Experimental techniques in high-energy nuclear and particle physics
 "Dottorato di Ricerca in Ingegneria dell'Informazione"

LECTURE 10.

Prof. Rino Castaldi
INFN-Pisa

But what research in elementary particles, and its accelerators and detectors have to do with everyday life?

Fundamental research has

always been a driving force for innovation

J.C. Maxwell

Electromagnetism
Telephones use electromagnetic
waves to
communicate

For GPS to work, we have to take into account the correction due to time dilation. Otherwise, there would be a position error of around 10 m after just 5 minutes of travel-time!
spinoffs include... WWW >20 years old!

Accelerators: developed in physics labs \& used in hospitals

Around 9000 of the 17000 accelerators operating in the World today are used for medicine.

Hadron therapy is a growing method of treating tumours

Detectors: developed in physics labs \& used for medical imaging

PET (Positron Emission Tomography) uses antimatter (positrons).

The beginnifigs of moders pinysices ansel Off nuedical pinysics

1895
discovery of X rays

Whithelm Consad
Röntgen

J.J. Thompson

1897
"discovery" of the electron

Research in fundamental physics

1897
Today:
Therapy
Diagnostics

The beginning of medical imaging

$\square 1895$ Prof. Wilhelm Conrad Roentgen discovers X-rays
\square Phosphor screens introduced early 20th century
\square In the '70 years routine use of fluoroscopy with image intensifiers coupled to TV cameras
\square In the '80 years 'the radiography becomes digital (imaging plates, CCDs, flat-panels, semiconductor detectors both amorphous and crystalline) M. Hoheisel, NIM A563 (2006) 215-224

X-ray image versus CT scan

A conventional X-ray image is basically a shadow: you shine a "light" on one side of the body, and a piece of film on the other side registers the silhouette of the bones (to be more precise, organs and tissues of different densities show up differently on the radiographic film).

Shadows give an incomplete picture of an object's shape.

Look at the wall, not at the person. If there's a lamp in front of the person, you see the silhouette holding the banana, but not the pineapple as the shadow of the torso blocks the pineapple. If the lamp is to the left, you see the outline of the pineapple, but not the banana.
e 2002 HowSturfWorks
Summer Students 2008
M. Silari - Introduction to Medical

X RAYS COMPUTERIZED TOMOGRAPHY (CT)

A - LINEAR SAMPLING

B - ANGULAR SAMPLING

C - RECONSTRUCTION

This is the basic idea of computer aided tomography. In a CAT scan machine, the X-ray beam moves all around the patient, scanning from hundreds of different angles. The computer takes all this information and puts together a 3-D image of the body.

CT SCANNERS

GENERATION	$\begin{gathered} \text { I } \\ 1972 \end{gathered}$	$\begin{gathered} \text { II } \\ 1974 \end{gathered}$	$\begin{gathered} \text { III } \\ 1976 \end{gathered}$	$\begin{gathered} \text { IV } \\ 1977 \end{gathered}$
SOURCE-DETECTOR MOTION	TRANSLATION ROTATION	TRANSLATION ROTATION	ROTATION	ROTATION
DETECTORS NUMBER	1	$\sim 3-30$	~ 400-500	$\sim 600-4800$
SCAN (ROTATION) TIME	5 min	$\sim 10-60 \mathrm{sec}$	$\sim \mathrm{sec}$	$\sim \mathrm{sec}$
SLICE Number Thickness Pixel size	$\begin{gathered} 1 \\ 13 \mathrm{~mm} \\ \sim 5 \times 5 \mathrm{~mm} \end{gathered}$	1	$\begin{gathered} 1 \\ 1 \mathrm{~mm} \\ 0,5 \times 0,5 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{~mm} \\ 0,5 \times 0,5 \mathrm{~mm} \end{gathered}$
				STEP AND SHOOT

CT SCANNERS

GENERATION	$\begin{gathered} \text { I } \\ 1972 \end{gathered}$	$\begin{gathered} \text { II } \\ 1974 \end{gathered}$	$\begin{gathered} \text { III } \\ 1976 \end{gathered}$	$\begin{gathered} \text { IV } \\ 1977 \end{gathered}$
SOURCE-DETECTOR MOTION	TRANSLATION ROTATION	TRANSLATION ROTATION	ROTATION	ROTATION
DETECTORS NUMBER	1	$\sim 3-30$	~ 400-500	$\sim 600-4800$
SCAN (ROTATION) TIME	5 min	$\sim 10-60 \mathrm{sec}$	$\sim \mathrm{sec}$	$\sim \mathrm{sec}$
SLICE Number Thickness Pixel size	$\begin{gathered} 1 \\ 13 \mathrm{~mm} \\ \sim 5 \times 5 \mathrm{~mm} \end{gathered}$	1	$\begin{gathered} 1 \\ 1 \mathrm{~mm} \\ 0,5 \times 0,5 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{~mm} \\ 0,5 \times 0,5 \mathrm{~mm} \end{gathered}$
				STEPAND SHoot

CT SCANNERS

GENERATION	SPIRAL CT		MULTI SLICE SPIRAL CT		
	1989	1994	1998	2002	2004
DETECTOR MOTION	Continuous volume acquisition		Continuous volume acquisition		
ROTATION TIME	1 sec	$0,75 \mathrm{sec}$	$0,5 \mathrm{sec}$	0,4 sec	$<0,4 \mathrm{sec}$
SPEED	$\underset{\text { pitchel }}{24 \mathrm{sec} / 24 \mathrm{~cm}}$	$100 \mathrm{sec} / 130 \mathrm{~cm}$			
SLICES Number min Thickness	$\begin{gathered} 1 \\ 2 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 4 \\ 1 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 16 \\ 0,6 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 64 \\ <0,4 \mathrm{~mm} \end{gathered}$

Emission vs. transmission tomography

external radiation source (X-ray : 10 keV - 100 keV)
anatomical structure
Computed Tomography (CT), radiography spatial resolution: 1-2 mm, fraction of mm

Emission
> radioactively labeled substance administered within the body (injected or inhalated)
$>$ functional imaging
$>$ SPECT: Single Photon Emission CT, PET: Positron Emission Tomography
> spatial resolution: 4-. 6 mm PET
10-12 mm SPECT

Nuclear medicine tomographic techniques

SPECT
Single Photon Emission
(Computed) Tomography
$(\beta+)$ emitting isotope

PET Positron ($\beta+$) Emission
Tomography

SPECT = Single Pinoton Enission Computer Tomograpiny

In reactors slow neutrons produce ${ }^{98} \mathrm{Mo}+\mathrm{n}={ }^{99} \mathrm{Mo}+\mathrm{y}$

$$
{ }^{99} \mathrm{Mo}(66 \mathrm{~h})={ }^{99 \mathrm{~m}} \mathrm{Tc}(6 \mathrm{~h})+\mathrm{e}^{-}+\bar{v}
$$

Rotating head with detectors

Collimators of the
0.14 MeV gammas
85% of all nuclear medicine
examinations use 9
Generators for diagnostics of liver, lungs, bones \qquad

SPECT: single γ-ray detection

γ-rays (Typically:140 keV from ${ }^{99 m} \mathrm{Tc}$) are emitted in all the directions

Hence, necessity of collimators to determine the line of response.

γ-emitting radionuclide

Gamma Camera

Principle:

many photomultiplier tubes "see" the same large scintillation crystal; an electronic circuit decodes the coordinates of each event

Array of PMTs connected to amplifiers, positional logic circuits etc.
$\mathrm{NaI}(\mathrm{TI})$ scintillation crystal.
Collimator - Pb with holes in it. Encodes spatial information.

1957 H. Anger with his positron camera (Berkeley)

Some clinical SPECT applications

Nuclear medicine tomographic techniques

SPECT
Single Photon Emission
(Computed) Tomography
$(\beta+)$ emitting isotope

PET Positron ($\beta+$) Emission
Tomography

Positron Emission Tomography (PET)

Centre for Nucfear wedicifse

For PET the most used compound

$$
\begin{gathered}
\text { FDG }=\text { sugar } \\
\text { F }={ }^{18} \mathrm{~F}
\end{gathered}
$$

with half-life 1.6 h

Gamma ray

PET geometries

The Block Detector

1984-1985

Burnham, Brownell and colleagues at MGH developed a technique where scintillators were placed on a circular lightguide with photomultipliers placed on the opposite side of the lightguide. Charlie Burnham demonstrated that by taking the ratio of two adjacent photomultiplier signals, the scintillator that detected the gamma ray could be identified.

Lightguide

Scintillators placed on a circular light guide with photomultipliers on opposite side of light guide.

Mike Casey and Ronald Nutt, from CTI, introduce the "Block" detector that was conceived as a means to simplify the Burnham detector and to make it easier to manufacture. Almost all dedicated tomographs built since 1985 have used some forms of the Block detector. This invention has made possible high-resolution PET tomographs at a much-reduced cost.

Principle of Operation

In a block detector, a 2D array of crystals are attached to 4 PMTs.
Usually the array will be cut from a single crystal and the cuts filled with lightreflecting material. When a photon is incident on one of the crystals, the resultant light is shared by all 4 PMTs. Information on the position of the detecting crystal may be obtained from the PMT outputs by calculating the following ratios and comparing them to pre-set values:

From the block detector to PSPMT's

Still PMTs?

Since more than 80 years, the PMT is the photodetector of choice to convert scintillation photons into electrical signals in most of the applications related to the radiation detection. This is due to its high gain, low noise and fast response

Research is now moving to solid state photodetectors that show the following advantages with respect to PMTs:

- Compactness
- High quantum efficiency (to provide an energy resolution comparable to PMTs)
- Insensitivity to magnetic fields(PET/MRI)

Avalanche Photodiodes (APDs)

Silicon
Photomultipliers(SiPMs) o Geiger-mode APD

Coding problem: "Individual coupling" with APD's or light sharing with PSPMT's

+ High spatial resolution (b=0)
+ No Pile-up
+ No scattering in the crystals
- Expensive
- Many channels
- Difficult tuning

The detector module is composed by a matrix of 8×4 LSO crystals readout by a Hamamatsu 88550 (Pichler B., IEEE TNS 45 (1998) 1298-1302)

$2^{\text {nd }}$ generation PSPMT

Hamamatsu
PS-PMTR8520-C12

- Active area $22 \mathrm{~mm} \times 22 \mathrm{~mm}$

- $6 x+6 y$ anodes
+ Few channels to readout
(resistive chain)
+ High gain and stability
- Non negligible coding error
- Pile-up increases with area

PET scintillators

Material	Density $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	Atomic numbers	Light yield [\%Nal(TI)]	Decay time [ns]	Peak wavelength [nm]	Time resolution [ns]	Index of refraction	Comments
Nal(TI)	3.76	11,53	100	230	410	1.5	1.85	Hygroscopic Low density
BGO	7.13	$83,32,8$	15	300	480	7	2.15	Low light yield Slow
LSO	7.4	$71,32,8$	75	40	480	1.4	1.82	Intr. backgground 400 cps/cm
GSO	6.71	$64,32,8$	26	600	430	-	1.85	Low light yield Slow
CsI(TI)	4.51	55,53	45	1000	565	-	1.80	Slow
YAP:Ce	5.37	$39,13,8$	55	27	370	1.1	1.95	Medium Z

Detectors are usually scintillators:
the most often used is BGO (Bismuth germanate, $\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}$) and more recently LSO (Lutetium Oxi-orto Silicate (LuSiO).

FUTURE DEVELOPMENTS IN PET

CURRENT DETECTORS: BGO, GSO, LSO

NEW DETECTORS with:

- SMALLER SIZE (2-3 mm)
- GOOD ENERGY RESOLUTION
- DEPTH OF INTERACTION INFORMATION

SANDWICH OF DETECTORS

FASTER DETECTORS for

- HIGH COUNT RATE CAPABILITY
- TIME OF FLIGHT INFORMATION

TOF systems: principle of operation

पTOF-PET systems exploit the time difference between the two emitted photons to better locate the annihilation position.
\square The limit in the annihilation point location is mainly due to the error in the time difference measurement, namely the time resolution $\Delta \mathbf{t}$ of the coincidence system
\square Time resolution is used by the reconstruction algorithm to locate the annihilation point $\Delta \mathbf{x}(\Delta x=c \Delta t / 2)$

PET traditional

The probability for the event to be located along the LOR is uniform

PET Time-of-Flight

The most likelihood position is in the center of the error distribution

Time Of Flight (TOF) systems

a "renaissance"

1) Development of new scintillators that combine fast decay time with high light yield and stopping power
2) Improvement of the performance and reliability of the PMTs and electronics
3) Progress in the image reconstruction algorithms
...made the coming back of time of flight systems possible, though already proposed in the '80s

Biograph mCT (Siemens)

LOOKING LISTENING THINKING REMEMBERING WORKING

PET studies of glucose metabolism to map human brain's response in performing different tasks. Subjects looking at a visual scene activated visual cortex (arrow), listening to a mystery story with language and music activated left and right auditory cortices (arrows), counting backwards from 100 by sevens activated frontal cortex (arrows), recalling previously learned objects activated hippocampus bilaterally (arrows), and touching thumb to fingers of right hand activated left motor cortex and supplementary motor system (arrows). Images are cross-sections with front of brain at top. Highest metabolic rates are in red, with lower values from yellow to blue.

Clinical PET applications

Oncology

CLINICAL PET IN ITALY
 TOTAL EXAMS/YEAR

ESTIMATED

 PET - PET/CT SCANNER UNITS WW
PET - [$\left.{ }^{18} \mathrm{~F}\right]$ FDG

PET

CT

PET/CT

LACK OF ANATOMICAL INFORMATION

${ }^{18}$ F production : $180(\rho, n)^{13} F$

2-[${ }^{18}$ F]fluoro-2-deoxy-D-glucose = FDG for PET exams in oncology, cardiology, neuro-receptor imaging

PET-CT: a new revolution

"PET-CT is a technical evolution that has led to a medical revolution"

First PET/CT (1998)
CTI PET Systems (now Siemens)

- New detectors (materials, geometries)
- 3D Acquisitions
- Faster electronics
- New reconstruction algorithms
- High performance CT systems

PET intrinsic limitations

Positron range

(a)
" Depends on the radioisotope

Angular deviation

	$\left\langle E_{c}>\right.$ $(M e V)$	$<$ Range in water	$F W H M$ $(\mathrm{~mm})$
${ }^{18} \mathrm{~F}$	0.242	1.4 mm	0.22
${ }^{11} \mathrm{C}$	0.385	1.7 mm	0.28
${ }^{68} \mathrm{Ga}$	0.740	3.0 mm	1.35

(b)
" Depends on the ring radius (1.8 mm for a 400 mm radius)

PET/CT

Commercial PET-CT systems

Gemini GXL, TF

Discovery HD platform
Discovery 600 platform

LYSO: $4 \times 4 \times 22 \mathrm{~mm}^{3}$ GSO: $4 \times 4 \times 30 \mathrm{~mm}^{3}$ 3D only
6, 10, 16, 64 slice CT $71,7 \mathrm{~cm}$ bore, 18 cm axial FOV 6 ns coincidence

BGO, LYSO(only non commercial systems):
$4.7 \times 6.3 \times 30 \mathrm{~mm}^{3}$ (BGO)
$4.2 \times 6.2 \times 30 \mathrm{~mm}^{3}$ (LYSO)
2D/3D
8,16,64 slice CT 70 cm bore,
15.7 cm axial FOV
11.7 ns coincidence

Biograph 6,16, 40, 64, mCT

Siemens

LSO: $4 \times 4 \times 20 \mathrm{~mm}^{3}$
3D only
6,16,40,64,128 slice CT
70 cm bore
$16.2-21.6 \mathrm{~cm}$ axial FOV
4.3 ns coincidence

4D PET/CT

Respiration control during PET/CT

RESPIRATORY CURVE

"PET/MR is a medical evolution based on a technical revolution"

Volume 36, Supplement 1 / March, 2009 Multi-modality imaging: PET/MR
"We believe that both PET/CT and PET/MR are here to stay, because both platforms incorporate the diagnostic power of PET.
In fact, with PET/CT being a "dual-modality imaging" platform by virtue of combining functional (PET) and anatomical (CT) imaging, PET/MR offers true "multimodality imaging" by virtue of combining function (PET) and anatomy and function (both MR).
This will open, without a doubt, new avenues in non-invasive imaging as part of clinical patient management and clinical research".
(T. Beyer and B. Pichler)

Nuclear DJagnetic Resonance

1938-1945

Felix Bloch and Edward Purcell

discover and study NMR
1952: Nobel prize in physics

Felix Bloch
In 1954 became the first CERN
Director General

Edward Purcell

MAGNETIC RESONANCE IMAGING (MRI)

MAGNETIC FIELD: 1.5 - 7Tesla

LARMOUR FREQUENCY

$$
v_{0}=[\gamma / 2 \pi] B_{0}
$$

EXCITATION

RELAXATION

Equipment

Gradient Coil

RF Coil

Schematic illustration of motion in a magnetic field B_{0} of protons

Larmor Frequency $\omega=\gamma B_{0}$
For hydrogen:
$\gamma=42.58 \mathrm{MHz}$ /Tesla $=42.58 \times 10^{6} \mathrm{~Hz} /$ Tesla
at 3 Tesla:
$\omega=(42.58 \mathrm{MHz} /$ Tesla) (3 Tesla)
$\omega=127.74 \mathrm{MHz}$

Longitudinal magnetization

Energy states: Magnetic field effects

Energy states: Temperature effects

Protons move back and forth between states because of thermal energy.
The Boltzman equation describes the population ratio of the two energy states:

$$
\mathbf{N}^{-} / \mathbf{N}^{+}=\mathbf{e}^{-\mathrm{E} / \mathrm{kT}}
$$

Low-energy protons at room temperature in Earth's B:
~50.000000001\%
High-energy protons at room temperature in Earth's B:
~49.999999999\%

- Larger \boldsymbol{B}_{0} produces larger net magnetization M, lined up with \boldsymbol{B}_{0}
- Thermal motions try to randomize alignment of proton magnets
- At room temperature, the population ratio is roughly 100,000 to 100,006 per Tesla of \boldsymbol{B}_{0}

Excite Radio Frequency (RF) field

- apply RF represented here with a magnetic field B_{1} (perpendicular to B_{0}) oscillating at Larmor frequency
- Larmor frequencies in RF range; B_{1} is small: $\sim 1 / 10,000 \mathrm{~T}$
- tips M to transverse plane - spirals down
(A)

Rotating frame
(B)

The RF energy is represented here with B_{1} as a second magnetic field superimposed to B_{0}.

Relaxation:

- Once we stop applying energy, M will go back to being aligned with static field B_{0}
- This process is called relaxation
- The part of M perpendicular to B_{0} shrinks [$M_{x y}$]
- This part of M is called transverse magnetization
- It provides the detectable RF signal
- Part of M parallel to B_{0} grows back [M_{z}]
- This part of \mathbf{M} is called longitudinal magnetization

Longitudinal relaxation
T_{1}

T_{2}

Tipping the net magnetization provides measurable MR signal!

Excitation tips the net magnetization (M) down into the transverse plane, where it can generate current in detector coils (i.e., via induction).

The amount of current oscillates at the (Larmor) frequency of the net magnetization.

Relaxation Times and Rates

- Net magnetization changes in an exponential fashion
- Constant rate (R) for a given tissue type in a given magnetic field
- $R=1 / T$, leading to equations like $e^{-R t}$
- T_{1} (recovery): Relaxation of M back to alignment with B_{0}
- Usually 500-1000 ms in the brain (lengthens with bigger \mathbf{B}_{0})
- T_{2} (decay): Loss of transverse magnetization over a microscopic region ($\approx 5-10$ micron size)
- Usually 50-100 ms in the brain (shortens with bigger \mathbf{B}_{0})
- $\mathrm{T}_{2}{ }^{*}$: Overall decay of the observable RF signal over a macroscopic region (millimeter size)
- Usually about half of T_{2} in the brain (i.e., faster relaxation)

T_{1} and T_{2} values at 1.5 T

$\underline{1}$ Tissue	$\underline{I}_{1}(\mathbf{s})$	$\underline{I}_{2}(\mathrm{~ms})$
CSF	$2-6$	~ 200
White matter	~ 0.6	~ 80
Gray matter	~ 0.9	~ 100
Meninges	$0.5-2.2$	$50-165$
Muscle	$0.95-1.82$	$20-67$

MAGNETIC RESONANCE IMAGING

EXCITATION

RELAXATION

Apply a z-gradient field G_{z} for slice selection

Gradients change the Strength, not Direction of the Magnetic Field B_{0}

Spatial encoding within the slice

y -gradient

z-gradient

The selected slice is then subdivided in a matrix of voxels along the x, y coordinates applying the gradient fields G_{x} and G_{y} with a procedure called Phase and Frequency encoding.

Phase Encoding

When the gradient field G_{y} (that vary linearly along the y-axis) is applied, all the spins of the voxels of the matrix line at a given y coordinate start to process at the same Larmor frequency with the same phase, while all the other voxel lines at different y-coordinate process with different Larmor frequencies and therefore, in a given amount of time, accumulate a certain amount of phase offset.

When the phase encoding gradient G_{y} is turned off all the spins of the voxels of all the lines return to process at the same frequency but now with different phases, determined by the duration and the intensity of G_{y} (Phase Encoding).

Frequency Encoding

When the phase encoding process have been completed, the gradient field G_{x} (that vary linearly along the x-axis) is turned on and therefore the spins of the voxels of the matrix columns at different y-coordinate are forced to process at different Larmor frequencies (Frequency Encoding).
At this point each individual voxel is going to have a different combination of phase and frequency and the Data Acquisition (DAQ) of the raw MR signals can be performed.

The complete image of the selected slice can then be obtained performing a 2-D inverse Fourier trasform of the raw signal. This is possible because the raw MR signal acquired contains, through the phase and frequency encoding, the information from each individual voxel

T1-weighted and T2-weighted sequeces

By selecting appropriate pulse sequence parameters, images can be made sensitive to tissue differences in $\mathrm{T}_{1}, \mathrm{~T}_{2}$, or a combination.

MAGNETIC RESONANCE IMAGING (MRI)

MORPHOLOGY

SCAN TIME to cover an entire organ:	\sim min
SPATIAL RESOLUTION:	$\sim \mathrm{mm}$
CONTRAST RESOLUTION:	very high for soft tissues

fiMRI BOLD

Blood

Oxygenation

Level

Dependent

- Oxyhaemoglobin in the arterial blood is diamagnetic
- Deoxyhaemoglobin in the draining veins is strongly PARAMAGNETIC
- Deoxyhaemoglobin can serve as an intrisic paramagnetic contrast agent

Blood Oxygenation Level Dependent

ACTIVATION STUDIES

Control condition

Motor stimulation

Visual stimulation

Cognitive stimulation

fiMRI BOLD ACTIVATION STUDIES

RESTING STATE

ACTIVATED STATE

- Oxygen

Technical Challenges in PET/MR

\square Interference on PET (photomultiplier and electronics)
\square Static magnetic field
\square Electromagnetic interference from RF and gradients
\square Interference on MR (homogeneity and gradients)
\square Electromagnetic radiation from PET electronics
\square Maintaining magnetic field homogeneity
\square Susceptibility artifacts
\square General Challenges
\square Space
\square Environmental factors (temperature, vibration...)

- Cost
\square PET attenuation correction via MR data is a challenge!

PET + MR: Semantic Dementia

MR/PET:"one-stop-shop"

New whole-body imaging procedures allow comprehensive imaging examinations

Coronal overview of 18F-FDG PET and MRI (T2-weighted Turbo-STIR)

Fused MRI/PET facilitates accurate registration of morphological and molecular aspects of diseases

Pulmonary and osseous (arrow, red) metastatic disease of a non-small cell lung cancer (arrow, yellow)

Technology for MR/PET

\square (1) Scintillating crystals plus photomultiplier tubes (PMT)
\square (2) Scintillating crystals plus solid state light detectors

Technology for MR/PET (1)

\square PMT Approach
\square Well understood, stable electronics, high gain (10^{6})
\square However, Position sensitive PMT (PSPMT) operate in 1 mT
\square Combination of distance (light guide) and iron shield ($1-2 \mathrm{~mm}$ of soft iron can further reduce $30 \mathrm{mT}->1 \mathrm{mT}$) to operate in 1 mT

Technology for MR/PET (1)

Technology for MR/PET (1)

$\square 1 \mathrm{mT}$ has minimal effect on PSPMT performance
\square Long light guides reduce energy resolution from 17 -> 27\%, but this shouldn't have too big an impact upon performance
\square Can perform simultaneous and isocentric MR/PET measurements
\square However, small axial FOV

Technology for MR/PET (2)

\square Solid state devices
\square Avalanche Photodiodes (gain ~150)
\square Silicon Photomultiplier (gain $\sim 10^{6}$)
\square Less well established as PET detectors
\square Can operate in high static field >7 T
\square Need to shield devices from both gradients and RF

MR/PET Head Insert

Scanner size: 36 cm dia. $\times 20 \mathrm{~cm}$ FOV

Brain PET/MRI

PET Insert

Patient study

- Total of 192 LSO APD block detectors
- FOV: $35.5 \mathrm{~cm} \times 19.25 \mathrm{~cm}$ axial

Dog study

- Siemens 3T TRIO MR scanner

The SiPM solution?

-The photon is absorbed and generates an electron/ hole pair
-The electron/hole diffuses or drifts to the highelectric field multiplication region
-The drifted charge undergoes impact ionization and causes an avalanche breakdown.
-Resistor in series to quench the avalanche (limited Geiger mode).
As produced at FBK-irst,Trento, Italy \rightarrow

Characterization

Collaboration with FBK- irst (Trento been developing SiPMs since 2005:

- First detectors - $\operatorname{singsis\operatorname {sin}}(2006)$
- First matrices 2×2 (2007)
- First matrices 4×4 (2008)
- First matrices 8×8 (2009)

Breakdown voltage VB $\sim 30 \mathrm{~V}$, very Gain: $\sim 10^{6}$
-Linear for a few volts over VBD.
\square Related to the recharge of the diode capacitance CD the avalanche quenching. $G=(V B I A S-V B) \times C D / q$
Dark rate:
\square 1-3 MHz at 1-2 photoelectron (p.e.) level, $\sim \mathrm{kHz}$ at $3-4 \mathrm{f}$
\square Not a concern for PET applications.

Results: New detectors (May 2007)

Different geometry,size,microcell size and GF.

Silicon Drift Detector

- low detector capacitance \Rightarrow low electronics noise
\square JFET integrated on the detector chip
homogeneous entrance window, with ARC for scintillation detection
- low leakage current necessary ($\sim 300 \mathrm{pA} / \mathrm{cm}^{2}$ @RT available at MPI-HLL)
\square availability of monolithic arrays of SDDs

CATEGORY OF ACCELERATORS	NUMBER IN USE (*)
High Energy acc. (E >1GeV)	~ 120
Synchrotron radiation sources	>100
Medical radioisotope production	$\simeq 200$
Radiotherapy accelerators	≥ 7500
Research acc. included biomedical research	~ 9000
Acc. for industrial processing and research	~ 1500
Ion implanters, surface modification	>7000
TOTAL	≥ 17500
(*) W. Maciszewski and W. Scharf: Int. J. of Radiation Oncology, 2004	

High-cumrent cyclotrons used is medicise

Baby Cyclotrons (below 18 MeV) In-house facility
Mainly used for production of short-lived positron emitters
like ${ }^{18} \mathrm{~F},{ }^{11} \mathrm{C},{ }^{13} \mathrm{~N},{ }^{15} \mathrm{O}$.

Medium Energy Cyclotrons (below 40 MeV) Centralised facility
Majority of the cyclotron produced isotopes are produced using such machine viz, ${ }^{123}$, ${ }^{201} \mathrm{TI},{ }^{67} \mathrm{Ca},{ }^{68} \mathrm{Ga},{ }^{103} \mathrm{Pd}$ etc.

High Energy Cyclotrons (above 40 MeV)
Centralised facilities and research institutions Used for production of few radioisotope requiring high energy for production viz, ${ }^{67} \mathrm{Cu},{ }^{82} \mathrm{Sr},{ }^{211} \mathrm{At} . . .$.

Beby cyelotrons

Ion Beam Applications

Accelereted particles: H^{-}

Wedfurn energy cyelotrons

High-energy cyclotrons

IBA's ARRONAX in Nantes

4 Particles: $\mathrm{H}^{-} / \mathrm{D}^{-} / \mathrm{He}^{2+} / \mathrm{HH}^{+}$
Variable energy: $\mathbf{1 5} \mathrm{MeV} \rightarrow \mathbf{7 0} \mathrm{MeV}$

Performances:
$>750 \mu \mathrm{~A} \mathrm{H}^{-}$
$>35 \mu \mathrm{AHe}^{2+}$

ACCELERATORS

IN GANCER THERAPY

'Conventional' radfotherapy: linear accelerators ofonifnate

In the world radiation oncologists use 15000 electron linacs 40% of all the existing accelerators

Varian Clinac 1800 installed in the S. Anna Hospital in Como (Italy)
M. Silari - Introduction to Medical

91
Physics

X rays ifave a poor energy deposition

sfladrontiferapy" uses Ω, ρ and C -jon beanss

Ionization: the Bethe-Bloch formula

$$
\left\langle\frac{d E}{d x}\right\rangle=-4 \pi N_{A} r_{e}^{2} m_{e} c^{2} z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \gamma^{2} \beta^{2}}{I^{2}} T^{\max }-\beta^{2}-\frac{\delta}{2}\right]
$$

$$
T_{\max } \approx 2 m_{e} c^{2} \beta^{2} \gamma^{2} \quad-\frac{d E}{d x} \approx K q^{2} \frac{Z}{A \beta^{2}}\left[\ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2}}{I^{2}}-\beta^{2}\right]
$$

Charaterized by:

- a fall off at low energy $\sim 1 / \beta^{2}$
- a relativistic rise $\sim \ln \beta \gamma$
- a minimum at $\beta \gamma \approx 3$
- depends only on $\beta \gamma$ not on m

High energy charged particles lose energy slowly in material due to ionization leaving tracks as they pass ($\mathrm{For} \mathrm{Z}=0.5 \mathrm{~A}$ at $\mathrm{B} \gamma \sim 3$
$\left.1 / \rho \mathrm{dE} / \mathrm{dx} \approx 1.4 \mathrm{MeV} \mathrm{cm}^{2} / \mathrm{g}\right)$
\rightarrow many kinds of tracking detectors can be done!

Depth Dose Profile

Charged hadrons have a much betier energy deposition

Charged hadrons can delliver the dose in thiree dinsensions

Longitudinal mouvement by varying the energy of the beam

Charged hadrons can ofeliver the dose in thisee offrnensions

Lateral movement with a transverse magnetic field

Magnetic scanning with pencil beam

- Fully 3d conformal (fixed range modulation)
- Fully automated (no specific hardware needed)

[^0]Protons are olualftatively offiterent fiom X-rays

Carbon ions deposit in a cell 24 times more energy than a proton producing not reparable multiple close-by double strand breaks

Carbon ions can control radio-resistant tumours

Volume 42 Number 5 June 2002

Simulation for physics, space and medicine

Trasferimento tecnologico

Particle physics software aids space and medicine

"Geant4 is a showcase example of technology transfer from particle physics to other fields such as space and medical science [...]".

CERN Courier, June 2002

Software di Simulazione

E' stato sviluppato un sistema dosimetrico, basato su simulazione Montecarlo, con lo scopo di ricavare sia la distrribuzione di close in tre dimensioni, sia le relative curve di isodose nei tessuti.
software basato su un'architettura ed una programmazione orientata agli oggetti

(1)

processo di sviluppo rigoroso basato sul metodo iterativo incrementale
interfaccia astratta utilizzo versatile per l'utente

Contemporaneamente si rende necessario uno strumento per il confronto statistico (Goodness of Fit) delle curve/distribuzioni simulate con i dati sperimentali .

Adroterapia

Fa uso di fasci di protoni che depositano dosi terapeutiche di radiazione vicino al tumore, utilizzando tecniche di precisione balistica.

Protoni - picco di Bragg - Acqua

Dati sperimentali acquisiti presso ESPERIMENTO CATANA (INFN, LNS Catania)

Le simulazioni del picco di Bragg basate sul toolkit Geant4 (LowE) rappresentano uno strumento valido per la simulazione dei piani di trattamento negli studi di adroterapia applicati di melanoma oculare.

Particelle e grandezze fisiche studiate

Elettroni CSDA Range, Potere frenante, Coefficienti di trasmissione, Coefficienti di backscattering.

Coefficienti di assorbimento e di trasmissione, sezioni d'urto.

> Le grandezze fisiche sono state simulate per TUTTI gli elementi della tavola periodica (circa 100)

Positroni

Coefficienti di trasmissione e di backscattering

CSDA Range, Potere frenante, picco di Bragg

PRESENT TREATMENT ROOM

- 0° respect the switching magnet
- 80 meter after extraction
- 3 m proton beam line

Loma Linda Medical University Centire; ifrst patient 1992

Hospital centres for deep protontinerapy (>500 pis/year) 5 in USA, 4 in Japan, 2 in Ghina, 1 in Switzerland, in Germany, 1 in Koreas in in fitaly

Protontherapy: cyclotions and synchrotions...

HIMAC in Chiba is the ploner of carbon therapy (Proff fl, Jsujiti)

Yasuo Hirao

${ }^{15}$ Hirao, Y. et al, "Heavy Ion Synchrotron for Medical Use: HIMAC Project at NIRS
Japan" Nucl. Phys. A538, 541c (1992)

Japans 4 proton Centires ans 2 carbon jon centres

```
WAKASA BAY PROJECT
by Wakasa-Bay Energy Research Center Fukui (2002)
protons ( \(\leq 200 \mathrm{MeV}\) ) synchrotron
(Hitachi)
1 h beam + 1 v beam + 1 gantry
```


HYOGO MED CENTRE
Hyogo (2001)
protons ($\leq 230 \mathrm{MeV}$) - He and C ions ($\leq \mathbf{3 2 0} \mathrm{MeV} / \mathrm{u}$) Mitsubishi synchrotron
$2 p$ gantries + 2 fixed p beam + 2 ion rooms

CERN - 25.1.05-U. Amaldi

Paditents of

 fradrontiferapy
Protontherapy: $60^{\prime} 000$ patients

 Carbon ion therapy 5000 patients mainly at HIMACCost about 20'000 Euro

$$
2-3 \times \text { X-rays }
$$

If cost would be the same as for X-rays
90% of the treatments
would be with
protons!

Numbers of potentiol partentis (3)

X-ray therapy

every 10 million inhabitants: 20.000 pts/year

Protontherapy
12% of X-ray patients $\quad 2400$ pts/year

Therapy with Carbon ions for radio-resistant tumour 3% of X-ray patients

TOTAL every 10 M about 3.000 pts/year
(*) Combining studies made in Austria, Germany, France, Italy and Sweden - ENLIGHT

New Center

Courtesy H. Tsujii

HIJAC new facilfiy

Hejolelberg lon gantisy: patitent roons
Patient Gantry Room November 2007

TERA progranmes since I992

TERA has proposed and designed the 'dual' National Centre for carbon ions and protons

1. CNAO is being built in Pavia

TERA has introduced and developed a novel type of accelerator: the "cyclinac"

> 2. "cyclinacs for protons and carbon ions

CNAO = Centro Nerzionale elf Adroterepotal

CNAO Foundation was created by the Italian Government in 2001 to realize CNAO: 4 Hospitals in Milan, 1 Hospital in Pavia and TERA Since 2003 INFN is Institutional Participant

In September 2003 TERA has completed and passed to CNAO the design of the high-tech part of CNAO and 25 people

President: E. Borloni
Med. Dirs: R. Orecchia Tech. Dir: S. Rossi

CNAO = Centro Narjonale df Adroterapja at Pavia

ENLJGHT and the European projectis European Network for LJGhtion fladron Therapy - 2002-2005

- GSI project for the University of Heidelberg Clinics (ready to treat)
- TERA project for CNAO in Pavia (completing construction)
- Marburg and Kiel centres (in construction by Siemens Medical)
- Med-Austron for Wiener Neustadt (approved)
- ETOILE in Lyon (approved) Competitive tendering

SINCE 2002 THESE GROUPS + CERN + GSI AND MANY OTHERS ARE PART OF THE
ENLIGHT PLATFORM co-ordinated by Dr. Manjjt Dosanjh Programs approved in FP7 : PARTNER, ULICE, ENVISION for a total of 20 MEuro

MORE

SLIDES

VOLUMETRIC CT

$<0,4 \mathrm{sec} /$ rotation
Organ in a sec ($17 \mathrm{~cm} / \mathrm{sec}$)
Whole body < 10 sec

CARDIAC CT

Wrrmpranrranre ECG

VOLUME RENDERED IMAGE OF HEART AND VESSELS

- EJECTION FRACTION
- CARDIAC OUTPUT
- REGIONAL WALL MOTION
-..

FUNCTIONAL PARAMETERS

PET FUNCTIONAL RECEPTOR IMAGING

Normal Subject

$\left.{ }^{[11} \mathrm{C}\right]$ FE-CIT

${ }^{18}$ F-FDG PET/CT

CT/PET UNAMBIGUOUS TISSUE LOCALIZATION

First Clinical

Positron Imaging Device

1952

This instrument followed the general concepts of the instrument build in 1950 but included many refinements. It produced both a coincidence scan as well as an unbalance scan. The unbalance of the two detectors was used to create an unbalance image using two symbols to record any unbalance in the single channel rates of the two detectors.

First clinical positron imaging device. Dr. Brownell (left) and
Dr. Aronow are shown with the scanner (1953).

Coincidence and unbalance scans of patient with recurring brain tumor. Coincidence scan (a) of a patient showing recurrence of tumor under previous operation site, and unbalance scan (b) showing asymmetry to the left. (Reproduced from Brownell and Sweet 1953).

MEDICAL IMAGING

TECHNIQUE		YEAR	ENERGY	PHYSICAL PROPERTY	IMAGING
RADIOLOGY	X RAYS IMAGING	$\mathbf{1 8 9 5}$	X RAYS	ABSORPTION	

COMPUTERIZED TOMOGRAPHY

| TECHNIQUE | YEAR | ENERGY | PHYSICAL
 PROPERTY | IMAGING | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X RAYS
 COMPUTERIZED
 TOMOGRAPHY | CT | 1971 | X RAYS | ABSORPTION | MORPHOLOGY |
| MAGNETIC
 RESONANCE
 IMAGING | MRI | 1980 | RADIO
 WAVES | MAGNETIC
 RESONANCE | MORPHOLOGY |
| /FUNCTION | | | | | |

[^0]: Paul Scherrer Institut • 5232 Villigen PS

