Higgs Searches at LEP, Tevatron and LHC

Particle Physics Course "Dottorato di Ricerca Internazionale"

LECTURE 1.

Prof. Rino Castaldi

INFN-Pisa

<u>rino.castaldi@pi.infn.it</u>

CATANIA 2009

Ordinary matter is only \approx 5% of the energy in the Universe

The Standard Model

Questions:

why masses of matter particles and forces carriers are so different? The bare SM could be consistent with massless particles but matter particles range from almost 0 to about 170 GeV while force carriers range from 0 to about 90 GeV. The simplest solution: all particles are massless !! A new scalar field pervades the Universe (the Higgs field). Particles interacting with this field acquire mass: the stronger the interaction the larger the mass...

BUT

the Higgs boson have not yet been found !

Higgs Mechanism

Brout, Englert, Guralnik, Hagen, Higgs, Kibble (1964)

• Breaks symmetry while maintaining local gauge invariance (→renormalizability)

- Add complex weak isospin doublet with "mexican hat" potential V = $\lambda |\Phi|^4 \mu^2 |\Phi|^2$
- 3 components of Φ form longitudinal components of W[±] and Z (\rightarrow massive)
- 1 component → real scalar particle: Higgs boson
- Couple fermion fields to $\Phi \rightarrow$ fermion mass terms

all masses due to Higgs

A Little Bit of History

1967: Electroweak unification, with W, Z and H (Glashow, Weinberg, Salam);

1973: Discovery of neutral currents in ν_μe scattering (Gargamelle, CERN)

1974: Complete formulation of the standard model with SU(2)_W×U(1)_Y (Illiopoulos)

1981: The CERN SpS becomes a pp collider; LEP and SLC approved before W/Z discovery;

1983: W and Z discovery (UA1, UA2); LEP and SLC construction start;

1989: First collisions in LEP and SLC; Precision tests of the SM (m_{top});

1995: Discovery of the top (FNAL); Precision tests of the SM (m_H);

2000: First hints of the Higgs boson?

"Theory": SM Higgs Boson Mass and Couplings

SM Higgs: what we know from theory

One pseudo-scalar doublet Φ (4 degrees of freedom)

Potential V = $\lambda |\Phi|^4 - \mu^2 |\Phi|^2$

After spontaneous symmetry breaking:

- W[±] and Z acquire masses (3 degrees of freedom)
- the last remaining degree of freedom (4-3=1): scalar CP-even Higgs of unknown mass $m_{H}^{2} = \lambda v^{2}/3$

 λ , as any other coupling constant, runs up to a scale Q at which the model is not longer valid:

- small m_H at 1-TeV scale at some Q, λ (Q) < 0 V has no minimum (vacuum breaks loose)
- large m_H at 1-TeV scale at some Q, $\lambda(Q) = \infty$ theory becomes non-perturbative

 \rightarrow chimney

 m_H must be within ~ 50-600 GeV range (if the SM is valid up to Q ~ 1 TeV scale)

Theoretical Limits on Higgs Mass

e.g. Riseelmann, hep-ph/9711456

LEP

- Operation 1989 - 2000, CERN, Geneva
- Circumference
 27 km
- Particles electrons - positrons
- Beam energy 45 GeV \rightarrow 104.5 GeV
- Luminosity 10³¹ - 10³² cm⁻² sec⁻¹
- L_{int} 1000 pb⁻¹
- Experiments ALEPH, DELPHI, L3, OPAL
- Characteristics:
 - very clean environment
 - very small backgrounds

Four Experiments at LEP

Typical detector concept

Search for the SM Higgs at LEP

- LEP: e+e- collider at CERN four experiments: ALEPH, DELPHI, L3, OPAL
- LEP1: 1989-1995, Js=91 GeV, precision measurement of Z boson parameters

■ LEP2: 1995-2000, Js =130-208 GeV

year	'95	'96	'97	'98	'99	2000
\sqrt{s}	130-136	161-172	183	189	192 196 200 202	204 205 207 208
Lum (pb ⁻¹)	3 3	11 11	55	160	25 80 80 40	9 72 130 8
Lum x4 exp	24	88	220	640	900	875

>2.5 fb⁻¹ @ E_{cm}>180 GeV

Z Lineshape: Final State Identification

- $Z \rightarrow q\bar{q}$: Two jets, large particle multiplicity.
- $Z \rightarrow e^+e^-$, $\mu^+\mu^-$: Two charged particles (e or μ .)

• $Z \rightarrow v\bar{v}$: Not detectable.

• $Z \rightarrow \tau^+ \tau^-$: Two low multiplicity jets + missing energy carried by the decay neutrinos

Channel	Partial Width	Branching Ratio
Hadrons	1.739 GeV	70%
Neutrinos	0.497 GeV	20%
Leptons	0.250 GeV	10%

Z Lineshape: Final State Identification

Hadronic decays:

High multiplicity High mass

Precision Electroweak Observables

Experiment Observable		Main technology	Precision	Physics output	
Z Lineshape	mz	Absolute beam energy (+ ISR QED calculations)	2.10 ⁻⁵	Input!	
30 N _s = 2 N _s = 3 25 N _s = 4 N _s = 4	$\Gamma_{\sf Z}$	Relative beam energy	10 ⁻³	$\Delta \rho, \alpha_s, N_v$	
α (qu) ₁₅	σ_{peak}	Absolute luminosity	10 ⁻³	N _v	
10 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	$\mathbf{R}_{\ell} = \frac{\mathbf{\Gamma}_{\text{hadron}}}{\mathbf{\Gamma}_{\text{lepton}}}$	Final state identification	1.2.10 ⁻³	α_s , m_{top}	
Production Preliminary Definition Preliminary Definition Definito Definition Definition Definition Definition Definition	mw	-Absolute *Beam energy *Luminosity -Final state Identification	5.10 ⁻⁴	m _H vs m _{top}	
Heavy Flavour Rates	$\mathbf{R}_{\mathbf{b}} = \frac{\Gamma_{\mathbf{b}\overline{\mathbf{b}}}}{\Gamma_{\mathbf{hadron}}}$	b-tagging (Vertex detector)	3.10 ⁻³	m.	
	$\mathbf{R}_{\ell} = \frac{\Gamma_{c\bar{c}}}{\Gamma_{hadron}}$	c-tagging (mostly SLD)	2%		
				e ⁺ ī	

b

Z Lineshape: Results

What LEP found from 1989 to 2000

Unprecedented accuracy on the measurement of SM parameters

m_z known at 21 ppm Z couplings m_w known at ±46 MeV

Dependence on m_{top} and m_H of Electroweak Observables

Electroweak Observables (i.e., related to W and Z) sensitive to vacuum polarization effects:

From precision electroweak measurements :

- Predict m_{top} (and m_w) and compare with direct measurements;
- Predict m_Hand compare with direct measurements.

Prediction of m_{top} from EW Measurements

A top mass of 177 GeV/c² was predicted by LEP & SLC with a precision of 10 GeV/c² in March 1994.

One month later, FNAL announced the first 3σ evidence of the top.

In 2001:

$$m_{\text{top}}^{\text{EW}} = 180.5 \pm 10.0 \,\text{GeV}/c^2$$

 $m_{\text{top}}^{\text{direct}} = 174.3 \pm 5.1 \,\text{GeV}/c^2$

Perfect consistency between prediction and direct measurement. Allows a global fit of the SM (with m_H) to be performed.

Global Fit of the Standard Model to m_H (2008)

Precision electroweak data are sensitive to Higgs mass

 $\Delta r = f(m_{top}^2, \log m_H)$

Global SM electroweak fits provide upper limit :

M_H=91±⁴⁵₃₂ <186 GeV @ 95% C.L.

Direct search: before LEP

Quite a few searches in hadron decays:

The situation before LEP

SM Higgs Boson Production at LEP

Dominant at LEP: The Higgs-strahlung process (The production cross section depends only on m_H)

(Large coupling to the $Z \Rightarrow$ Only sizeable cross section)

SM Higgs Boson Decays

The decay branching ratios depend only on $m_{\rm H}$:

 \Box m_H > 2m_b up to 1000 GeV/c²:

TT

10 $m_{\rm H} ({\rm GeV/c^2})$

Search for acoplanar jets ($e^+e^- \rightarrow Hvv$)

Search for acoplanar jets ($e^+e^- \rightarrow Hvv$)

Energy Losses :

 X_{30} = Fraction of measured energy above 30 degrees from the beam axis

One and two Semi-Leptonic decays in bbg (3-jet) events

Higgs Boson Searches at LEP 1: Result

Search for the SM Higgs at LEP 200

- LEP: e+e- collider at CERN four experiments: ALEPH, DELPHI, L3, OPAL
- LEP1: 1989-1995, Js=91 GeV, precision measurement of Z boson parameters

■ LEP2: 1995-2000, Js =130-208 GeV

year	'95	'96	'97	'98	'99	2000
√s	130-136	161-172	183	189	192 196 200 202	204 205 207 208
Lum (pb ⁻¹)	3 3	11 11	55	160	25 80 80 40	9 72 130 8
Lum x4 exp	24	88	220	640	900	875

>2.5 fb⁻¹ @ E_{cm}>180 GeV

Synchrotron Radiation

• Energy loss per revolution

$$\Delta E = \frac{e^2}{3\varepsilon_0} \frac{\beta^3 \gamma^4}{2\pi R} \qquad \beta = \frac{v}{c} \qquad \gamma = \frac{E}{m} \qquad R = \text{orbit radius}$$
$$\Delta E[GeV] = 5.7 \times 10^{-7} \frac{E^4[GeV]}{R[km]}$$

Example : LEP, 2πR=27km, E=100 GeV (in 2000)
ΔE = 2 GeV!!

□ LEP at limit, need more and more energy just to compensate energy loss

• Note : for ultrarelativistic protons/electrons ($\beta \cong 1$) $\Delta E[p] / \Delta E[e] = (m_e/m_p)^4 = 10^{-13} \parallel 10^{-$

Beam Energy increases in LEP

Energy Loss per Turn $\propto E^4 / \rho$ (Synchrotron Radiation)

Maximum Beam Energy ∝ [RF Voltage × Bending Radius]^{1/4}

	Year	√s (GeV)	# Cu Cavities	# SC Cavities	RF (MV)
RF Voltage;	1989-95	m _z	128	None	180
(130 MV for	1996	161 172	128	144 176	1600 2000
E = 45.6 GeV;	1997	183	52	240	2500
\geq 3 GV for	1998	189	52	272	2850
E = 100 GeV;		192			3000
\rightarrow Go for SC	1999	196 200	48	288	\downarrow
RF Cavities)		202			3550
Increase Bending Radius!		205			
> Or increase both	2000	↓ 209.2	56	288	3650
Higgs searches at LEP 200

Higgs searches at LEP 200

Direct Searches at LEP 2

He⁺e⁻

Event Signatures

Defined by the Z decay mode:

Higgs	Ζ	Fraction
bb	qq	51.5%
bb	vv	14.7%
Any	11	6.7%
bb	ττ	2.5%
ττ	qq	5.0%
Total		80.9%
"missing	ς Ε"	"
$H\nu\overline{\nu}$	E	$I\mu^+\mu^-$

"4-jets"

 $Hb\overline{b}$

Signal vs Background (I)

the interaction point

Higgs searches at LEP

e⁺e⁻ → H Z Very small cross section + huge background

 $\begin{array}{l} \textbf{H} \rightarrow \textbf{b} \ \textbf{b}^{\text{bar}} \\ \rightarrow \text{b tagging crucial} \\ \rightarrow \text{microvertex detector needed} \end{array}$

 $Z \rightarrow qq^{bar}$ 4 jets pairing of the jets is a problem: two jets forced to the Z mass

 $\begin{array}{l} \textbf{Z} {\rightarrow} \nu \nu^{bar} \mbox{ missing energy} \\ {\rightarrow} \mbox{ detector hermeticity} \\ {\rightarrow} \mbox{ energy flow} \end{array}$

 $Z \rightarrow \ell^+ \ell^$ very clean but low rate

 $e^+e^- \rightarrow WW$: dominant in 4 jets $e^+e^- \rightarrow Z Z$: irreducible background

b tagging

- b-tagging is crucial for Higgs searches at LEP
 - B hadron properties can be exploited to tag b-jets:
- long B lifetime (1.57±0.01 ps)
 - Can travel few millimeters before the decay
 - Secondary vertex displaced few millimeters from the interaction vertex
- high mass ($\sim 5.2 \text{ GeV/c}^2$)
- high charged decay multiplicity (4.97 ± 0.06)

b-jet tagging at LEP2

Signal topologies & background...

- Problem: 4 jets give 3 mass combinations...
 Different solutions:

 asking for a Z recoiling (5Cfit)
 asking for jet-b-tagging
 checking the spin of the boson
 A
 - the best fit with WW,ZZ or HZ hyporall

But in general, mass ambiguities

from Jesus Marco, Budapest

pairing & mass reconstruction

six possible pairings:

H dijet	(1,2) M=97 B=5.7	(1,3)	(1,4)	(2,3) M=113 B=3.4	(2,4)	(3,4)
Z dijet	(3,4) M=M _z B=-0.5	(2,4)	(2,3)	(1,4) M=M _z B=2.0	(1,3)	(1,2)

For each pairing, make a 5C fit with $M_{ij} = M_Z$ and build a likelihood including the probability that the two other jets are b-tagged coming from the Higgs decay.

Most likely combination is selected!

A unique mass value is defined₇

First pb⁻¹'s above 206 GeV: First thrills at 115 GeV/c²

b-tagging

(0 = light quarks, 1 = b quarks)

- Higgs jets: 0.99 and 0.99;
- Z jets: 0.14 and 0.01.

ALEPH: four-jet bbbb candidates

Two strong candidates, m=113, 110 GeV/c²

"Only" possible background: ZZ (+wrong pairing/undetected ISR)

Hvv: an irreducible background $e^+e^- \rightarrow bb^{bar}$

The signal is not collinear:

due to the Z width, even in the Higgstrahlung close to the kinematical limit, the H is not usually produced at rest

but

 $\begin{array}{ll} \mbox{for acollinearity} < 5^{\circ} \\ 5\% \mbox{ of Higgs } & \sigma \sim 0.015 \mbox{ pb} \\ 30\% \mbox{ of } qq(g) & \sigma \sim 80 \mbox{ pb} \end{array}$

The collinear events are:

- -Ζγγ double radiative events to the Z with (visible mass ~M(Z))
- -qq where the energy is lost in ∨ or for detector problems, (high visible mass)

In 2000 for L= 220 pb⁻¹, every exp. has ~10 events ee ->bb that loose more than 60 GeV in neutrinos

L3 Hvv candidate

Two well b-tagged jets m_H~114.4 GeV/c² (σ~3 GeV/c²)

The lepton channel Very clean but BR ≈ 3% for each flavour...

b-tagging of jets crucial

If the γ is included in the jet: a very high di-jet mass -> good high mass Higgs candidate !

Danger: radiated photons !

The lepton channel

A few candidate events at 115 GeV/c²

The 14 Most Significant Events

s/b > 0.3: Expected signal-to-noise ratio of ~1		s/b	Rec. mass (GeV/c^2)	Channel	Expt
		4.7	114	Hqq	ALEPH
Expected: 7	Number of events	2.3	112	Hqq	ALEPH
Observed: 14	compatible with s+b	2.0	7 114	Ηvv	L3
		0.90	110	Hqq	ALEPH
Number of events	In ALEPH: 6	0.60	118	Hee	ALEPH
in each experiment compatible with being democratic	In L3: 3 In OPAL: 3 In DEL PHI: 2	0.52	<mark>7 113</mark>	Hqq	OPAL
		0.50	111	Hqq	OPAL
		0.50	115	Ηττ	ALEPH
(~1.6 bkg expected)		0.50	115	Hqq	ALEPH
		0.49	114	Ηνν	L3
In Hqq: 9 (70%)	Number of events	0.47	115	Hqq	L3
In Hyp: 3 (20%)	in each Z decay	0.45	97	Hqq	DELPHI
	compatible with	0.40	114	Hqq	DELPHI
In HI⁺I": 2 (10%)	HZ predictions	0.32	104	Ηνν	OPAL

Values as of Nov 5th, 2000

Mass Reconstruction

Distribution tails have to be well under control

Pre-selection level

The mass reconstruction depends heavily on good calibration of the detectors (tracking, calorimetry..) and on software techniques...

Reconstructed m_H of selected candidates

Have to cut somewhere. For illustration only. Cut on mass independent variables (like b-tags) so that $\frac{s_{\text{expected}}}{b_{\text{expected}}} \approx 0.3$ For $m_{\text{rec}} > 109 \text{ GeV}$ for a 114 GeV Higgs

Reconstructed m_H of selected candidates

Cutting a Little Harder

This time, adjust cuts so that

 $\frac{s_{\text{expected}}}{b_{\text{expected}}} \approx 1.0 \quad \begin{array}{l} \text{For } m_{\text{rec}} > 109 \text{ GeV} \\ \text{for a 114 GeV Higgs} \end{array}$

Very Hard Cuts

 $\frac{s_{\text{expected}}}{b_{\text{expected}}} \approx 2.0$

For m_{rec} >109 GeV for a 114 GeV Higgs

Losing Efficiency -- but "really good" events kept

	Data	Backg	Signal
All m _{rec}	42	34.0	5.6
m_{rec} >109 GeV	5	2.3	3.9

Why Cut at All?

• Need to separate the expected signal from the expected background

- · Pick good variables to optimize separation
 - reconstructed m_H
 - b-tags
 - · kinematic variables

• Express in bins

- Experimental Data
- Monte Carlo Signal Expectation
- Monte Carlo Background Expectation

• Systematic Uncertainties

- By search channel, on signal and background
- · Signed errors, labeled by source name
- · Correlated errors properly treated

Need a language: classical confidence levels

Elements of b tagging

Multivariate Techniques

Multivariate techniques are more powerful than simple cut method

Consider simultaneously kinematic variables to optimize separation of the expected signal from the expected background :

- Impact parameter distribution with respect to the primary vertex
- Lepton transverse momentum distribution with respect to the b-jet axis
- Other discriminating variables (rapidity distribution, multiplicities of jet..)

Signal for m_H=100 GeV

Signal for m_H=115 GeV

Build a discriminating variable G(0,1) output of a Neural Network trained on a set of discriminating variables for signal and background:

L3 Hvv characteristics

Interpreting the Results

- Combine all channels in a 2-D space:
 - reconstructed Higgs mass M_{Hrec}
 - discriminant variable G (b-tag, kinematical info..)
- In each bin of M_{Hrec} and G:
 - Background (MC)
 b_i
 - Signal (MC) s_i
 - Num. of candidates N_i
- For each "test mass" m_H
- Construct a parameter Q to order experimental outcomes: Does the experiment look signal like or background like?

$$Q = \frac{P_{poiss}(data|signal+background)}{P_{poiss}(data|background)}$$
$$lnQ = -s_{tot} + \sum_{bins} n_i^{data} ln\left(1 + \frac{s_i}{b_i}\right)$$

LEP HIGGS WG

The statistical procedure

Signal vs Background

- Overall Likelihood of a given event sample: $Q \stackrel{N}{=} \prod (s_i+b_i)/b_i$;
- Larger in presence of signal;
- Negative Log-Likelihood L = -2 Log Q (Smaller in presence of signal).

How significant is it ?-Confidence Level

Estimators for $m_H = 115 \text{ GeV}/c^2$

By experiment

By channel

The results of each experiment

The results per channel

Higgs discovery? from end of 2000 to the final results...

Compatibility with the background

Discovery ?

1-CL_b confidence for background hypo. (if < 5.7×10^{-7} is a 5σ discovery) CL_{s+b} confidence for signal+backg. hypo. (exclusion at 95% C.L. if < 0.05) CL_s < 0.05 signal hypothesis ruled out at 95% C.L.
Higgs Mass Lower Bound

114.4 GeV Higgs boson @ 95% CL. (expected 115.3 GeV) Obs. Exp. ALEPH 113.5111.4DELPHI 113.3114.1L3112.4112.0

112.7

112.7

OPAL

LEP excludes a

• Final combination for SM Higgs boson

LEP set the 95% CL mass limit = 114.4 GeV, very close to the kinematic limit. Above, modest indication for a possible signal $1-CL_b = 0.08 \text{ vs } CL_{s+b} = 0.37 @ 116-118 \text{ GeV}$ LEP excludes also a SM-like Higgs boson with cross-section 20 times lower than the SM one from 12 to 80 GeV.

Direct searches at LEP, e⁺e⁻ collisions, (1989-2000)

 H^0

70

Observed

Z(*)

 e^+

e

 CL_{s}

10

10

10

-5 10

-2 10

Indirect evidence is driven by radiative corrections

Excluded

100

m_н [GeV]

M_H=91±⁴⁵₃₂ <186 GeV @ 95% C.L.

300

0

30

10 100 102 104 106 108 110 112 114 116 118 120 $m_{\mu}(GeV/c^2)$

M_H>114.1 GeV @ 95% C.L.

At the end of the year 2000 the glorious LEP was closed and dismounted to allow the construction of LHC the Large Hadron Collider

Meanwhile, in US, the TEVATRON.....but this story is for tomorrow

LEP Improvements in 1999/2000

1) Increase RF Gradient & Upgrade Cryogenics

- 272 Nb/Cu cavities in 1998;
 2850 MV available, 189 GeV
- 288 Nb/Cu cavities in 1999;
 3000 MV available, 192 GeV
- Condition all cavities, damp the oscillations, install part of LHC cryogenics, improve the phasing...
 3500 MV available (end 1999)
 3650 MV available (2000)

E: $192 \rightarrow 200 \rightarrow 204 \text{ GeV};$ m_H: $100 \rightarrow 108 \rightarrow 112 \text{ GeV/c}^2$

Improvements in 1999/2000: Results

220 pb⁻¹ delivered in 2000:

- starting at 204-205 GeV (April-May)
- Regularly above 206 GeV (from June onwards)
- Only above 206.5 GeV (September to November)

Centre-of-mass energy (GeV)

Higgs 3σ sensitivity vs time

excluded at 95% C.L.

Higgs Production at LEP

Dominant Production Process:

SM background processes

LEP Overview

Conventional collider e⁺e⁻ ring;
Energy upgradeable;
Energy measurable;
Four detectors (A,L,D,O);
Large luminosity;

20 Million Z events.

SM Four Jet Channel

Topologies:

4b: H→bb/Z→bb and
2b: H→bb/Z→qq (where q= [u,d,s,c]) Different backgrounds and hence performance

- Backgrounds:
 - ZZ: Dominant for $m_H \sim 90 \text{ GeV/c}^2$ when Z \rightarrow bb
 - Most important for 4b channel at all masses
 - WW:A priori reducible (no b-quark jets, apart from Vub).
 - Tedious if jets are mistagged.
 - Quark pair production (QCD processes):
 - Important near threshold production for m_H>m_Z
 - b's and gluons back-to-back,

 \Rightarrow reconstructed mass = maximum possible

