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An important premise

The Monte Carlo method is the best method only
when all the other methods are worst.

Basic example

Numerical integration of a continuous function f : [0, 1]→ R

Monte Carlo: error ∼ 1/
√
N (N ∼ number of operations)

Rectangle method: error ∼ 1/N

Trapezoidal rule: error ∼ 1/N2

In general, non MC methods: error ∼ 1/Nα with α ≥ 1

For n−dimensional integrals α→ α/n so that the MC method is the best
one to compute definite integrals of functions f : [0, 1]n → R for n≫ 1
(perfect in the limit n→∞).

Natural question: why n→∞?
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Statistical physics in a line

Statistical physics = Boltzmann distribution = e−βE , β = 1/(kT )

Denoting by x a “physical configuration” (positions of the particles, spin
directions, momenta, . . .) and with X the space of these configurations,
the physical observables (energy, magnetization, . . .) are functions
O : X → R and their thermodynamical value is

〈O〉 =
∫

X
O(x)e−βE(x)dx

Z
Z =

∫

X

e−βE(x)dx

The aim of statistical physics is, given a model for E (x), to compute the
thermodynamical values of some relevant observables.

Typical scales

Number of particles ∼ NA ≃ 6.0× 1023

Very optimistic estimate of the space dimension: dim(X ) ∼ 210
23
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Simple sampling

Random configurations {xi}i∈[1,N] are generated and the observables are
estimated by

〈O〉 ≃
∑

i O(xi )e−βE(xi )

∑

i e
−βExi

This method has (at least) two fundamental problems:

1 since E is an extensive variable (i.e. it grows proportionally to the
volume), we typically have |E | ≫ 1, so that serious precision problems
arise in finite arithmetics

2 the configurations which are more important in the average are the
ones with smallest E and these configurations are typically very hard
to produce by chance: all the random configuration generated are in
the tails of the distribution and thus big statistical errors are present.
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Solution: importance sampling

We generate the configuration with probability e−βE and the observables
are estimated by

〈O〉 ≃
∑

i O(xi )
N

New problem: how to generate configurations according to a given
statistical distribution?

Solution: the Metropolis(-Hastings) method

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
E. Teller Equations of State Calculations by Fast Computing Machines.
Journal of Chemical Physics 21, 1087 (1953).

W. K. Hastings Monte Carlo Sampling Methods Using Markov Chains and

Their Applications Biometrika 57 97 (1970).
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Markov chains

A Markov chain is a stochastic process at discrete times in which the
transition probability of the system at time tn depends on the state of the
system at time tn but not on the states at t < tn.
By denoting the configuration space by S and the space of the time
parameters by T , then a Markov chain is characterized by the function

P : T × S × S → [0, 1]

P(t, x , y) is the probability of going at time t from the state x to the state
y .

If S is a discrete set, #S = N, P can be represented by a matrix Pij(t),
i , j ∈ {1, . . . ,N}.
In the following we will restrict only to the case of homogeneous Markov
chains, for which the transition probability is independent of t.

C. Bonati (Unipi & INFN) MCMC & statistical physics Pisa 18/03/2013 7 / 25



Classification of the states

Let us denote by F
(n)
xy the probability that, given X0 = x , we have Xn = y

and Xi 6= y for i < n and by P
(n)
xy the probability that, given X0 = x , we

have Xn = y (it is simple to see that P
(n)
xy = (Pn)xy ).

1 the period of a state x is defined as

d(x) = MCD{n ≥ 1 t.c . P
(n)
xx > 0}

and x is said to be aperiodic if d(x) = 1

2 a state is said to be persistent if
∑∞

n=1 F
(n)
xx = 1 and transient

otherwise

3 the recurrence time of a persistent state x is defined by

µ(x) =
∑∞

n=1 n F
(n)
xx

4 a persistent state x is said to be null if µ(x) = +∞
5 an aperiodic and persistent state x is said to be ergodic if µ(x) < +∞
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Classification of the states

Theorem Let x be a state of a Markov chain, then

x is transient if and only if
∑∞

n=1 P
(n)
xx < +∞, and in this case we

have
∑∞

n=1 P
(n)
yx < +∞ for every initial state y . In particular

limn→∞ P
(n)
yx = 0

x is a persistent null state if and only if
∑∞

n=1 P
(n)
xx = +∞ and

limn→∞ P
(n)
xx = 0, and in this case we have limn→∞ P

(n)
yx = 0 for every

initial state y

if x is an ergodic state we have

lim
n→∞

P
(n)
yx =

1

µ(x)
Fyx ≡

1

µ(x)

∞
∑

k=1

F
(k)
yx
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Irreducible chains

A Markov chain is said to be irreducible if for every couple x , y of states

an integer n ≥ 1 exists such that P
(n)
xy > 0.

Theorem All the states of an irreducible Markov chain are in the same
class.

Theorem In an irreducible ergodic chain the limit πx = limn→∞ P
(n)
yx

exists and it is independent of the initial state y , moreover πx > 0 and

∑

x

πx = 1 πy =
∑

x

πxPxy (∗)

Theorem Let’s assume to have an irreducible and aperiodic chain for
which numbers πx ≥ 0 exists that satisfy (∗), then all the states are

ergodic and πx = limn→∞ P
(n)
yx .

A probability distribution wx that satisfies wy =
∑

x wxPxy is said to be an
invariant distribution for the Markov chain.
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Irreducible chains

Corollary An irreducible ergodic chain has one and only one invariant
distribution.

Ergodic theorem Given an irreducible ergodic chain and a limited
function f : S → R then we have

P

(

1

n

n
∑

i=1

f (Xi )→ f̄ per n→∞
)

= 1

where Xi is the state of the chain at time i and f̄ is the average with
respect to the invariant distribution

f̄ =
∑

x∈S

πx f (x)
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Proof in a simple case

Let us consider the space of the probability distributions on a compact set
O ⊂ R

d (i.e. the spere of L1(O)), and the transition probability
P ∈ L

2(O × O) to be a function such that P(x ← y) ≥ ǫ > 0 for every
x , y (so we have an irreducible aperiodic chain!) and let us define the
action of P on the distribution q(x) by

(Pq)(x) =

∫

P(x ← y)q(y)dy

Theorem: ‖Pq1 − Pq2‖ ≤ (1− ǫ′)‖q1 − q2‖ with ǫ′ > 0.

By the Banach fixed point, by iterating the application of P to a general
starting distribution we converge to the invariant distribution of P .
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Proof in a simple case

∆q(x) = q1(x)− q2(x)

‖Pq1 − Pq2‖ =
∫

dx |Pq1(x)− Pq2(x)| =
∫

dx

∣

∣

∣

∣

∫

dyP(x ← y)∆q(y)

∣

∣

∣

∣

=

=

∫

dx

∣

∣

∣

∣

∫

dyP(x ← y)∆q(y) [Θ(∆q(y)) + Θ(−∆q(y))]

∣

∣

∣

∣

We now use
∣

∣|a| − |b|
∣

∣ = |a|+ |b| − 2min(|a|, |b|) to arrive to

≤
∫

dx

∫

dyP(x ← y) |∆q(y)| −

− 2

∫

dx min
±

∣

∣

∣

∣

∫

dyP(x ← y)∆q(y)Θ(±∆q(y))

∣

∣

∣

∣

≤

≤
∫

dy |∆q(y)| − 2

∫

dx

[

inf
y
P(x ← y)

]

min
±

∣

∣

∣

∣

∫

dy∆q(y)Θ(±∆q(y))

∣

∣

∣

∣
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Proof in a simple case

By noting that

∫

dy∆q(y)Θ(∆q(y))+

∫

dy∆q(y)Θ(−∆q(y)) =

∫

dy∆q(y) = 1−1 = 0

and thus
∫

dy |∆q(y)| =
∫

dy∆q(y)Θ(∆q(y))−
∫

dy∆q(y)Θ(−∆q(y)) =

= 2

∣

∣

∣

∣

∫

dy∆q(y)Θ(±∆q(y))

∣

∣

∣

∣

we arrive to

‖Pq1 − Pq2‖ ≤
∫

dy |∆q(y)| − ǫ|O|
∫

dy |∆q(y)| = (1− ǫ′)‖q1 − q2‖
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Markov Chain Monte Carlo

Method to generate configurations according to a given probability
distribution P: we use an irreducible aperiodic Markov chain that has P

as invariant distribution.
We thus have to find a transition probability P(x ← y) such that

P(x) =

∫

dyP(x ← y)P(y)

Sufficient condition: detailed balance

P(y ← x)P(x) = P(x ← y)P(y)

(it is sufficient to integrate and use
∫

dyP(y ← x) = 1)
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The Metropolis(-Hastings) method

Let G be a given transition matrix, associated to an irreducible aperiodic
Markov chain, and let us build a new Markov chain in the following way:

given the configuration Xn = x we suggest the transition y = Gx

the suggested transition is accepted with probability axy

if the transition has been accepted Xn+1 = y , otherwise Xn+1 = Xn

The transition matrix of this process is

Pxy = axyGxy

Pxx = axxGxx +
∑

z 6=x

(1− axz)Gxz

and the detailed balance becomes

axy

ayx
=

PyGyx

PxGxy
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The Metropolis(-Hastings) method

It is not difficult to find a closed form for aij that satisfies the detailed
balance: we can use for example

axy = F

(

PyGyx

PxGxy

)

with F : [0,∞]→ [0, 1] a function that satisfies F (z) = zF (1/z). Such
functions are e.g.

F (z) = min(1, z) F (z) =
z

1 + z

In applications we typically have Gxy = Gyx and the previous formula
reduces to

axy = F

(

Py

Px

)

(if Gxy = Gyx)
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The O(N) models

Let us consider a cubic lattice of size L, whose sites are denoted by {xi}.
To every site a variable ~s(xi ) ∈ R

N with |~s| = 1 is associated and the total
energy is given by the expression

E = −
∑

〈xixj 〉

~s(xi ) · ~s(xj)

where the sum is over all the neighbour site couples. This model is
relevant in various physical applications:

for N = 2 it describes the superfluid transition

for N = 3 is the (classical) Heisenberg model of ferromagnetism

In simulations, in order to reduce the finite size effects, periodic boundary
conditions are usually assumed, so that the cube becomes in fact an
hyper-torus.
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Metropolis algorithm for the O(N) models

we start from a configuration (whatever) ~s(xi )

for every lattice site xj
1 we generate the new vector ~sprop by means of a random rotation of

~s(xj)
2 we compute the energy difference ∆E due to the eventual

substitution ~s(xj)→ ~sprop
3 we generate a random number r ∈ [0, 1]
4 if r ≤ min(1, exp(−β∆E )) we perform the substitution ~s(xj)→ ~sprop,

otherwise we let ~s(xj) unaltered

we iterate the previous point as much as we can and after every
iteration we measure the value of the relevant observables.

In the point (1) there is much freedom: for example the rotation can be
chosen in such a way that |~sprop − ~s(xj)| < ǫ, in order to have a slighter
change in the energy and to have an higher acceptance probability at point
(4).
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The data autocorrelation

Let’s assume to have a series of measurements {Oi}i∈[1,n] of some
observable. The expectation value of the statistical error is given by

〈(

1

n

n
∑

i=1

Oi − 〈O〉
)2〉

=

=
1

n2

n
∑

i=1

〈

(Oi − 〈O〉)2
〉

+
2

n2

n
∑

i=1

n
∑

j=i+1

(

〈OiOj〉 − 〈O〉2
)

=

=
1

n

[

〈O2〉 − 〈O〉2 + 2
n
∑

i=1

(

1− i

n

)

(

〈O0Oi 〉 − 〈O〉2
)

]

We define the autocorrelation time by

τauto =
1

2
+

∞
∑

i=1

〈O0Oi 〉 − 〈O〉2
〈O2〉 − 〈O〉2
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The data autocorrelation

By using τauto we thus have

〈(δO)2〉 ≈
(

〈O2〉 − 〈O〉2
)2τauto

n

τauto is a carachteristic of the update algorithm: the smaller τauto the
more the update is efficient.
The Metropolis algorithm is universal but typically not efficient.
Algorithms specific for some models but (much) more efficients are

1 heatbath

2 over-relaxation (also known as microcanonical update)

3 cluster updates

4 parallel tempering
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Real life comparison between algorithms
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Real life physical example: Finite Size Scaling
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Real life physical example: Finite Size Scaling
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