Experimental techniques in high-energy nuclear and particle physics
 "Dottorato di Ricerca in Ingegneria dell'Informakione"

LECTURE 3.

Accelerators - 2

Prof. Rino Castaldi
 INFN-Pisa

Accelerators and LHC experiments at CERN

\# The energies in the CERN accelerators range from 100 keV to soon 7 TeV (now at 3.5 TeV).
\# To do this the beam energy is increased in a staged way using 5 different accelerators.

Energies:

 Linac 50 MeV PSB 1.4 GeV PS 28 GeV SPS 450 GeV LHC 7 TeV (now 3.5TeV)

The CERN Large Hadron Collider

first collisions in Autumn 2009
9300 Superconductor magnets
 448 Main Quads, 6618 Correctors. Circonference 26.7 km

LHC DIPOLE : STANDARD CROSS-SECTION

Basic concepts

Charged particles are accelerated, guided and confined by electromagnetic fields.

- Bending:
Dipole magnets
- Focusing:

Quadrupole magnets

- Acceleration:

RF cavities
In synchrotrons, they are ramped together synchronously to match beam energy.

- Chromatic aberration: Sextupole magnets

Lorentz force

$$
\vec{F}=e(\vec{v} \times \vec{B}+\vec{E})
$$

Magnetic rigidity

LHC: $\rho=2.8 \mathrm{~km}$ given by LEP tunnel!

TRANSVERSE BEAM DYNAMICS (3/27)

DIPOLE $=$ Bending magnet Constant force in x

\Rightarrow A particle, with a constant energy, describes a circle in equilibrium between the centripetal magnetic force and the centrifugal force

- BEAM RIGIDITY

Magnetic field
Curvature radius of the dipoles

TRANSVERSE BEAM DYNAMICS

- LEP vs LHC magnets (in same tunnel) \Rightarrow A change in technology

	LEP	LHC
$\rho[\mathrm{m}]$	3096.175	2803.95
$p_{0}[\mathrm{GeV} / \mathrm{c}]$	104	7000
$B[\mathrm{~T}]$	0.11	8.33

Bending

Two particles in a dipole field

\checkmark What happens with two particles that travel in a dipole field with different initial angles, but with equal initial position and equal momentum?

- - - - Particle B

\checkmark Assume that $\mathrm{B} \rho$ is the same for both particles.
\checkmark Lets unfold these circles......

The 2 trajectories unfolded

\checkmark The horizontal displacement of particle B with respect to particle A.

\checkmark Particle B oscillates around particle A.
\checkmark This type of oscillation forms the basis of all transverse motion in an accelerator.
\checkmark It is called 'Betatron Oscillation'

The mechanical equivalent

\checkmark The gutter below illustrates how the particles in our accelerator behave due to the quadrupolar fields.
\checkmark Whenever a particle beam diverges too far away from the central orbit the quadrupoles focus them back towards the central orbit.
\checkmark How can we represent the focusing gradient of a quadrupole in this mechanical

Focusing

S. Redaelli, LPCC lectures, 07/09-04-2010
\checkmark A Quadrupole has 4 poles, 2 north and 2 south
\checkmark They are symmetrically arranged around the centre of the magnet
\checkmark There is no magnetic field along the central axis.

Quadrupole (LEP)

Quadrupoles (LHC)

Transverse focusing is achieved with quadrupole magnets, which act on the beam like an optical lens.
Linear increase of the magnetic field along the axes (no effect on particles on axis).
Focusing in one plane, de-focusing in the other!

Types of quadrupoles

Focusing and Stable motion

\checkmark Using a combination of focusing (QF) and defocusing (QD) quadrupoles solves our problem of 'unstable' vertical motion.
\checkmark It will keep the beams focused in both planes when the position in the accelerator, type and strength of the quadrupoles are well chosen.
\checkmark By now our accelerator is composed of:
\checkmark Dipoles, constrain the beam to some closed path (orbit).
\checkmark Focusing and Defocusing Quadrupoles, provide horizontal and vertical focusing in order to constrain the beam in transverse directions.
\checkmark A combination of focusing and defocusing sections that is very often used is the so called: FODO lattice.
\checkmark This is a configuration of magnets where focusing and defocusing magnets alternate and are separated by nonfocusing drift spaces.

FODO cell

\checkmark The 'FODO' cell is defined as follows:

Alternating gradient lattice

One can find an arrangement of quadrupole magnets that provides net focusing in both planes ("strong focusing").

Dipole magnets keep the particles on the circular orbit.

Quadrupole magnets focus alternatively in both planes.

The particle characterized

\checkmark A particle during its transverse motion in our accelerator is characterized by:
\checkmark Position or displacement from the central orbit.
\checkmark Angle with respect to the central orbit.

\checkmark This is a motion with a constant restoring force, like in the first lecture on differential equations, with the endulum

TRANSVERSE BEAM DYNAMICS (6/27)

QUADRUPOLE = Focusing magnet

$$
\Rightarrow x^{\prime \prime}(s)+K x(s)=0 \quad \text { : Equation of a harmonic oscillator }
$$

- From this equation, one can already anticipate the elliptical shape of the particle trajectory in the phase space $\left(x, x^{\prime}\right)$ by integration

$$
x^{\prime 2}(s)+K x^{2}(s)=\text { Constant }
$$

Hill's equation (2)

\checkmark In a real accelerator K varies strongly with 's'.
\checkmark Therefore we need to solve Hill's equation for K varying as a function of ' s '

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark Remember what we concluded on the mechanical equivalent concerning the shape of the gutter.
\checkmark The phase advance and the amplitude modulation of the oscillation are determined by the shape of the gutter.
\checkmark The overall oscillation amplitude will depend on the initial conditions, I.e. how the motion of the ball started.

Solution of Hill's equation (1)

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark This is a $2^{\text {nd }}$ order differential equation.
\checkmark In order to solve it lets try to guess a solution:

$$
x=\sqrt{\varepsilon . \beta(s)} \cos \left(\phi(s)+\phi_{0}\right)
$$

$\checkmark \varepsilon$ and ϕ_{0} are constants, which depend on the initial conditions.
$\checkmark \beta(s)=$ the amplitude modulation due to the changing focusing strength.
$\checkmark \phi(s)=$ the phase advance, which also depends on focusing strength.

Hill's equation

\checkmark The betatron oscillations exist in both horizontal and vertical planes.
\checkmark The number of betatron oscillations per turn is called the betatron tune and is defined as $Q x$ and Qy.
\checkmark Hill's equation describes this motion mathematically

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark If the restoring force, K is constant in ' s ' then this is just a Simple Harmonic Motion.

Matrix Formalism

\checkmark Lets represent the particles transverse position and angle by a column matrix.

$$
\binom{x}{x^{\prime}}
$$

\checkmark As the particle moves around the machine the values for x and x^{\prime} will vary under influence of the dipoles, quadrupoles and drift spaces.
\checkmark These modifications due to the different types of magnets can be expressed by a Transport Matrix M
\checkmark If we know x_{1} and x_{1}^{\prime} at some point s_{1} then we can calculate its position and angle after the next magnet at position S_{2} using:

$$
\binom{x\left(s_{2}\right)}{x\left(s_{2}\right)^{\prime}}=M\binom{x\left(s_{1}\right)}{x\left(s_{1}\right)^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x\left(s_{1}\right)}{x\left(s_{1}\right)^{\prime}}
$$

How to apply the formalism

\checkmark If we want to know how a particle behaves in our machine as it moves around using the matrix formalism, we need to:
\checkmark Split our machine into separate element as dipoles, focusing and defocusing quadrupoles, and drift spaces.
\checkmark Find the matrices for all of these components
\checkmark Multiply them all together
\checkmark Calculate what happens to an individual particle as it makes one or more turns around the machine

Matrix for a drift space

\checkmark A drift space contains no magnetic field.
\checkmark A drift space has length L.

Matrix for a quadrupole

\checkmark A quadrupole of length L.

Remember $\mathrm{B}_{\mathrm{y}} \propto \mathrm{x}$ and the deflection due to the magnetic field is: $\frac{L B_{y}}{(B \rho)}=-\frac{L K}{(B \rho)} \cdot x$

\square

Matrix for a quadrupole (2)

\checkmark We found:

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{L K}{(B \rho)} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

\checkmark Define the focal length of the quadrupole as $f=\frac{(B \rho)}{K L}$

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

How now further?

\checkmark For our purpose we will treat dipoles as simple drift spaces as they bend all the particles by the same amount.
\checkmark We have Transport Matrices corresponding to drift spaces and quadrupoles.
\checkmark These matrices describe the real discrete focusing of our quadrupoles.
\checkmark Now we must combine these matrices with our solution to Hill's equation, since they describe the same motion......

A quick recap

\checkmark We solved Hill's equation, which led us to the definition of transverse emittance and allowed us to describe particle motion in phase space in terms of β, α etc...
\checkmark We constructed the Transport Matrices corresponding to drift spaces and quadrupoles.
\checkmark Now we must combine these matrices with the solution of Hill's equation to evaluate β, α etc

Matrices \& Hill's equation

\checkmark We can multiply the matrices of our drift spaces and quadrupoles together to form a transport matrix that describes a larger section of our accelerator.
\checkmark These matrices will move our particle from one point $\left(x\left(s_{1}\right), x^{\prime}\left(s_{1}\right)\right)$ on our phase space plot to another $\left(x\left(s_{2}\right), x^{\prime}\left(s_{2}\right)\right)$, as shown in the matrix equation below.

$$
\binom{x\left(s_{2}\right)}{x^{\prime}\left(s_{2}\right)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x\left(s_{1}\right)}{x^{\prime}\left(s_{1}\right)}
$$

\checkmark The elements of this matrix are fixed by the elements through which the particles pass from point s_{1} to point s_{2}.
\checkmark However, we can also express (x, x^{\prime}) as solutions of Hill's equation.

$$
x=\sqrt{\varepsilon \cdot \beta} \cos \phi \quad \text { and } \quad x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

Chromaticity

\checkmark The chromaticity relates the tune spread of the transverse motion with the momentum spread in the beam.

Chromaticity

$$
Q^{\prime}=\frac{\Delta Q}{\Delta p / p}
$$

Particles with different energies have different betatron tunes.

Bad for the beam:

- Adds a tune spread
- Instabilities ("head-tail")

Focusing error from momentum errors $\sim-K \Delta p / p$ Chromaticity corrections is done with sextupole magnets. The field changes as x^{2}.

LHC:
2 sextupole families per plane per beam for chromaticity correction.

Sextupole Magnets

\checkmark Conventional Sextupole from LEP, but looks similar for other 'warm' machines.
$\checkmark \sim 1$ meter long and a few hundreds of kg.
\checkmark Correction Sextupole of the LHC
$\checkmark 11 \mathrm{~cm}, 10 \mathrm{~kg}, 500 \mathrm{~A}$ at 2 K for a field of $1630 \mathrm{~T} / \mathrm{m}^{2}$

Machine imperfections

The Q-value gives the number of oscillations the particles make in one turn. If this value in an integer, the beam "sees" the same magnet-error over and over again and we may have a resonance phenomenon. (Resonance) Therefore the Q-value is not an integer.

The magnets have to be good enough so that resonance phenomena do not occur.

$Q=3.333$ in more detail

1 st turn

2nd turn

3rd turn

Third order resonant betatron oscillation

$$
3 Q=10, Q=3.333, q=0.333
$$

$Q=3.333$ in Phase Space

\checkmark Third order resonance on a normalised phase space plot

Machine Imperfections

\checkmark There are many things in our machine, which will excite resonances:
\checkmark The magnets themselves
\checkmark Unwanted higher order field components in our magnets
\checkmark Tilted magnets
\checkmark Experimental solenoids (LHC experiments)
\checkmark The trick is to reduce and compensate these effects as much as possible and then find some point in the tune diagram where the beam is stable.

Betatron tune

Betatron phase advance over 1 turn:

Betatron tune: $Q \equiv \frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}$
$\hat{y}, \hat{x} \mid$
The tune is the number of betatron oscillations per turn.

We normally only care about the fractional part of the tune! 64.31 is 0.31 !
The operating tune values (working point) must be chosen to avoid resonance.

The tune values must be controlled to within better than 10^{-3}, during all machine phases (ramp, squeeze, ...)

Acceleration Concepts

O
Lorentz Force:

$$
\frac{d \vec{d}}{4}=q \cdot(\vec{E}+\vec{v} \times \vec{B})
$$

\longrightarrow energy gain only due to electric fields!

Scalar and Vector Potential: $\quad \vec{E}=-\operatorname{grad} \phi-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}$

Electrostatic acceleration $\longrightarrow \mathrm{A}=0$
Acceleration with time varying fields $\longrightarrow \phi=0$

Acceleration

Acceleration is performed with electric fields fed into Radio-Frequency (RF) cavities. RF cavities are basically resonators tuned to a selected frequency.

In circular accelerators, the acceleration is done with small steps at each turn.
LHC: 8 RF cavities per beam (400 MHz), located in point 4
At the LHC, the acceleration from $\mathbf{4 5 0} \mathbf{G e V}$ to $\mathbf{7 ~ T e V ~ l a s t s ~} \sim 20$ minutes (nominal!), with an average energy gain of $\sim 0.5 \mathrm{MeV}$ on each turn.
[Today, we ramp at a factor 4 less energy gain per turn than nominal!]

RF Cavities

LEP cavities

LHC Superconductive cavities

Acceleration or compensation

$>$ We have to provide energy to the particles either to accelerate them or to compensate for the losses accumulated during one turn.
> This energy is not provided by electrostatic plates, but by RF cavities.
> The ideal particle has to arrive at the cavity exactly at the same moment turn after turn (synchroneous particle).

Equilibrium:

$$
f_{\mathrm{RF}}=h \cdot f_{\mathrm{rev}}
$$

D. Brandt

Electromagnetic wave is traveling, pushing particles along with it

LONGITUDINAL BEAM DYNAMICS (3/12)

- TRANSITION ENERGY: The increase of energy has 2 contradictory effects
- An increase of the particle's velocity
- An increase of the length of the particle's trajectory

According to the variations of these 2 parameters, the revolution frequency evolves differently

- Below transition energy: The velocity increases faster than the length \Rightarrow The revolution frequency increases
- Above transition energy: It is the opposite case \Rightarrow The revolution frequency decreases
- At transition energy: The variation of the velocity is compensated by the variation of the trajectory $\Rightarrow \mathbf{A}$ variation of energy does not modify the frequency

Transition

\# Lets look at the behaviour of a particle in a constant magnetic field.
\# Low momentum $(\beta \ll 1, \gamma \Rightarrow 1)$
\# The revolution frequency increases as momentum increases
\# High momentum $(\beta \approx 1, \gamma \gg 1)$
\# The revolution frequency decreases as momentum increases
\# For one particular momentum or energy we have:

$$
\frac{1}{\gamma^{2}}=\alpha_{p}
$$

\# This particular energy is called the Transition energy

A Single particle in a longitudinal electric field (below transition)

\# Lets see what a low energy particle does with this oscillating voltage in the cavity.

\# Set the oscillation frequency so that the period is exactly equal to one revolution period of the particle.

Add a second particle to the first one

\# Lets see what a second low energy particle, which arrives later in the cavity, does with respect to our first particle.

\# B arrives late in the cavity w.r.t. A
\# B sees a higher voltage than A and will therefore be accelerated
\# After many turns B approaches A
\# B is still late in the cavity w.r.t. A
\# B still sees a higher voltage and is still being accelerated

Lets see what happens after many turns

Synchrotron Oscillations

\# Particle B has made 1 full oscillation around particle A.
\# The amplitude depends on the initial phase.

Exactly like the pendulum

\# We call this oscillation:
Synchrotron Oscillation

What happens beyond transition?

\# Until now we have seen how things look like below transition

Higher energy \Rightarrow faster orbit \Rightarrow higher $\mathrm{F}_{\text {rev }} \Rightarrow$ next time particle will be earlier.
Lower energy \Rightarrow slower orbit \Rightarrow lower $\mathrm{F}_{\text {rev }} \Rightarrow$ next time particle will be later.
\# What will happen above transition ?

Higher energy \Rightarrow longer orbit \Rightarrow lower $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be later.
Lower energy \Rightarrow shorter orbit \Rightarrow higher $\mathrm{F}_{\text {rev }} \Rightarrow$ next time particle will be earlier.

Off momentum particles

(above transition)

On momentum particle arrives at $\mathrm{t}_{0} \rightarrow \mathrm{~V}=\mathrm{V}_{0} \rightarrow 0 . \mathrm{K}$. $\Delta \mathrm{p} / \mathrm{p}>0$ have a longer path \rightarrow arrive late, e.g. $\mathrm{t}_{2} \rightarrow \mathrm{~V}_{2}<\mathrm{V}_{0}$ $\Delta \mathrm{p} / \mathrm{p}<0$ have a shorter path \rightarrow arrive early, e.g. $\mathrm{t}_{1} \rightarrow \mathrm{~V}_{1}>\mathrm{V}_{0}$

Before and After Transition

What are the implication for the RF ?
\# For particles below transition we worked on the rising edge of the sine wave.
\# For Particles above transition we will work on the falling edge of the sine wave.

Buckets and bunches

Sincrotron acceleration

Examples

- CERN
 PS, SPS, SPPbarS, LEP, LHC FERMILAB
 TEVATRON DESY
 HERA SLAC
 SLC, PEP II

- Operation 1985 - now, FERMILAB, Chicago
- Circumference 4 miles
- Particles
protons - antiprotons
- Beam energy $0.9 \mathrm{TeV} \rightarrow 1 \mathrm{TeV}$
- Luminosity

$$
10^{30}-10^{32} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}
$$

- $L_{i n t}$

Run Ia+Ib : $110 \mathrm{pb}^{-1}$

- Experiments CDF, DØ
■ Characteristics:
\square 'dirty' environment (see LHC later)
\square high interaction rate

Fermilab from the air

HERA

- Operation

1992 - now, DESY, Hamburg

- Circumference

$$
6.3 \text { km }
$$

- Particles
electrons (or positrons) - protons
- Beam energy
$\mathrm{e}=28 \mathrm{GeV}$, protons $=820 \mathrm{GeV}$
- Luminosity about $2 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
- $L_{\text {int }}$
up to now : about $180 \mathrm{pb}^{-1}$
- Experiments

H1, ZEUS, HERA-b, HERMES

- Characteristics:
\square only lepton-hadron collider
\square superconducting magnets for proton ring

HERA - Electron Proton Collider (6.3 km)

Hamburg, 1992-2007

LHC beam in the injector chain

- Operation

1989-2000, CERN, Geneva

- Circumference 27 km
- Particles
electrons - positrons
- Beam energy
$45 \mathrm{GeV} \rightarrow 104.5 \mathrm{GeV}$
- Luminosity

$$
10^{31}-10^{32} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}
$$

- $L_{\text {int }}$

目 $1000 \mathrm{pb}^{-1}$

- Experiments

ALEPH, DELPHI, L3, OPAL

- Characteristics:
\square very clean environment
\square very small backgrounds

Collisions at LHC

LEP vs LHC: Magnets, a change in technology

Bending Field $\rightarrow \quad p(T e V)=0.3 \mathrm{~B}(\mathrm{~T}) \mathrm{R}(\mathrm{Km})$ (earth magnetic field is between $24,000 \mathrm{nT}$ and $66,000 \mathrm{nT}$)

$$
\text { Tunnel } R \approx 4.3 \mathrm{Km} \text { LHC } \quad 7 \mathrm{TeV} \rightarrow \mathrm{~B} \approx 8.3 \mathrm{~T} \rightarrow \text { Superconducting coils }
$$

$$
\text { LEP } 0.1 \mathrm{TeV} \rightarrow \mathrm{~B} \approx 0.1 \mathrm{~T} \rightarrow \text { Room temperature coils }
$$

LHC DIPOLE : STANDARD CROSS-SECTION

Protons can go up in energy more than electrons because they emit less synchrotron radiation. Bending (dipoles) and focusing (quadrupoles) strengths require high magnetic fields generated by superconductors

Accelerators and LHC experiments at CERN

The LHC arcs

[^0]RF - tunnel view

Bottle of Hydrogen, to start with!

The real bottle is inside the cage

Linac2: some pictures

Downstream of Linac2, the proton beams will only encounter circular accelerators (and transfer lines)

MORE SLIDES

Synchrotron radiation

Radiation emitted by charged particles accelerated longitudinally and/or transversally
Power radiated per particle goes like: 4th power of the energy
(2nd power)-1 of the bending radius

$$
P=\frac{2 c \times E^{4} \times r_{0}}{3 \rho^{2}\left(m_{0} \times c^{2}\right)^{3}}
$$

$$
\text { (4th power) }{ }^{-1} \text { of the particle mass }
$$

$$
r_{0}=\frac{q^{2}}{4 \pi \varepsilon_{0} m_{0} c^{2}} \quad \text { particle classical radius }
$$

$$
\rho \quad \text { particle bending radius }
$$

Energy lost per turn per particle due to synchrotron radiation:
$\begin{array}{lll}\mathrm{e}-\mathrm{W}(\mathrm{MeV})=8.85 \times 10^{-5} \times \mathrm{E}^{4}(\mathrm{GeV}) / \rho^{2}(\mathrm{~km}) & \approx 2 \mathrm{GeV} \text { (LEP) } \\ \mathrm{P} & \mathrm{W}(\mathrm{keV})=7.8 \times 10^{-3} \times \mathrm{E}^{4}(\mathrm{TeV}) / \rho^{2}(\mathrm{~km}) & \approx 6 \mathrm{keV} \quad(\mathrm{LHC})\end{array}$
We must protect the LHC coils even if energy per turn is so low

Power lost per m in dipole: 0.206 W
Total radiated power per ring: 3.6 kW

LHC optics, ARC lattice

2-in-I design true also for the optics:
a quadrupole F for beam I (circulating clockwise) is D for beam 2 circulating anticlockwise

Inside one cell

LHC design parameters

Nominal LHC parameters	
Beam injection energy (TeV)	0.45
Beam energy (TeV)	7.0
Number of particles per bunch	1.15×10^{11}
Number of bunches per beam	2303
Max stored beam energy (MJ)	362
Norm transverse emittance (pm rad)	3.75
Colliding beam size (pm)	-16
Bunch length at 7 TeV (cm)	$\mathbf{7 . 5 5}$

$$
\begin{aligned}
& L=\frac{N^{2} k_{b} f \gamma}{4 \pi \varepsilon_{n} \beta^{*}} F \\
& F=1 / \sqrt{1+\left(\frac{\theta_{0} \sigma_{z}}{2 \sigma^{*}}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\beta^{*}=0.55 \mathrm{~m} \\
& \text { Crossing }=285 \mu \mathrm{rad} \\
& -L=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Relative beam sizes around IP1 (Atlas) in collision

Linac2 - layout and parameters

Beam Stopper Linac 2 Tunnel

Delivered beam current:
Beam energy:
Repetition rate:
Radio-frequency system:
~150mA
90 keV (source) $\rightarrow 750 \mathrm{keV}$ (RFQ) $\rightarrow \mathbf{5 0} \mathbf{~ M e V}$
1 Hz
202 MHz

${ }^{\bullet}$ Constructed in the 70ies to increase the intensity into the PS
${ }^{\bullet}$ Made of four stacked rings

- Acceleration to $\mathrm{E}_{\text {kin }}=1.4 \mathrm{GeV}$
${ }^{\bullet}$ Intensities $>10^{13}$ protons per ring obtained (i.e., four times design!!)
- Several types of beams with different characteristics
\rightarrow Physics beams for ISOLDE
\rightarrow Beams for AD/PS/SPS physics

Proton Synchrotron

Super-Proton Synchrotron

- Circumference : 6.9 km
- 2.5 km of secondary beam lines.
- protons for fixed target physics at $400 \mathrm{GeV} / \mathrm{c}$
- protons for CNGS experiment at $400 \mathrm{GeV} / \mathrm{c}$
- protons for LHC at $450 \mathrm{GeV} / \mathrm{c}$
- lead ions for fixed target physics at $400 \mathrm{GeV} / \mathrm{c}$ proton equivalent
- machine studies for SPS
- machine studies for LHC
- Injector for the LHC

Nominal LHC beams at the SPS

Nominal LHC beams basically achieved in the SPS in 2004! Injectors have been since long ready for the nominal LHC...

SPS-to-LHC transfer lines

Courtesy of J. Uythoven

Injection

Extensively tested during TI2/8

 commissioning and sector tests:- synchronization of kickers with extracted beam
- steering of the transfer lines
- protection settings
- injection quality checks

Injection elements

From the LHC Page1

TED T12 position:	BEAM	TDI P2 gaps $/ \mathrm{mm}$	up: 9.05	down: 9.04
TED T18 position:	BEAM	TDI P8 gaps $/ \mathrm{mm}$	up: 8.32	down: 8.36

Beam dump (IP6)

Interaction region layout

$\Delta \mathrm{L}=116$ meter

- With more than 154 bunches, we need a crossing angle to avoid parasitic collisions outside the IP. - Beams are separated in the other plane during injection and ramp

$$
\left.\mathcal{L}=\frac{N^{2} n_{b} f_{\mathrm{rev}}}{4 \pi \sigma_{x} \sigma_{y}} F \right\rvert\,
$$

Luminosity: the beam size

We need a small beam in the collision point

Beta functions for IP1 and IP5

LHC V6. 1
/afs../eng.../V6.2/V6.2.seq, K4501s64-59nV6.2.opt, rematch I6 Ap. OK

Beam envelope

[^0]: MCS: Sextupole corrector (b3)
 MCDO: Assembly of spool correctors consists of an octupole insert MCO (b4) and a decapole magnet MCD (b5)
 MQT: Trim quarupole corrector
 MS: arc sextupole corrector
 MQS: skew quad lattice corrector
 MCBH: Horizontal dipole corrector
 MCBV: Vertical dipole corrector

