ **bb**

Low mass Higgs Search at Tevatron

Gain ~ 20% in signal eff. by iso track

a lota requirement	Yield with b-ID					
		CDF		DØ (2jet, 3jet)		
Pt > 20 GeV, $ \eta < 2.0$	b-ID	Signal	BG	Signal	BG	
HT > 60 GeV	Ti-Ti (Lo-Lo)	1.4	156.5	3.9, 1.0	345,322	
Cut for reject QCD	Lo-Ti	2.0	146.2			
2 nd lepton veto	Ti	4.6	1760	6.8, 1.6	2182,963	

$Z(\rightarrow v\bar{v})H(\rightarrow b\bar{b})$ Search (1)

- An important channel for low-mass Higgs search
 - Large B(Z→vv) ~ 20%
- Trigger on events with large missing H_{T}
 - H_T is defined as the magnitude of the vector sum of jets' E_T
- Analysis was based on 261 pb⁻¹
- Selection:
 - 2 Jets:
 - E_T > 20 GeV, |η|<2.5
 - Missing $E_T > 25$ GeV
 - Veto events with isolated tracks (p_T>8 GeV)
 - To reject leptons from W/Z
 - $H_T = \Sigma |p_T(jets)| < 200 GeV$
 - To reject tt events
 - Reduce "instrumental" backgrounds
 - Jet acoplanarity $\Delta \phi(dijet)$ < 165°
 - Use various missing energy/momentum variables
 - Form asymmetry variables

0-lepton: VH $\rightarrow vv$ bb

Z(W)

(X)

- Signature : MET + 2 jets.
 CDF: MET>50 GeV, Jet1(2) p_T>35 (25) GeV
 DØ : MET>50 GeV, p_T>20 (20) GeV
- Signal: vv+jet MJ: jet + mis-meas.

12/18

Low mass Higgs Search at Tevatron

Y. Enari

Cal MET ≠ Trk MET

To handle Multi-jet BG

- Signal sample
- Control region
 - QCD control sample
 - EW control sample

Y. Enari 13 /18 Low mass Higgs

Search at Tevatron

Yield after b-ID

	CDF		DØ (2jet or 3jet)	
b-ID	Signal	BG	Signal	BG
Ti-Ti	1.9	105		
Lo-Ti	1.5	149	3.7	442.8
Ti	4.0	1443		

• MVA DØ : BDT

CDF : BDT

Result: No significant excess. Limit / SM @ m_H=115GeV

DØ 2.1 fb⁻¹: exp : 8.4 obs : 7.5

CDF 2.1 fb⁻¹ : exp : 5.6 obs : 6.9

Other channels sensitive at low mass

