Higgs Searches at LEP, Tevatron and LHC

Particle Physics Course "Dottorato di Ricerca Internazionale"

LECTURE 3.

Prof. Rino Castaldi INFN-Pisa

rino.castaldi@pi.infn.it

CATANIA 2009

precise EWK measurements:

M_H=91±⁴⁵₃₂ <186 GeV @ 95% C.L.

LEP: m_H> 114.4 GeV/c² at 95% CL Tevatron: Excluded the mass range of 160 GeV/c² to 170 GeV/c² at 95% CL

LHC (LEP) @ CERN

Lepton vs Hadron Colliders Synchrotron Radiation

• Energy loss per revolution

$$\Delta E = \frac{e^2}{3\varepsilon_0} \frac{\beta^3 \gamma^4}{2\pi R} \qquad \beta = \frac{v}{c} \qquad \gamma = \frac{E}{m} \qquad R = \text{orbit radius}$$
$$\Delta E[GeV] = 5.7 \times 10^{-7} \frac{E^4[GeV]}{R[km]}$$

Example : LEP, 2πR=27km, E=100 GeV (in 2000)
ΔE = 2 GeV!!

□ LEP at limit, need more and more energy just to compensate energy loss

• Note : for ultrarelativistic protons/electrons ($\beta \cong 1$) $\Delta E[p] / \Delta E[e] = (m_e/m_p)^4 = 10^{-13} \parallel 10^{-$

Proton structure

(Anti-) Protons are a quarkgluon soup

- □ 3 valence quarks bound by exchange of gluons
- Gluons are colored and interact with other gluons
- Virtual quark pair loops can pop-up generating additional quark content (sea-quarks)
- Proton momentum is shared among all constituent partons (quarks& gluons)

Virtual quark loop

e⁺e⁻ versus pp

take e⁺e⁻ annihilation to guarks e⁺, e⁻ are **point-like** particles (to our present knowledge) colliding particles do not carry colour γ*, Z⁰ Space charge \Rightarrow no interference between initial and final state because of strong interaction (gluon emission) Time Electroweak Processes \Rightarrow theoretical calculations are "easy" and precise take proton-proton collisions: protons are made out of quarks and gluons, actual interaction is between these partons

parton distributions cannot be computed from first principles, only determined from experiments

colliding particles carry colour charge \Rightarrow interference

 \Rightarrow theoretical calculations are very "difficult", and not very precise

91

10

멾

Typical Momentum

1 [GeV] Transfer at LEP-1

How much beam energy is really available for producing new particles?

- In an e⁺e⁻ collider :
 - practically all of it
 - However: Photon radiation in the initial state can reduce the effective E_{CM}
 - particularly important when close (in energy) to a resonance
- Advantages:
 - energy very precisely adjustable, for example, to be at a resonance (e.g. Z: 91 GeV, Upsilon: 9.46 GeV) where the cross section is large
- Disadvantages:
 - When looking for new particles with unknown mass: Have to scan "manually" the beam energy

How much beam energy is really available for producing new particles?

- In an proton collider :
 - hard interaction due to partons
 - $\Box \text{ Effective } \mathbf{E}_{CM}^2 = \mathbf{x}_a \mathbf{x}_b \mathbf{E}_{CM}^2$
 - \Box $x_a, x_b << 1$
- Advantages:
 - because in every collision the x_i are chosen "at random", there is a natural scan of effective E_{CM} : good for exploration of new energy regime (for new particles)
- Disadvantages:
 - effective E_{CM} not adjustable by operator
 - □ since in general x_a ≠ x_b: centre-ofmass system boosted w.r.t. to lab system

LHC parameters

$$L = \frac{\gamma f k_b N_p^2}{4\pi\varepsilon_n \beta^*} F$$

- f revolution frequency
- k_b no. of bunches
- Np no. of protons/bunch
- ε_n norm transverse emittance
- β* betatron function
- F reduction factor xing angle

Magnetic Field p (TeV) = 0.3 B(T) R(km) For p= 7 TeV, R= 4.3 km ⇒ B = 8.4 T

Beam-beam tune shift
$$\xi = \frac{Nr_p}{4\pi\epsilon_n}$$

Energy at collision	Е	7	TeV
Dipole field at 7 TeV	В	8.33	Т
Luminosity	L	10 ³⁴	Cm-2S-1
Beam beam parameter	ξ	3.6	10- ³
DC beam current	l _{beam}	0.56	Α
Bunch separation		24.95	ns
No. of bunches	k _b	2835	
No. particles per bunch	Ň	1.1	10 ¹¹
Normalized transverse	ε'n	3.75	μm
emitance (r.m.s.)			
Collisions	0.1		
β-value at IP	B.	0.5	m
r.m.s. beam radius at IP	σ^*	16	μm
Total crossing angle	¢	300	µrad
Luminosity lifetime	τ	10	h
Number of evts/crossing	n _c	17	
Energy loss per turn		7	keV
Total radiated power/beam		3.8	kW
Stored energy per beam		350	MJ

p-p collisions at LHC

CERN AC/DI/MM - 06-2001

9300 Superconducting Magnets
1232 Dipoles (15m), 448 Main
Quads, 6618 Correctors.
Operating temperature: 1.9^o K
26.7 km tunnel

LHC

N

the state

The Large Hadron Collider (LHC)

Lowering one of the 1232 15m long dipoles 100m down into the LHC There are another 8000 magnets of different types as well 1st magnet lowered in March 2005

The Large Hadron Collider (LHC)

Preparing to connect the magnets together – and a cutaway showing the multiplicity of complex services from one magnet to another There are over 2000 of these magnet-to-magnet joints to make around the ring

First beams around the LHC

Joyous faces on 10 Sep 2008 at 10.23

Fluorescent screen to detect the beam – like that in a CRT television

Beam splashes at CMS

 10⁹ protons at 450 GeV dumped on collimator 150 m upstream of the CMS experiment. ECAL total energy: 150–250 TeV

First beams around the LHC in CMS

One of ~1700 interconnections: busbars and tubes

CMS meeting 8 May 2009

CMS: cosmic ray event

CMS: cosmic ray event

CMS: Cosmic rays signal in ECAL

- Minimum ionizing particles deposit 250 MeV in ECAL. Increase efficiency: signal/noise enhanced (x4) in EB to the value of 20, by increasing the gain of the APD.
- Pattern in reconstructed time: time of flight top→bottom and internal synchronization schema for collision events

ATLAS: cosmic ray event

23

Temperatures around the LHC ring

Signal and background→10³⁴

Cross sections for various physics processes vary over many orders of magnitude

Selection needed: 1:10^{10–11} Before branching fractions...

CDF and D0 successfully found the top quark facing similar rejection factors

Higgs decay in 4 muons

Impact on detector design

LHC detectors must have fast response

Otherwise will integrate over many bunch crossings \rightarrow large "pile-up"

- Typical response time : 20-50 ns
 - \rightarrow integrate over 1-2 bunch crossings \rightarrow pile-up of 25-50 min-bias

 \rightarrow very challenging readout electronics

LHC detectors must be highly granular

Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from H $\rightarrow \gamma\gamma$ decays)

 \rightarrow large number of electronic channels

 \rightarrow high cost

LHC detectors must be radiation resistant:

high flux of particles from pp collisions \rightarrow high radiation environment

e.g. in forward calorimeters:

up to 10¹⁷ n/cm² in 10 years of LHC operation

Basic principles

Need "general-purpose" experiments covering as much of the solid angle as possible (" 4π ") since we don't know how New Physics will manifest itself

- \rightarrow detectors must be able to detect as many particles and signatures as possible: e, μ , τ , ν , γ , jets, b-quarks,
- Momentum / charge of tracks and secondary vertices (e.g. from b-quark decays) are measured in central tracker (Silicon layers).
- Energy and positions of electrons and photons measured in electromagnetic calorimeters (+central tracker).
- Energy and position of hadrons and jets measured mainly in hadronic calorimeters (+central tracker for charged hadrons).
- Muons identified and momentum measured in external muon spectrometer (+central tracker).
- Neutrinos "detected and measured" through measurement of missing transverse energy (ET^{miss}) in calorimeters (+central tracker).

The CMS Detector

Particles as seen in CMS

The ATLAS Detector

D712/mb-26/06/97

Particles as seen in ATLAS

Typical detector concept

LHC pp experiments

ATLAS e CMS accostati ad un edificio di 5 piani

MUON CHAMBERS

TPACKER

CRYSTAL ECAL

HCAL

FORWARD CALORMETER

Quanto sono grandi ATLAS e CMS?

			<u>ATLAS</u>	<u>CMS</u>
Total weight : 12,500t. Overall diameter : 15,00 m Overall length : 21,60 m Magnetic field : 4 Tesla	CMS [©]	Peso totale (tons)	7000 22 m	12500 15 m
		Lunghezza	46 m	22 m
		Campo magnetico	2 T	4 T

The CMS Detector

Pixel + strip silicon tracker

Lavori di scavo a "Point 5"

39

UXC/USC5: CMS caverns

Delivered to the experiment on February 1-st 2005.

CMS Surface Hall in Feb 2006

Surface Hall: Barrel Muons

Surface Hall: Endcaps

HCAL Endcap

Assembly of the Coil

Insertion of HCAL Barrel

Insertion of Barrel ECAL

First HF landing into UXC55 (2 Nov 06)

Lowering of Heavy Elements

Lowering of Heavy Elements

Lowering of Heavy Elements

YBO landing in the CMS experiment hall

Completion of Services on YBO

Tracker Insertion

After Tracker insertion

Pixel insertion

Beam Pipe installation

CMS closed and ready for data

Cabling and re-cabling one year later

- pp collisions @ 14 TeV and L=10³⁴ cm⁻²s⁻¹
- LHC collision rate = 40 MHz

59

ATLAS - A Toroidal LHC ApparatuS

the vast ATLAS cavern

ATLAS - from high up

ATLAS - The Toroids

ATLAS – the 8 huge Toroidal magnets in place

ATLAS - barrel complete

ATLAS – the barrel section completed

Some slides are from a presentation at CMS Italia, Bari 2008 (C. Botta – N. De Filippis)

SM Higgs @ CMS vs SM Higgs @ ATLAS

ATLAS barrel $H \rightarrow ZZ^{*} \rightarrow e^{+}e^{-}\mu^{+}\mu^{-}(m_{\mu} = 130 \text{ GeV})$

Detection strategies: CMS vs ATLAS

"No particle of interest should escape unseen"

Need to absorbe energy of 1 TeV electrons (30 X_0 or 18 cm Pb), of 1 TeV pions (11 λ or 2m Fe) Particle are produced over all the solid angle, need to limitate crack in acceptance. ($|\eta| < 2.5$) Efficient identification in addiction to excellent purity of muons, electrons, photons arising from the hard scattering are as important as the accuracy with which their four-momenta can be determined (for pt 40 GeV the electron/jet ratio decrease from 10^{-3} to 10^{-5} from Tevatron to LHC)

Different answers to these needs by the 2 collaborations expecially in the choice of the magnet system which has shaped the experiment in a major way

ATLAS e CMS chose different way to maximize the factor BL^2 determining the resolution on the momentum of the muons (goal: 10% for 1TeV muon)

THE MAGNET SYSTEM

	CMS	ATLAS		
Parameter	Solenoid	Solenoid	Barrel toroid	End-cap toroids
Inner diameter	5.9 m	2.4 m	9.4 m	1.7 m
Outer diameter	6.5 m	2.6 m	20.1 m	$10.7 \mathrm{m}$
Axial length	12.9 m	5.3 m	25.3 m	5.0 m
Number of coils	1	1	8	8
Number of turns per coil	2168	1173	120	116
Conductor size (mm ²)	64×22	30×4.25	57×12	41×12
Bending power	$4 \mathrm{T} \cdot \mathrm{m}$	$2 \ T \cdot m$	$3 \mathrm{T} \cdot \mathrm{m}$	$6 \mathrm{T} \cdot \mathrm{m}$
Current	19.5 kA	7.7 kA	20.5 kA	20.0 kA
Stored energy	$2700\mathrm{MJ}$	38 MJ	1080 MJ	206 MJ

THE ATLAS CHOICE:

THE CMS CHOICE:

measurement.

-<u>Barrel Toroid</u>: 8 flat superconducting race-track coils, each 25 metres long and 5 metres wide, grouped in a torus shape. The 8 coils in the torus are kept by 16 support rings.

-<u>Two EndcapToroid</u> positioned inside the Barrel Toroid at both ends of the Solenoid, provide the required high magnetic field across a radial span of 1.5 to 5 metres.

one magnet for high magnet field in the tracker volume

and high enough return flux for muon momentum

THE MAGNET SYSTEM (2)

<u>ATLAS PROS:</u> the muon spectrometer provides indipendent and high accuracy measurement of muons over full coverage ($|\eta| < 2.7$)

ATLAS CONS: not uniform field in the limits of the tracker volume (because of the lenght of the solenoid)

<u>ATLAS CONS:</u> the position of the solenoid in front of the barrel ECAL limited in some extent the energy resolution in the region $1.2 < \eta < 1.5$

<u>CMS PROS:</u> the higher field strenght and uniformity of CMS solenoid provide better momentum resolution and better uniformity over the full eta coverage

<u>CMS CONS</u>: the position of the solenoid outside the calorimeter limits the ⁴ number of interaction lenghts to absorbe hadronic shower for $|\eta| < 1$

<u>CMS CONS:</u> the muon spectrometer system has limited stand-alone measurement capabilities (problem for triggering with the LHC upgrade)

THE TRACKING SYSTEM

For robust and redundant pattern recognition / High level trigger capabilities for e, µ, tau and b-jets / secondary vertices and impact parameters/ electrons Id by matching cluster and tracks...

Same geometrical coverage (over $|\eta| < 2.4 - 2.5$)

Similar near the interaction vertex but differ in technological choices at larger radii

• small radii: PIXEL DETECTOR-> 3 hits, pixel size ($(\mu m)R\varphi \times (\mu m)z$) = 50x400 (ATLAS) /100x150 (CMS) • intermediate radii: SILICON STRIP ($\approx 300 \,\mu m$, pitch $80 - 120 \,\mu m$). SCT (ATLAS) -> 8 hits (30- 60 cm) / TIB,TID and first rings of the TEC (CMS) -> 6 hits (20-55 cm) • outer radii: (CMS) silicon strip technology with TOB and TEC->8 hits (55-107 cm) ($\approx 300 \,\mu m$, pitch $120 - 180 \,\mu m$). (ATLAS) TRT (56-107) cm (set of 4 mm in diameter straw-tube detectors operating at room temperature)

similar inner and outer dimensions (107 cm (ATLAS) - 110 cm (CMS))

serious problem of the material budget that increased during the years ((CMS) it reaches 1.8 X_0 at $\eta \approx 1.7$)

THE TRACKING SYSTEM (2)

	ATLAS	CMS
Reconstruction efficiency for muons with $p_T = 1 \text{ GeV}$	96.8%	97.0%
Reconstruction efficiency for pions with $p_T = 1 \text{ GeV}$	84.0%	80.0%
Reconstruction efficiency for electrons with $p_T = 5 \text{ GeV}$	90.0%	85.0%
Momentum resolution at $p_T = 1$ GeV and $\eta \approx 0$	1.3%	0.7%
Momentum resolution at $p_T = 1$ GeV and $\eta \approx 2.5$	2.0%	2.0%
Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 0$	3.8%	1.5%
Momentum resolution at $p_T = 100 \text{ GeV}$ and $\eta \approx 2.5$	11%	7%
Transverse i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0$ (µm)	75	90
Transverse i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5 (\mu m)$	200	220
Transverse i.p. resolution at $p_T = 1000 \text{ GeV}$ and $\eta \approx 0 \ (\mu m)$	11	9
Transverse i.p. resolution at $p_T = 1000 \text{ GeV}$ and $\eta \approx 2.5 \text{ (}\mu\text{m)}$	11	11
Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 0 \ (\mu m)$	150	125
Longitudinal i.p. resolution at $p_T = 1$ GeV and $\eta \approx 2.5$ (µm)	900	1060
Longitudinal i.p. resolution at $p_T = 1000 \text{ GeV}$ and $\eta \approx 0 \ (\mu \text{m})$	90	22-42
Longitudinal i.p. resolution at $p_T = 1000 \text{ GeV}$ and $\eta \approx 2.5 (\mu \text{m})$	190	70

Impact of material and B field is visible on **efficiencies**

(the problem is more visible in CMS because of the higher magnetic field which enhance effect owing to interaction with material) Performance of CMS tracker is undoubtely superior to that of ATLAS in term of **momentum resolution**

(more uniform and higher field and more accurate measurements at large radii)

Vertexing and b-tagging

performance are similar (the smaller pixel size is counterbalanced by the charge sharing and the analog readout)

THE CALORIMETER SYSTEM

Elettromagnetic calorimeter

CMS

ATLAS uses LAr sampling calorimeter with good energy resolution and excellent lateral and longitudinal segmentation

CMS use PbWO4 scintillating crystals with excellent energy resolution and lateral segmentation but no longitudinal segmentation

ATLAS

Test beam:

CMS superior intrinsic resolution **ATLAS** excellent uniform response

0.05
Electromagnetic Calorimeter

- Crystal Technology
 - Lead Tungstate Crystals (~76000)
 - High density (8.2 g/cm³)
 - Short radiation length (8.9 mm)
 - Small Moliere radius (22 mm)
- High segmentation for precise position measurement
- Acceptance to $|\mathbf{n}| < 3.0$ Resolution: $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.83\%}{\sqrt{E}}\right)^2 + \left(\frac{124MeV}{E}\right)^2 + (0.26\%)^2$

Different design concepts

THE CALORIMETER SYSTEM

Hadronic calorimeter

- **ATLAS:** Made by Fe-scintillator (barrel) and Cu-liquid argon (end-caps) for a total of 11 λ_I relative good energy resolution: $\sigma_E / E \approx 50\% / \sqrt{E/GeV} \oplus 0.03$
- **CMS:** Made of Cu-scintillator with energy resolution

1.5

2

 $\sigma_{_E}/E \approx 100\%/\sqrt{E/GeV} \oplus 0.05$

Due to the constrain of beeing inside the magnet is not long enough -> HO $(7.2\lambda_I(\eta \cong 0))$

2.5

3

η

CMS Sampling fraction 3 time worse than ATLAS (fraction of ionizing energy deposited in active medium for MIP)

CMS		ATLAS	CMS
	Technology		
_	Barrel/Ext. barrel	14 mm iron/3 mm scint.	50 mm brass/3.7 mm scint.
	End caps	25–50 mm copper/8.5 mm LAr	78 mm brass/3.7 mm scint.
	Forward	Copper (front) - Tungsten	Steel/0.6 mm quartz
		(back)/0.25-0.50 mm LAr	
	Abs. lengths (minmax.)		
	Barrel/Ext. barrel	9.7-13.0	7.2-11.0
• #F			10-14 (with coil/HO)
+ _	End caps	9.7-12.5	9.0-10.0
, =	Forward	9.5-10.5	9.8

30

25

20

15

10

00

ECAL

0.5

1

Hadronic Calorimeter

- Barrel and Endcap part (|n|<3)
 - Brass / Scintillation layers Resolution: $\left(\frac{\sigma}{F}\right)^2 = \left(\frac{115\%}{\sqrt{F}}\right)^2 + (5.5\%)^2$
- Forward Region (3<|n|<5)
 - Steel plates / Quartz fibers Resolution: $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{280\%}{\sqrt{E}}\right)^2 + (11\%)^2$
- Absorber geometry
 - 7 Interaction lengths at $\eta = 0$
 - 11 Interaction lengths at $\eta = 1.3$

Calorimeter Geometry

Different design concepts

THE MUON SYSTEM

the golden decay $H \rightarrow ZZ \rightarrow 4\mu$ requires a resolution of 1% of the two-muon states

both experiments aim at a 10% momentum resolution for 1TeV muon

wide rapidity region (2/3 of Higgs decay in 4μ have at least one μ with η > 1.4)

Trigger: ability to measure and select on line μ with pt > 5-10 GeV

ATLAS: $|\eta| < 1$: large toroidal magnet with 8 coils , 3 cilyndrical layers of chambers (MDT and RPC) 1.4 $< |\eta| < 2.7$: muon tracks are bent in two smaller toroidal, 3 wheels (CSC, TGC and MDT) $1 < |\eta| < 1.4$: the magnetic fields partially overlap reducing the bending, chamber strategically placed TRIGGER with RPC e TGC

CMS: chambers installed between the iron slabs that provide the return yoke for the field (big enough to have 4 station in the barrel and 4 perpendicoular disk in the endcap) TRIGGER with CSC,DT and RPC

Pseudorapidity coverage CMS < 2.5 – ATLAS <2.7

Different design concepts

THE MUON SYSTEM

ATLAS opted for a high-resolution stand-alone measurement (large volume with low material density)

The required precision on muon momentum implies an excellent knowledge on the magnetic field (modest in all the region (0.5T) but inhomogeneus \rightarrow must be measured and monitored with high precision (to 20G))

The high accuracy stand-alone measurements necessitates a high precision on the alignment ($30 \ \mu m \ w.r.t \ 100-500 \ \mu m \ requires \ by CMS$)

Finally these measurements relay on a detailed knowledge of the material-distribution in the spectrometer, expecially for reconstructing with high accuracy intermediate-momentum muons without a high fake rate (the corresponding effect in CMS is much smaller)

The CMS muon system strong point is the effective matching with the tracker. The solenoidal field outside the coil bends the tracks in the transverse plane effectively adding points to tracker track

The limited stand-alone muon resolution of CMS is dominated by MULTIPLE SCATTERING in iron, while in ATLAS by calibration and alignment

Muon System

- Muons are identified in Muon System
- For low P_t muons, P_t is assigned by the tracker
- For high P₊ muons, Muon system contributes to the measurement
- All muon sub-detectors contribute to the trigger
- Layout
 - Barrel
 - Drift Tube chambers (DT) |n|<1.3
 - Resistive Plates (RPC) |n|<1.3
 - Endcap
 - Cathode Strip Chambers (CSC) 0.9<|n|<2.4
 - Resistive Plate Chambers (RPC) |n|<2.1

Muon Geometry

- Full coverage to |n|<2.4
 - Overlaps with Tracker Coverage.
- Three main coverage regions
 - |n|<0.8: Barrel only
 - 0.8< |n|<1.3: Barrel 200 and endcap
 - 1.3<|n|<2.4: Endcap only.

ATLAS vs CMS

	ATLAS	CMS
Magnetic field	2 T solenoid + toroid (0.5 T barrel I T endcap)	4T solenoid + return yoke
Tracker	Si pixels, strips + TRT $\sigma/p_T \approx 5 \times 10^{-4} p_T + 0.01$	Si pixels, strips $\sigma/p_T \approx 1.5 \times 10^{-4} p_T + 0.005$
EM calorimeter	Pb+LAr σ/E ≈ 10%/√E + 0.007	PbWO4 crystals $\sigma/E \approx 2-5\%/\sqrt{E} + 0.005$
Hadronic calorimeter	Fe+scint. / Cu+LAr (10 λ) $\sigma/E \approx 50\%/\sqrt{E} + 0.03 \text{ GeV}$	Cu+scintillator (5.8 λ + catcher) $\sigma/E \approx 100\%/\sqrt{E} + 0.05 \text{ GeV}$
Muon	$\sigma/p_T\approx 2\%$ @ 50GeV to 10% @ ITeV (ID+MS)	$\sigma/p_T \approx 1\%$ @ 50GeV to 5% @ ITeV (ID+MS)
Trigger	LI + Rol-based HLT (L2+EF)	LI+HLT (L2 + L3)

Higgs Hunting at LHC

Higgs search prospects

SM Higgs: what we know from theory

M_H [GeV]

One pseudo-scalar doublet Φ (4 degrees of freedom)

Potential V = $\lambda |\Phi|^4 - \mu^2 |\Phi|^2$

After spontaneous symmetry breaking:

- W[±] and Z acquire masses (3 degrees of freedom)
- the last remaining degree of freedom (4-3=1): scalar CP-even Higgs of unknown mass $m_{H}^{2} = \lambda v^{2}/3$

 λ , as any other coupling constant, runs up to a scale Q at which the model is not longer valid:

• small m_H at 1-TeV scale at some Q, λ (Q) < 0 V has no minimum (vacuum breaks loose)

• large m_H at 1-TeV scale at some Q, $\lambda(Q) = \infty$ theory becomes non-perturbative

 \rightarrow chimney

 m_H must be within ~ 50-600 GeV range (if the SM is valid up to Q ~ 1 TeV scale)

Direct searches at LEP, e⁺e⁻ collisions, (1989-2000)

First Hint of Higgs

boson with mass 115

 H^0

Z(*)

 e^+

Indirect evidence is driven by radiative corrections

CDF+D0 Top Quark Mass = 172.7 ± 2.9 GeV

GeV observed by ALEPH. LEP **7**0 e experiments together see about 2₅ effect CL_{s} LEP 10 -2 10 Observed 10 Expected for background 10 14. 115.4-5 10 10 100 102 104 106 108 110 112 114 116 118 120 $m_{\mu}(GeV/c^2)$

M_H>114.1 GeV @ 95% C.L.

What we know experimentally: Tevatron CDF & D0 combined (March 2009)

Tevatron exclusion projections

- Improvement factor of 1.5 is assumed (besides plain increase in Lumi)
- Projections do not take into account the current actually observed limits

Main Decay Modes

For $M_H > 140$ GeV: $H \rightarrow WW^{(*)}, ZZ^{(*)}$

 $\frac{At Low mass}{2m_z} (m_H < 2m_z)$

- H→ bb : BR ~0.85 but huge QCD background
- H→ττ : accessible through VBF
- H→γγ : very important despite the low BR (~0.002) due to the excellent γ/jet separation and γ resolution

• $H \rightarrow WW^* \rightarrow 2|2v$: accesible through gg fusion and VBF, BR~1 at m_{H} ~160 GeV/c²

H→ZZ*→4I4v : also accesible

♦ For Higher masses H→WW* →2l2v and H→ZZ*→4l

TEVATRON vs LHC at the end of 2010: 8 fb⁻¹ vs 200 pb⁻¹ factor of 40 in x-sections?

Higgs Events in CMS

Higgs decay in 4 muons

Event selection: The trigger system

Mandate:

"Look at (almost) all bunch crossings, select most interesting ones, collect all detector information and store it for off-line analysis"

Since the detector data are not all promptly available and the function is highly complex, T(...) is evaluated by successive approximations called :

TRIGGER LEVELS

(possibly with zero dead time)

Trigger and readout structure at LHC

Multilevel trigger and readout systems

Trigger levels at LHC (the first second)

Collision rate 10⁹ Hz

Channel data sampling at 40 MHz

Level-1 selected events 10⁵ Hz

Particle identification(High $p_{T} e, \mu$, jets, missing E)

- Local pattern recognition
- Energy evaluation on prompt macro-granular information

Level-2 selected events 10³ Hz

Clean particle signature (Z, W, ..)

- Finer granularity precise measurement
- Kinematics. effective mass cuts and event topology
- Track reconstruction and detector matching

Level-3 events to tape 10..100 Hz Physics process identification

• Event reconstruction and analysis

CMS Level-1 : calorimeters and muons

Compare to Central tracking at L = 10^{34} (50 ns integration, -1000 tracks)

Algorithm Complexity + huge amount of data

Pattern recognition much easier on calo & muon

12.5 cm

Particle identification

Particle-Flow Event Reconstruction

Reconstruct and identify all particles

- Charged hadrons
- Photons
- Neutral hadrons
- Electrons (also non isolated)
- Muons

- Identify and utilize an optimal combination of all (CMS) sub-detector information
- **Provide a unique list of particles**
 - for a global, coherent, accurate event description
- Particle-based objects: MET, Jets, taus, b jets, ...

Physics Object: Photons

Physics objects: Electrons

Electrons:

at 50 GeV in the barrel region: theCMS effective resolution is estimated to be 2% the ATLAS energy resolution varies between 1.3% (at $\eta = 0.3$) and 1.8% (at $\eta = 1.1$)

Physics objects: muons

ATLAS: almost indipendence of the resolution from η CMS: degradation of resolution at higher η

CMS : Superior combined momentum resolution in central region ->higher resolution tracking system ATLAS: Superior combined momentum resolution in forward region -> better coverage toroidal system

Together with a recostruction efficiency of about 99% over almost all the pseudorapidity range, these numbers are very important for the Higgs discovery golden channel

e/µ Offline Reconstruction

Physics objects: Jets

Particle Flow Algorithm

Photons

- 20% of the jet energy
- $\bullet \quad \text{ECAL cluster} \rightarrow \text{Ecal resolution}$

Charged hadrons

- 70% of the jet energy
- Track + ECAL + HCAL \rightarrow Tracker resolution

Neutral hadrons

- 10% of the jet energy
- HCAL (+ECAL) cluster \rightarrow HCAL resolution

Muons

Track + muon resolution

Electrons

 Tracker + ECAL resolution + brem recovery

Reconstructing Jets With Particle Flow

Latest performance with cluster calibration and improved tracking

- Particle Flow Jet Energy and Angular Resolutions
 - Substantial improvement over calorimetric jets all the way to ~1 TeV
 - ~ Much smaller Jet-Energy-Scale corrections/uncertainties

Physics objects: Missing energy

The missing transverse energy is defined by the vector sum of the energy deposits in the calorimeter towers (or cells):

Reconstructing MET with Particle Flow

P-Flow MET in QCD (zero MET) & ttbar (real MET) events

- Substantial improvement in absolute resolution over calo MET
 - Both for events with zero MET (QCD) and for events with real MET (ttbar); result does not yet include latest cluster calibration or improved tracking
 - ~ Improvements in p-flow MET performance expected
Reconstructing Taus With Particle Flow

Optimal use of the tracker and of the granularity of the ECAL in Particle Flow Reco

• Reconstruct all charged hadrons and photons from □°'s

Identifying taus with Particle Flow

P-flow reconstruction: new possibilities in tau ID

- Exclusive reconstruction of tau decays
- Improved tracking efficiency at low p_T

Combined in a NN

Performance for jets with 20 < p_T < 50 GeV/c: efficiency (per tau): 60% efficiency (per QCD jet): 0.2%

> Background rejection: factor 20 larger than with traditional tau ID

Main Decay Modes

H→γγ,ττ,bb

For M_H>140 GeV: H→WW^(*),ZZ^(*)

- Narrow peak over "smooth" background
- Key points:
 - Good mass resolution (Intrinsic width is negligible) => Energy resolution of e.m. calorimeter + primary vertex determination
 - Good photon identification: To reduce jet background below true photon background
 - Very fine segmentation (ATLAS) to allow photon/ π^0 separation event by event
 - Isolation cuts
 - Recovery of conversions:
 - ~30% of photons convert in tracker

If vertex unknown add 1.4 GeV to mass resolution Calo pointing in ATLAS gives vertex resolution of 1.7 cm while σ (beam) = 5.6 cm Most important channel for Higgs discovery (from LEP limit to 150 GeV) because clear signature with respect to bb decay but small B.R. (0.2%)

 $H \rightarrow \gamma \gamma$

Cross section x BR: 99.3 fb (M(H)=115 GeV), 41.5 fb (M(H) = 150 GeV)

Significances@30fb⁻¹: CMS: 6.0 (cut based), 8.2 NN ATLAS: 6.3 cut based

SM Higgs: $H \rightarrow \gamma \gamma$

Backgrounds:

- prompt γγ
- prompt γ + jet(brem γ , $\pi^0 \rightarrow \gamma \gamma$)
- dijets

CMS-2006 analysis:

- cut-based
 - events sorted by "em shower quality"
 - kinematics, isolation, $M_{\gamma\gamma}$ -peak
- optimized
 - loose sorting and kinematical cuts
 - Neural net and Likelihood Ratio
 with bkgd pdf taken from <u>sidebands</u>, signal pdf from MC

m _H =130 GeV	CMS	NLO cut based (TDR-2006)	6.0 σ	
		NLO neural net (TDR-2006)	8.2 σ	-
	ATLAS	LO cut based (TDR-1999)	3.9 σ	66
		NLO cut based (2006, stat. err. only)	6.3 σ	D
		NLO likelihood (2006, stat. err. only)	8.7 σ	€

Higgs $\rightarrow \gamma\gamma$ (100 fb⁻¹)

ATLAS

Discovery potential of $H \rightarrow \gamma \gamma$

Results for $H \rightarrow \gamma \gamma$

- Tevatron limits in terms of the expectation for SM Higgs:
 - D0 limit r~12 for 4.2 fb⁻¹ (lucky stat. fluke, expected r~18)
 - with additional 4 fb⁻¹, expect r~10

CMS expectation (200 pb⁻¹, 10 TeV)

simple counting (should do better)

Complex final state: ttH(→bb)→lepton+v+bbbb+jj

Analysis very sensitive to b-tagging efficiency (ε_b⁴)
 Parton/Hadron level studies → ε_b ≥60% needed
 Need ~100 times rejection against light jets and ~10 times against charm to suppress ttjj

b tagging

B hadron properties can be exploited to tag b-jets:

- long B lifetime (1.57±0.01 ps)
 - Can travel few millimeters before the decay
 - Secondary vertex displaced few millimeters from the interaction vertex
- high mass ($\sim 5.2 \text{ GeV/c}^2$)
- high charged decay multiplicity (4.97 ± 0.06)

A variety of algorithms is available IP- & sec. vertex based; combined with kinematics; soft leptons Identified robust subset for startup; tagging available at HLT

Early projections: might be observable already at L=30 fb⁻¹

More recent analysis (CMS & ATLAS): systematic error control at a <u>percent</u> level is needed—not feasible...

Very difficult large background , similar to signal

Tau lepton decays & identification

• Leptonic decay mode

 $\tau \to v_{\tau} + v_{e} + e$ (17.4%) $\tau \to v_{\tau} + v_{\mu} + \mu$ (17.8%) Tau identification= electron/muon identification (ε=80/90%, rejection q(g) jet ~ 0.1%)

• Hadronic decay mode

1 prong

 $\begin{bmatrix} \tau \to \nu_{\tau} + \pi^{\pm} & (11.0\%) \\ \tau \to \nu_{\tau} + \pi^{\pm} + \pi^{0} & (25.4\%) \\ \tau \to \nu_{\tau} + \pi^{\pm} + \pi^{0} + \pi^{0} & (10.8\%) \\ \tau \to \nu_{\tau} + \pi^{\pm} + \pi^{0} + \pi^{0} + \pi^{0} & (1.4\%) \\ \tau \to \nu_{\tau} + K^{\pm} + n\pi^{0} & (1.6\%) \end{bmatrix}$

3 prong

 $\tau \to \nu_{\tau} + 3 \pi^{\pm} + n\pi^{0}$ (15.2%)

Tau jet identification

1 - 3 tracks , impact parameter, shower shape, secondary vertex, energy sharing of neutral and charged pion component

 ϵ =50%, rejection q(g) ~ 1%

τ Identification with Cone Isolation

Two algorithms

- CaloTau Algorithm
 - Associates tracks to jets
 - Identifies τ by track isolation
- Particle Flow
 - The algorithm
 - Reconstructs particles
 - Applies Pt corrections in particle level
 - Forms jets from particles

Require no charged, γ candidates in isolation annulus

Low Mass Higgs: Η-→ττ

Outstanding issues

Missing E_T reconstruction

Lepton Identification

Tau tagging (likelihood, NN methods)

VBF qqH, $H \rightarrow \tau \tau \rightarrow I+jets$

- ATLAS performed studies on all final states (II, I + jet, jet jet)
- CMS focused in the recent past on I + jet decay channel
- Main backgrounds:

Z + jets, W + jets, tt and QCD \rightarrow detailed study done in CMS about background estimate from data

Characteristics of signal :

- + Central tau decay products
- + high p_T forward quark initiated jets, separated in η
- + other jets between the two quark initiated jets suppressed (no colour flow between two quark jets)
- + missing energy in the transverse plane (due to taus)

Invariant mass of the τ pair reconstructed via the collinear approximation

Rapidity gap in VBF processes

Low Mass SM H→ττ+jets

Reconstruct Higgs mass with collinear approxim

H(→ττ→lh) +≥2jets

H(→ττ→2l) +≥2jets

н

 $\nu\nu$

Significance at 30 fb⁻¹:

- ATLAS: $\tau\tau \rightarrow I + jet M_{H} = 130 \text{ GeV}$, Sign. 4.4
- CMS: $\tau \tau \rightarrow I + jet M_{H} = 135 \text{ GeV}$, Sign. 3.98

Intermediate and Heavy Higgs: $(M_{H}>140 \text{ GeV}) H \rightarrow ZZ^{(*)} \rightarrow 4I$

$H \rightarrow ZZ \rightarrow 4I \ analysis$

Signatures: 4e,4mu and 2e2mu final state Backgrounds:

- irreducible ZZ (each virtual or real Z in μ⁺μ⁻)
- reducible Zbb (Z in $\mu^+\mu^-$ and semilept. decay of b)
- reducible tt (each t in bW and semilept. decay of b)
- and tt+jets, Z+jets, W+jets, QCD

Preselection strategy: (to get rid of QCD bkg with fake leptons)

- Single & double lepton triggers
- 4 loose isolated leptons opp. charge and eleld
- m_{II}>12 GeV, m_{4I}>100 GeV

Main selection observables:

- tight isolation (against tt, Zbb)
- impact parameter (against Zbb and tt)
- 50<m_Z<100 GeV, 20<m_{Z*}< 100 GeV

→ Baseline cut-based analysis, m_H -independent, able to get rid of main bkg → first observation with reasonable lumi

SM Higgs→ZZ^(*)→4I

Able to reconstruct a narrow resonance, with mass resolution close to 1%. Can achieve excellent signal-to-background > 1

➢ Major issue: Lepton ID and rejection of semi-leptonic decays of B decays. Suppress reducible background Zbb,tt→4|

H[**130** GeV]→4e

H[**130** GeV]→4μ

SM Higgs: H→ZZ→4I

H→ZZ→4I, update 2008

eeμμ 4μ 4e

Main backgrounds : ZZ (irreducible), tt and Zbb (reducible) Tools for background suppression : lepton isolation and impact parameter

H→ZZ→4l (10 TeV 200 pb⁻¹)

- currently no limits from Tevatron
- o for m_H>200 GeV, LHC10 x-section >40 x (Tevatron)
- projection: we can reach limit $r = \sigma_{95\% CL} / \sigma_{SM} \sim 5-10 (m_H \sim 200-400)$
- meaningful in context of 4-generation models
 which boost the gg-fusion x-section by a factor of ~9
 (4th generation with Higgs m_H<200 is excluded by Tevatron)

Intermediate mass Higgs: $(140 < m_{H} < 200 \text{ GeV})$ $H \rightarrow WW^{(*)} \rightarrow 2I2v$

н W-**Missing Energy**

Missing Energy

Main search channel for range 140 < m_H < 2m_Z

Highest branching ratio for $m_H > 140$ GeV/c²: 95% at $m_H = 160$ GeV/c²

<u>Signal</u>: 2 high p_T isolated leptons, missing E_T and no central jets</u>

<u>Background</u>: WW, tt, W+jets, Z+jets, tW, WZ, ZZ..

No mass peak (undetected v's)→needs a good background understanding

Difficulty:

- Counting experiment, essentially no mass reconstruction and no mass peak
- Rely on accurate estimate of background rate
- Strategy: Use control region(s) to estimate background(s) and extrapolate to signal region
- **Backgrounds: two main discriminants**
 - t-tbar production: rejected by jet-veto (i.e. reject events with central jets since ttbar process slightly favors central jets)
 - WW continuum: Use spin correlation to distinguish signal from background

$H \to WW \to \mu e + \nu \nu$

 $H \rightarrow W W(*)$ is the dominant Higgs decay mode in a wide mass range for: $2m_W < m_H < 2m_Z$ the BR is ~ 1.

pp→H→WW→IvIv					
m _H [GeV]	σ _{NLO} [pb]				
160	2.34				
170	2.26				
180	1.99				

Signal: clean signature of two high pT leptons and missing energy

Main backgrounds:

Di-boson production, especially WW (but also WZ, ZZ),

ttbar (tW and bb also),

Drell-Yan, W + jets (jets faking electrons)...

Process	ww	WZ	ZZ	ttbar	tW
σ _{NLO} [pb]	114,4	49,9	15,2	840	62

□ The jet reconstruction is fundamental to ensure an efficient background rejection.
 □ The kinematics of the ttbar process slightly favors central jets → jet veto (i.e. reject events with central jets)

Other cuts on: lepton isolation, p_T of leptons, MET, $\Delta \Phi_{\parallel}$, Inv. m of lept

$H \rightarrow WW^* \rightarrow II_{VV}$ analysis strategy

ATLAS (eµ final state, H+ 0j, H+2j analysis)

- Preselection:
- 2 opposite-sign isolated and identified leptons
- Cuts on m_{\parallel} , MET, $\Delta \phi_{\parallel}$, Z | | removal
- Central Jet veto & b-tag veto
- Final selection:

2D Fit of transverse mass and p_T in 2 bins of di-lepton azimuthal angle $\Delta \phi_{\parallel}$ to extract S/B ratio in signal region

CMS (ee, μμ, eμ final states, H+0j analysis)

- Preselection:
- 2 opposite-sign isolated and identified leptons
- Cuts on m_{II}, MET
- Central Jet Veto
- Variables used to reduce background :

 p_T of the leptons, m_{ll} , $\Delta \phi_{ll}$, MET

• Final selection:

Mass dependent cut based & multivariate analysis • Control regions: fake leptons, background normalization

CMS Results for $H \rightarrow WW^* \rightarrow II_{VV}$

Higgs mass, GeV/c²

$H \rightarrow WW^* \rightarrow e\mu \nu\nu$, ATLAS update 2008

ATLAS updated only eµ-channel

- inclusive WW is now better than VBF
 - this order now agrees with CMS
 - is reverse to ATLAS simulations in 2003
- Combined significance (10 fb⁻¹ @ 14 TeV) above 5σ level for ≈ m_H> 140 GeV/c²

$H \rightarrow WW \rightarrow 2l_2v (10 \text{ TeV } 200 \text{ pb}^{-1})$

- Tevatron (CDF+D0) just excluded m_H=160-170
- CMS vs Tevatron:
 - CMS can exclude m_H=160-180 (important crosscheck)
 - for m_H=200-500, limit r~2.5-5
 - expected to be even better than ZZ for exclusions at low luminosity
 - certainly outperforms Tevatron in this mass range

CMS last updated analyses (1 fb⁻¹ @ 14 TeV)

<u>1 fb⁻¹ @ 14 TeV</u>

- **WW:** has enough sensitivity for a <u>discovery</u> (160-170 GeV)
- **ZZ:** has enough sensitivity for <u>exclusion</u> (190-230 GeV)
- $\tau\tau$: only high <u>upper limits</u> are possible

Combining channels

√s: 14 TeV→10 TeV

LHC will start working with √s lower than 14 TeV (around 10 TeV)

- Cross section for signals and background goes down
- Signal (Higgs production) goes down slightly faster: *Higgs is mainly produced from* gg and backgrounds from qq
- Higgs decay products become relatively more central for smaller LHC energies

Signal and bkgd yields re-scaled

- √s: 14 TeV→10 TeV:
- loss of a factor of 1.5 in sensitivity, or a factor of 2 in luminosity
- with roughly ~200 pb⁻¹, reach sensitivity for a SM Higgs with m_H~160-170 GeV (but region just excluded by Tevatron)

Process	$\frac{\sigma_{\sqrt{s}} = 10 \text{TeV}}{\sigma_{\sqrt{s}} = 14 \text{TeV}}$	$\frac{\sigma_{\sqrt{s}} = 6 TeV}{\sigma_{\sqrt{s}} = 14 TeV}$
tĪ	0.450	0.113
Wt	0.450	0.113
WW	0.650	0.320
WZ	0.650	0.320
ZZ	0.650	0.320
$Z \rightarrow \ell \ell$	0.681	0.371
$W \to \ell v$	0.681	0.371
$gg \rightarrow H$	0.540	0.190

Example : HWW + HZZ combined

∫L for 5σ	14 TeV	10 TeV
m _H =200 GeV	0.6 fb-1	1.3 fb-1

But a lot of work still to be done to combine all channels...

we need to

 put in place tools for proper treatment of cross-channel correlations

 coordinate the three analyses to ease the combination exercise

SM Higgs discovery potential

 τ identification

SM Higgs properties: mass

Mass measurement

- Limited by absolute energy scale
 - leptons & photons: 0.1% (with Z calibration)
 - Jets: 1%
- Resolutions:
 - For γγ & 4ℓ ≈ 1 GeV/c²
 - For bb ≈ 15 GeV/c²
- At large masses: decreasing precision due to large $\Gamma_{\rm H}$
- CMS \approx ATLAS

SM Higgs properties: width (for M_H>200 Gev)

- Width:
 - Direct measurement for M_H>200 using golden mode (4*l*)

- If the Higgs boson is there, ATLAS and CMS are ready to find it... ...unless it is discovered or excluded first at the Tevatron!!!
- To find a SM Higgs, with a combination of ATLAS & CMS @14TeV, between ~ 1 and 5 fb⁻¹ are needed depending on mass value. Benchmark luminosities:
 - ☆ ~0.1 fb⁻¹ → exclusion limits will start carving into SM Higgs cross section
- Post-discovery questions that would need to be answered.....
 * what is the Higgs mass, width, quantum numbers?
 * is it a Standard Model Higgs? Is there only one Higgs? or MSSM or other models...?
- If the Higgs is not found, the ATLAS and CMS detectors are anyhow able to search for signatures of a new physics

Problems with the SM Higgs

Quadratic divergence of its mass

$$m^{2}(p^{2})=m_{o}^{2}+\frac{1}{p}\phi^{J=1}+\frac{J=1/2}{\phi}+\frac{0}{\phi}$$

$$m^{2}(p^{2}) = m^{2}(\Lambda^{2}) + Cg^{2}\int_{p^{2}}^{\Lambda^{2}}dk^{2}$$

- $\Box \Lambda$ is a cutoff momentum
- In other words: why is the Higgs mass low?
- With SUSY, quadratic divergences disappear:
 - As long as M_p=M_{sp}
- SUSY requires more Higgs-like particles

MSSM Higgses: choice of parameters

- 5 Higgses in Minimal Supersymmetry (H[±];H⁰,h⁰,A⁰)
- 2 charge, 3 neutral: 2 CP even (light h and heavy H), and one CP – odd (heavy A)
- SUSY has a lot of parameters, but only 4 are important for the Higgs sector in MSSM!
 - At tree level, all masses & couplings depend on only two parameters (usually $M_A \& tan\beta$)
 - Modifications to tree-level mainly from top loops
 - Additional parameters:
 - 1: SUSY particle masses:
 - (a) M>1 TeV (i.e. no decays of the Higgses to sparticles); well-studied
 - (b) M<1 TeV (i.e. allows decays of the Higgses to sparticles); "new"
 - 2: stop mixing:
 - Maximal–No mixing

The Standard Model

Questions:

why masses of matter particles and forces carriers are so different? The bare SM could be consistent with massless particles but matter particles range from almost 0 to about 170 GeV while force carriers range from 0 to about 90 GeV. The simplest solution: all particles are massless !! A new scalar field pervades the Universe (the Higgs field). Particles interacting with this field acquire mass: the stronger the interaction the larger the mass...

BUT

the Higgs boson have not yet been found !

The Standard Model is one of the most successful theories tested so far but many questions are still without an answer.

* What is the origin of the mass of quarks, leptons and force carriers ?

* What is the origin of the mass of quarks, leptons and force carriers ?

* What is the dark matter (and dark energy), which pervades the Universe ?

* Why our World is made with matter and how the antimatter disappeared ?

* Why the interactions are so different in strenght and why Gravity cannot be included in our SM theory?

* Are quarks and leptons fundamental particles or have they internal structures ?

We believe that the answer to some of these questions is probably hidden in the so far unexplored TeV region which will become accessible with the CERN Large Hadron Collider (LHC)

SM Higgs: production

- Production mechanisms & cross section
- 10 000- 100 000 Higgses produced /year at high lumi

Higgs Production Cross-sections

