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Introduction

“No matter how powerful computers
become, physicists will always want to
study problems that are too difficult
for the computers at hand.” [1]

In these notes we discuss the topics covered in the following three modules of the “Numerical
Methods for Physics” course:

• Introduction to Markov Chain Monte-Carlo and applications in statistical mechanics
• Application of Monte-Carlo methods to the study of the path-integral in quantum mechanics
• Path-integral simulations for quantum field theories

With respect to the material discussed in class (many) more details are present in these notes,
mainly to investigate some technical points or to provide complete proofs whose analysis would
take too much time, or would be at least partially off topic, during the lectures.

After introducing some general features of the Monte Carlo algorithms, in Part I we discuss quite
in detail the approach known as Markov Chain Monte Carlo (MCMC), which is the Monte Carlo
technique that is most commonly adopted in nontrivial applications. To put on firm ground the
foundations of the MCMC method same basic facts about Markov chains are presented, together
with the data analysis techniques needed to reliably estimate (functions of) average values in
MCMC simulations, and to asses their statistical accuracy.

Statistical mechanics will be often used to motivate some of the requirements that a good
Monte Carlo algorithm has to satisfy, and in Part II the MCMC technique is applied to the study of
phase transitions in simple lattice systems. While virtually any problem in (equilibrium) statistical
mechanics can be tackled by using Monte Carlo methods, there are several reasons to focus on
phase transitions in classical lattice models of ferromagnets. From the algorithmic point of view
these models are quite simple to investigate by Monte Carlo methods, and thus constitute an ideal
testbed for the application of the techniques introduced in Part I. Given their extreme simplicity,
one might expect these models to provide only some very general qualitative information of minor
physical interest. This is however not the case for continuous phase transitions: the phenomenon
of universality ensures that even the simplest models capture quantitative features (the universal
ones) of real world continuous phase transitions. The peculiar behavior that emerges in a system
close to a continuous phase transition also presents some challenges for the Monte Carlo method,
whose computational efficiency typically decreases as the size of the system is increased (critical
slowing down).

In Part III Monte Carlo methods are applied to study quantum mechanical systems, and in
particular equilibrium quantum statistical mechanics. The starting point is the Euclidean path-
integral technique, by which quantum thermal averages can be rewritten in a way which makes them
amenable of being estimated by Monte Carlo methods. Indeed, once a regularization of the path-
integral is introduced, the computation of quantum thermal averages becomes formally equivalent
to the estimation of thermal averages in a one dimensional classical lattice system. Information
on the energy spectrum of the quantum model can be obtained by studying correlators in the
corresponding classical statistical system for different Euclidean time separations; using this fact
it becomes clear that the process of removing the path-integral regulator is equivalent to the study
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of critical phenomena in classical one dimensional systems. Although all the techniques introduced
are valid for generic systems, the case of the one dimensional harmonic oscillator is often used to
exemplify them in a simple setting in which analytical computations can also be performed.

In Part IV Monte Carlo methods are applied to the numerical investigation of some properties
of quantum field theories. Although the general ideas are analogous to those already introduced
in Part III, some more difficulties arises, that are discussed in the simplest setting, that of the
free bosonic field. Numerical simulations of fermion fields are significantly more challenging than
their bosonic counterparts, and some of the difficulties encountered can be easily understood. The
fermionic case is used to motivate the introduction of the Hybrid Monte Carlo algorithm for the
simulation of non-local actions. Quantum field theories are not only more difficult to simulate
than elementary quantum mechanical systems, they also present a richer phenomenology. In order
to present a glimpse of this phenomenology, we discuss several aspects of two dimensional lattice
gauge theories, which are relatively easy to simulate and for which we have complete analytic
control.

This course is thought to be attended in parallel with other courses, more focused on the
physics of the systems under investigation, like, e. g., statistical mechanics and quantum field
theory courses. For this reason a short summary of the main physical features is provided whenever
a deeper physical understanding is needed, e. g., to decide which observable to measure, to plan
the simulations or to interpret the numerical results.

The other natural possibility would be to attend this course when already acquainted with the
physical side of the problem. It is quite obvious that there are positive aspects also in this second
possibility, however one should not underestimate the physical insight that can be gained by nu-
merically simulating a system. Indeed, sometimes, the mathematical subtleties that in a theoretical
setting could seem futilely abstruse, or maybe even useless, become quite reasonable after directly
verifying what happens by neglecting them. Spontaneous symmetry breaking (especially in gauge
field theories) is a typical example of a phenomenon which require some care to be investigated,
both from the mathematical point of view and in numerical simulations.

All the numerical results presented have been obtained by using the codes publicly available at

https://github.com/claudio-bonati/NumericalMethods/

and the run times reported refer to a single core Intel(R) Xeon(R) Gold 5218 CPU 2.30GHz, with
the code compiled using the GCC compiler (version 9.4.0).

To report typos, oversights, inaccuracies, errors or whatever else, please write to

claudio.bonati@unipi.it
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Chapter 1

Basics of Monte Carlo methods

Monte Carlo methods constitute a class of numerical methods which use a stochastic approach to
evaluate expressions of the form

⟨F ⟩ =
∫
C

F (x)p(x)dx , (1.0.1)

where dx denotes a measure on the set C, p(x) is a probability density function on C (pdf for
short), thus

p(x) ≥ 0 ,

∫
C

p(x)dx = 1 , (1.0.2)

and F (x) is a function of x. In some cases the quantity to be investigated already has a natural
probabilistic interpretation (this is typically the case in statistical mechanics), in other cases some
work is needed to rewrite it in the form Eq. (1.0.1), selecting an appropriate ensemble C, an
appropriate pdf p(x) and an appropriate function F (x).

Several approaches can be used to evaluate the right hand side of Eq. (1.0.1), and this is the
reason for the plural in “Monte Carlo methods”: in some cases it is possible to directly sample
the pdf, in most of the cases this is however not numerically feasible, and the less direct Markov
Chain Monte Carlo approach has to be used; also in this case there is however much freedom on
how to construct the appropriate Markov Chain.

Whatever method is used, in the end all Monte Carlo approaches produce “in some way” a sam-
ple of N draws x1, . . . , xN from the pdf p(x), from which we get the quantities F (x1), . . . , F (xN ),
whose sample average F is an estimator of ⟨F ⟩. The values xi are always identically distributed but
non necessarily independent, and a fundamental point is to determine the statistical uncertainty
to be associated with F .

1.1 Sample statistics

In this section we recall some basic facts about sample statistics that will be of fundamental
importance in the following, considering only the case of independent and identically distributed
(iid for short) samples {xi}i=1,...,N . As usual we denote by ⟨F ⟩ the average of F computed with
respect to the pdf p(x), and by F the sample average of the quantities Fi = F (xi). The overline
will be used more generally to denote sample estimators.

It is simple to verify that the sample average

F =
1

N

∑
i

Fi (1.1.1)

is an unbiased estimator of ⟨F ⟩, i. e., ⟨F ⟩ = ⟨F ⟩: since the draws xis are sampled from the same
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pdf p(x) we have for each i

⟨Fi⟩ = ⟨F (xi)⟩ =
∫
F (xi)p(xi)dxi = ⟨F ⟩ , (1.1.2)

and by linearity

⟨F ⟩ = 1

N

N∑
i=1

⟨Fi⟩ = ⟨F ⟩ . (1.1.3)

To get an unbiased estimator of the variance σ2
F = ⟨F 2⟩−⟨F ⟩2 is only slightly more complicated:

we have

⟨F 2 − F 2⟩ =
〈

1

N

∑
i

F 2
i −

(
1

N

∑
i

Fi

)2〉
=

1

N

∑
i

⟨F 2
i ⟩ −

1

N2

∑
ij

⟨FiFj⟩ . (1.1.4)

Moreover, since Fi = F (xi) and the xis are identically distributed, we have ⟨F 2
i ⟩ = ⟨F 2⟩, and since

the xis are also independent of each other

⟨FiFj⟩ =
{
⟨F 2⟩ if i = j
⟨F ⟩2 if i ̸= j

, (1.1.5)

hence

⟨F 2 − F 2⟩ = ⟨F 2⟩ − 1

N2

[
N(N − 1)⟨F ⟩2 +N⟨F 2⟩

]
=

=
N − 1

N

(
⟨F 2⟩ − ⟨F ⟩2

)
=
N − 1

N
σ2
F .

(1.1.6)

An unbiased estimator of σ2
F is thus

σ2
F =

N

N − 1

(
F 2 − F 2

)
, (1.1.7)

and the bias correcting factor N
N−1 is obviously irrelevant in the large sample limit N ≫ 1.

We can now compute the variance of the stochastic variable defined by the sample average F .
We have (using once again the fact that the xi are iid)

σ2
F
= ⟨F 2⟩ − ⟨F ⟩2 =

1

N2

〈(∑
i

Fi

)2〉
− ⟨F ⟩2 =

=
1

N2

[
N⟨F 2⟩+N(N − 1)⟨F ⟩2

]
− ⟨F ⟩2 =

1

N

[
⟨F 2⟩ − ⟨F ⟩2

]
=

1

N
σ2
F .

(1.1.8)

Using the sample estimator of the variance σ2
F we immediately obtain the sample estimator of the

variance of the sample average:

σ2
F
=

1

N − 1

(
F 2 − F 2)

. (1.1.9)

To appreciate the importance of these results it is useful to recall a simple fact known as
Chebyshev’s inequality: if X is random variable with finite variance σ2

X and average ⟨X⟩, the
probability of observing a value of X whose distance from ⟨X⟩ is larger than kσX is smaller than
1/k2:

P (|X − ⟨X⟩| ≥ kσX) ≤ 1

k2
(1.1.10)

From the definition of variance and the positivity of (X − ⟨X⟩)2 we have indeed

σ2
X =

∫
(X − ⟨X⟩)2p(X)dX ≥

∫
|X−⟨X⟩|≥kσX

(X − ⟨X⟩)2p(X)dX

≥ k2σ2
X

∫
|X−⟨X⟩|≥kσX

p(X)dX = k2σ2
XP (|X − ⟨X⟩| ≥ kσX) ,

(1.1.11)
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from which Chebyshev’s inequality follows. The meaning of the Chebyshev’s inequality is that the
standard deviation σX is a measure of how much a probability distribution is peaked around ⟨X⟩.
From (1.1.8) we can thus conclude that in the large sample limit N →∞ it is very unlikely to find
a value of the sample average which is far from the true average. This result is nothing but the
law of large numbers in its weak form: for any ϵ > 0 the probability of finding a value X which
differs from ⟨X⟩ by more than ϵ goes to zero in the large sample limit N →∞:

lim
N→∞

P (|X − ⟨X⟩| > ϵ) = 0 . (1.1.12)

The proof of this result is an immediate consequence of (1.1.8) and Chebyshev’s inequality if σ2
X

is finite, but the result is true also without this assumption (see e. g. [2] §X.2 and [3] §VII.7 or [4]
§1.1 and 1.6).

The bound in Chebyshev’s inequality (1.1.10) is typically far from optimal and can not be
used to precisely assess the uncertainty associated with F . For distributions with finite variance
we have a much more precise statement, the Central Limit Theorem, that will be of fundamental
importance in everything that follows: if the quantities {Xi}i=1,...,N are iid variables with average
⟨X⟩ and finite variance σ2

X , in the large N limit the pdf ρ(X) of the stochastic variable X converges
to a Gaussian with average ⟨X⟩ and variance1 σ2

X/N :

ρ(X)→ 1√
2πσ2

X/N
exp

(
− (X − ⟨X⟩)2

2σ2
X/N

)
. (1.1.13)

A proof of this and of more general statements can be found in [3] §VIII.4 and [4] §5.27, while a
proof under quite restrictive hypotheses but with an estimate of the accuracy of the convergence
is presented in the appendix of [5].

From the Central Limit Theorem we thus know that, for large enough N , the value F has
a probability ≈ 68.3% of being closer to ⟨F ⟩ than σF , a probability ≈ 95.5% of being closer to
⟨F ⟩ than 2σF , and a probability ≈ 99.7% of being closer to ⟨F ⟩ than 3σF . Moreover σF can be

computed by using its sample estimator σF in Eq. (1.1.9) and scales ∝ 1/
√
N for large N . The

scaling 1/
√
N of statical errors is a consequence of the Central Limit Theorem, is universal in

Monte Carlo methods and constitutes their main limitation or advantage, depending on the point
of view.

1.2 Integration methods

The results of the previous section can be used to build simple Monte Carlo integrators and estimate
their statistical accuracy. We consider for the sake of the simplicity an integral of the form

I =

∫ 1

0

f(x)dx , (1.2.1)

where f(x) is a non negative regular function with 0 ≤ f(x) ≤M for x ∈ [0, 1], see Fig. (1.1) (left).
Several MC approaches can be devised to estimate I. A simple possibility is to think of I as

⟨f⟩, where the average is computed with respect to the uniform pdf p(x) = 1 on [0, 1]. We can
thus proceed as follow:

1. generate N numbers xi ∈ [0, 1] iid with pdf p(x) = 1

2. estimate I as f = 1
N

∑N
i=1 f(xi) .

A different possibility is to write f(x) =
∫ f(x)
0

dy and thus

I =

∫ 1

0

dx

∫ f(x)

0

dy =

∫
[0,1]×[0,M ]

F (x, y)dxdy =M

∫
[0,1]×[0,M ]

F (x, y)
dxdy

M
, (1.2.2)

1Note the consistency with Eq. (1.1.8).
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Figure 1.1: (left) The geometry considered for the integration in Sec. 1.2. (right) The basic step
of the rectangle integration scheme.

where

F (x, y) =

{
1 if y ≤ f(x)
0 else

. (1.2.3)

We thus have I =M⟨F ⟩, where the average is computed with respect to the uniform pdf p(x, y) =
1/M , and ⟨F ⟩ is just the probability that a randomly chosen point in [0, 1]× [0,M ] falls below the
curve f(x). To estimate I we can now proceed as follows:

1. generate N points (xi, yi) in the rectangle [0, 1]× [0,M ] iid with pdf p(x, y) = 1/M

2. estimate I as MF = M
N

∑N
i=1 F (xi, yi), which is equal to M/N times the number of points

below the curve f(x) .

The error of the MC estimates of I scales to zero as 1/
√
N in both the approaches, as dictated

by the Central Limit Theorem. To understand which of the two method is more efficient we have
to estimate the numerical factor multiplying 1/

√
N in the error, i.e. the standard deviation of the

single extraction (multiplied by M in the second case). Using the first method we have

σ2
f = ⟨f2⟩ − ⟨f⟩2 =

∫ 1

0

f2(x)dx−
(∫ 1

0

f(x)dx

)2

; (1.2.4)

using the second method we have instead (using F 2(x, y) = F (x, y))

σ2
F = ⟨F 2⟩ − ⟨F ⟩2 =

∫
[0,1]×[0,M ]

F (x, y)2
dxdy

M
−
(∫

[0,1]×[0,M ]

F (x, y)
dxdy

M

)2

=

=

∫
[0,1]×[0,M ]

F (x, y)
dxdy

M
−
(∫

[0,1]×[0,M ]

F (x, y)
dxdy

M

)2

=
I

M
−
(
I

M

)2

,

(1.2.5)

Note that in the second approach I =M⟨F ⟩, thus the relevant factor is MσF =
√
MI − I2, which

is a monotonically increasing function of M ≥ I. It is thus convenient to chose M as small as
possible, hence M = max f(x).

If we consider for example the case f(x) =
√
1− x2, in which case I = π/4, we have (with

M = 1)

σf =

(∫ 1

0

(1− x2)dx−
(∫ 1

0

√
1− x2dx

)2
)1/2

=

(
1− 1

3
−
(π
4

)2)1/2

≃ 0.22

MσF =

(
π

4
−
(π
4

)2)1/2

≃ 0.41 ,

(1.2.6)
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hence the error scales for large N as ≃ 0.22/
√
N and as ≃ 0.41/

√
N for the first and the second

method, respectively. To achieve a given target precision, the second method thus requires a sample
approximately four times larger than that of the first approach.

We can now compare these results with those that can be obtained by using deterministic
approaches for the computation of I. The simplest deterministic integration method is the rectangle
method (see Fig. (1.1) (right)):

1. divide the unit interval [0, 1] in N intervals of size ∆ = 1/N .
2. select xi in the i-th interval (e.g. xi = i/N or xi = (i+ 1/2)/N , with i = 0, . . . , N − 1)
3. estimate the integral by IR = ∆

∑
i f(xi)

The error of this estimate is bounded by

|I − IR| ≤
∑
i

∆(max
i
f −min

i
f) = ∆× (total variation of f) , (1.2.7)

where maxi f denotes the maximum of f(x) on the i-th interval and mini f the corresponding
minimum. For the case f(x) =

√
1− x2 considered above we have (using the fact that f is

monotonic)

|I − IR| ≤ ∆(max f −min f) =
1

N
. (1.2.8)

The scaling with N is thus much more favorable in the rectangle discretization scheme than in the
MC approach. Had we used the trapezoidal rule, in which the function is locally approximated by
a linear function, we would have obtained an error scaling as 1/N2. Using a generic integration
algorithm of order k (e.g. using spline interpolation of order k) we get an error which scales as
O(N−k).

If instead of considering a simple one-dimensional integral we consider a D-dimensional integral
on [0, 1]D, things change drastically. Denoting by ∆ the linear separation of the grid to be used in a
deterministic estimation of the integral, we need to evaluate the integrand function in 1/∆D points.
If we indicate the typical number of operations to be performed by N , we thus have N ≃ ∆−D,
and the error of an integration scheme of order k scales as

∆k ≃ N−k/D . (1.2.9)

On the contrary, the error of any Monte Carlo approach always scales as 1/
√
N , independently of

the dimensionality. For large enough D Monte Carlo becomes the best choice.
We have thus seen that the scaling of Monte Carlo errors is typically quite bad compared to

the scaling of errors that can be obtained by using deterministic approaches. However, there are
particular situations in which Monte Carlo methods are the most effective ones, the paradigmatic
example being that of integration in spaces of very large dimensionality, which is relevant both for
statistical mechanics and path-integration. To summarize [6]:

Monte Carlo methods should be used only when all alternative methods are worse.
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Chapter 2

Sampling a probability
distribution function

2.1 Pseudo-random number generators

The output of a standard pseudo-random number generator is typically an integer number in the
interval [0,M) (or open or closed interval) with uniform pdf, which becomes a real number with
pdf approximately uniform in [0, 1) when dividing by M .

Pseudo-random number generator are usually based on iterative algorithms like xi+1 = f(xi) or
xi+k = f(xi, . . . , xi+k−1), where x0 (or x0, . . . , xk−1) is the seed of the generator. It should be clear
that the numbers xi obtained using such an iterative algorithm are neither random nor independent
from each other, but for many practical applications everything works “as if” these numbers were
truly iid random quantities. Problems that are present in any pseudo-random number generator
are

• finite period: a value imax exists such that the sequence xi repeats itself if i > imax
• correlations: xi clearly depends on the xj with j < i, although this correlation can be quite
nontrivial to highlight.

Whether a given random number generator is “good enough” for this cheat to be trustworthy
is a nontrivial problem, and several tests are available to verify the quality of the randomness of
the sequence xi. For this reason it is good practice to use pseudo-random number generators that
are known to be of high quality, although this is sometimes not sufficient, since what is thought
to be a high quality generator is not time independent (see later in this section for an example).
Note that, in the context of MC applications, the quality of pseudo-random number generator is
typically non correlated with the generator being cryptographically secure.

Simple and very well studied pseudo-random number generators are linear congruential gener-
ators [7], in which natural numbers in [0,m) are generated by iterating1

xn+1 = (axn + c) mod m , (2.1.1)

where 0 ≤ x0 < m is the random seed, 0 < m is the modulus, 0 < a < m is the multiplier, and
0 ≤ c < m is the increment. Clearly 0 ≤ xn < m, thus yi = xi/m is a pseudo-random real number
in [0, 1), and there are at most m different values that can be obtained by iterating Eq. (2.1.1).

Since xn+1 is obtained from xi in a deterministic way, the sequence of numbers repeats itself
once a number xn is extracted which is equal to xi for some i < n; the period of a linear congruential
generator is thus surely not larger then the modulus m. Necessary and sufficient conditions for
a linear congruential generator to have period m are provided by the Hull-Dobell theorem (for a
proof see, e. g., [8] §3.2.1.2).

1we remind the reader that the notation x mod y denotes the remainder of the integer division of x by y.
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Theorem 2.1.1 (Hull-Dobell). A linear congruential generator has period m if and only if the
following requirements are satisfied:

1. c is relatively prime to m,
2. a− 1 is a multiple of p, for every prime number p dividing m,
3. if m is a multiple of 4, then a− 1 is a multiple of 4

A combination of parameters which satisfies these constraint is for example m = 2b, a = 4n+1,
and c = 1. Note however that a large period is not enough for a pseudo-random number generator
to be a good one: a linear congruential generator with a = 1 and c = 1 clearly has period m, with
m that can be arbitrarily large, still this is a terrible pseudo-random number generator.

All linear congruential generators with c = 0 (often called Lehmer generators) have a known
weakness: if we define the numbers yk = xk/m ∈ [0, 1) and we interpret k consecutive yis (i.e.
{yi, yi+1, . . . , yi+k−1}) as the coordinates of a point in k-dimensional space, then all these points lie
in at most (k!m)1/k parallel hyperplanes [9]. Note however that in some cases the actual number
of parallel hyperplanes on which these numbers lie is much smaller.

A famous example of such a failure is provided by the RANDU generator, which was the
standard IBM pseudo-random generator in the ’60s-’70s. This generator is defined by the recursion
relation

xj+1 = (65539xj) mod 231 , with x0 odd. (2.1.2)

From the fact that x0 is odd it immediately follows that xj is always odd, thus yi = xi/2
31 is a

number in (0, 1). This pseudo-random number generator comes with the disclaimer “its very name
RANDU is enough to bring dismay into the eyes and stomachs of many computer scientists!” ([8]
p. 107), which is motivated by the ridiculously small number of parallel planes on which consecutive
triples of numbers lie. According to the previously stated theorem this number is smaller than
(3!231)1/3 ≃ 2344, however the actual number is 15.

To show that the parameters choice used in RANDU is a very bad one we start by noting that 65539 = 216 +3,
thus

xj+2 = (216 + 3)xj+1 = (216 + 3)2xj , (2.1.3)

where all equalities hold modulo 231. Now we use

(216 + 3)2 = 232 + 6× 216 + 9 = 232 + 6(216 + 3)− 9 (2.1.4)

to rewrite the previous equation as (again all equalities hold modulo 231)

xj+2 = [6(216 + 3)− 9]xj = 6xj+1 − 9xj . (2.1.5)

We thus have xj+2 − 6xj+1 + 9xj = k231, where k is an integer number, and finally

yj+2 − 6yj+1 + 9yj = k . (2.1.6)

This equation, with integer k, describes a family of parallel planes in R3, and it is simple to understand that of

these planes at most 1+6+9=16 intersect the cube [0, 1]3: 1 plane intersect the j + 2 axis, 6 planes intersect the

j +1 axis, and 9 planes intersect the j axis. The actual number of planes intersecting the cube [0, 1]3 is in fact 15.

A less spectacular failure, but in some way a much more disturbing one, was reported in [10],
where it was shown that a supposedly high quality pseudo-random number generator failed to
reproduce the exact solution of the two dimensional Ising model when used in a MC simulation.

Simulations reported in the following of these notes have been performed by using the permuted
congruential generator pcg32, in the minimal C implementation available at

https://www.pcg-random.org/download.html

It is good practice to write MC simulation codes in a way that makes it easy to change the pseudo-
random number generator; this can be done, e. g., by introducing a wrapper function for the
pseudo-random number generator.

14
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2.2 Simple sampling, importance sampling, reweighting

We have seen in the previous section that algorithms are available to generate real pseudo-random
numbers in the interval [0, 1), and it is trivial to modify these algorithms to produce numbers
in the interval [0,M), with M arbitrary. Using these pseudo-random number generators we can
thus sample a constant (eventually multidimensional) pdf, and we have seen in Sec. 1.2 that this
is enough to estimate by Monte Carlo methods definite integrals. This approach goes under the
name of simple sampling.

For many practical uses, and in particular for statistical mechanics applications, simple sampling
is however very inefficient. In the large volume limit the Boltzmann distribution gets extremely
peaked around the most probable configuration, which is the one with the largest entropy in the
microcanonical ensemble or the one with the smallest free energy in the canonical ensemble. By
uniformly sampling the configuration space we are thus almost surely selecting configurations which
give negligible contribution to the physical result, so we are basically accumulating a lot of noise.

To make this argument more quantitative we can consider the average value

⟨O⟩p =
∫
O(x)p(x)dx , (2.2.1)

where O(x) is an observable which depends smoothly on x, while p(x) is a probability distribution
function that is extremely peaked close to x̄, so for example

p(x) ≃
{

1/δ x ∈ A
0 x /∈ A , (2.2.2)

with x̄ ∈ A, A a set of measure δ, and we are interested to the case δ → 0.
In simple sampling we uniformly sample the configuration space, so we use

⟨O⟩p = V ⟨Op⟩1 , (2.2.3)

where V is the total measure of the configuration space (the “volume”), and we denote by ⟨ ⟩1
the average with respect to the uniform pdf 1/V . As in Sec. 1.2, to understand the effectiveness
of the approach we have to study the standard deviation of the quantity we are averaging, and for
simple sampling we get

V

(∫
O2(x)p2(x)

dx

V
−
[∫

O(x)p(x)
dx

V

]2)1/2

≃

≃
(
V

δ
O2(x̄)−O2(x̄)

)1/2

= O(x̄)

√
V

δ
− 1 ,

(2.2.4)

which is both proportional to the (large) volume and divergent for δ → 0.
If in a Monte Carlo we instead generate points according to the distribution p(x), the standard

distribution which governs the error is for δ → 0(∫
O2(x)p(x)dx−

[∫
O(x)p(x)dx

]2)1/2

≃
(
O(x̄)2 −O(x̄)2

)1/2
= 0 . (2.2.5)

It is clear that this second approach, known as importance sampling is more effective in statistical
physics than simple sampling, and to use it we need methods to sample a generic distribution p(x).

In the rest of this chapter we discuss the basic approaches to this problem, which are however
typically quite (very) inefficient if the distribution p(x) depends on many variables, as in statistical
mechanics. In the next chapter we will discuss this more complicated case, introducing the Markov
Chain Monte Carlo approach. Note however that the techniques developed in Secs. (2.3)-(2.4) will
turns out to be useful also in the context of Markov Chain Monte Carlo, so it is worth to take
them seriously.
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⟨x⟩ x
0 0.0000(10)
0.25 0.2495(11)
0.5 0.4974(15)
0.75 0.7487(23)
1.0 0.9993(35)
1.5 1.492(10)
2.0 1.970(25)
2.5 2.474(69)
3 2.78(19)
4 2.60(32)
5 1.73(34)

Table 2.1: Values of x for a Gaussian pdf with average ⟨x⟩ and variance 1, obtained by sampling
a Gaussian with zero average and variance 1 and reweighting the results. In all the cases 106

independent draws have been used.

With a reasoning similar to the one just used it is simple to understand the problems related to
the technique commonly referred to as “reweighting”. In some cases it is not possible to generate
points according to the pdf p(x), for example when p(x) is not a pdf because it is not positive
definite (we will see one occurrence of this problem when discussing identical fermionic particles in
Chap. 12). In these cases one possibility is to generate points according to the pdf g(x) and then
use

⟨O⟩p =
∫
O(x)p(x)dx =

∫
O(x)

p(x)

g(x)
g(x)dx =

〈
O
p

g

〉
g

. (2.2.6)

The variance of the original distribution (i. e. the one obtained by sampling p(x)) is

σ2
(p) =

∫
O2(x)p(x)dx−

(∫
O(x)p(x)dx

)2

(2.2.7)

while the variance of the reweighted problem is

σ2
(g) =

∫
O2(x)

p2(x)

g(x)
dx−

(∫
O(x)p(x)dx

)2

. (2.2.8)

If O(x) is a smooth function and in some points p(x)/g(x) ≫ 1 then σ2
(g) ≫ σ2

(p). This means
that reweighting works well only for distributions that are at least qualitatively similar, and this
problem is usually known as the “overlap problem”.

To have an explicit example of the overlap problem we can try to estimate numerically the
average of a Gaussian pdf with average ⟨x⟩ and variance 1 by sampling a Gaussian pdf with zero
average and variance 1, then reweighting the results (as we will see in the next section Gaussian pdf
can be easily sampled). The results of this numerical experiment are shown in Tab. (2.1), where
the estimate x obtained by reweighting a sample of 106 independent draws is reported together
with the true average ⟨x⟩. It is clear that when ⟨x⟩ is larger than 1, and the two distributions
become significantly different from each other, the reweighting method becomes very inefficient.
It is important to explicitly note that, when the original and the reweighted distributions are very
different from each other, ⟨x⟩ and x are not even compatible with each other: huge statistics would
be required to even estimate reliably the variance of the average.

2.3 The change of variable method

The simplest method, at least from a theoretical point of view, to generate a non-uniform proba-
bility distribution function from a uniform pdf is the change of variable method.
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Let us assume that the variable x is a random variable with pdf p(x), that f(x) is a smooth
invertible function and let us denote by p̃(y) the pdf of the random variable y = f(x). Values of x
in the interval [x, x+ dx] correspond to values of y between f(x) and f(x+ dx) ≃ y + df

dxdx, thus
their probability is the same, thus the transformation law of the probability density functions is
(using dy = |df/dx|dx)

p(x)dx = p̃(y)dy , p̃(y) =
p(x)

|df/dx| . (2.3.1)

In the expression of p̃(y) there is obviously a slight abuse of notation: this function depends on y
but in the right hand side of the equation we left the dependence on y implicit, since x = f−1(y).

Using the general transformation law for pdfs just obtained it is possible to sample nonuniform
distributions; the nontrivial part of this task is to find the appropriate change of variable. If x is
a random variable with uniform pdf on [0, 1] and y0 = f(0), then∫ y

y0

p̃(y′)dy′ =

∫ x

0

dx′ = x , (2.3.2)

and we can analytically find the change of variable needed to sample p̃(y) if

1. we know the primitive of p̃(y)
2. we can invert the primitive of p̃(y) .

The simplest case in which both these requirements are satisfied is that of the uniform distri-
bution function: if p̃(y) is a uniform distribution function in [a, a+M ], we can for example assume
y0 = a, then the previous equation becomes (y−a)/M = x and finally y = a+Mx. A slightly less
trivial example is that of the exponential distribution function. If we want to sample the stochastic
variable y in [0,∞) whose pdf is p̃(y) = µe−µy, we can assume y0 = 0 and from Eq. (2.3.2) we get

x =

∫ y

0

µe−µy
′
dy′ = −e−µy′

∣∣∣y
0
= 1− e−µy , (2.3.3)

from which y = − 1
µ log(1− x). If we use instead y0 =∞ we get

x =

∫ ∞
y

µe−µy
′
dy′ = −e−µy′

∣∣∣∞
y

= e−µy , (2.3.4)

hence y = − 1
µ log(x). Both the changes of variables can be used, since they differ only for the

order in which one interval is mapped to the other. Indeed we can switch from one to the other
using x→ 1− x, which leaves invariant the uniform pdf on [0, 1].

Probably the most famous and used application of the change of variable method is the genera-
tion of random numbers distributed with Gaussian pdf. If we need to sample the normal Gaussian
pdf p̃(y) = 1√

2π
e−

1
2y

2

we can not use the simplest strategy, since the primitive of the Gaussian is

a non-elementary trascendental function, however we can follow a strategy that is similar to the
one adopted to compute Gaussian integrals. If y1 and y2 are two independent stochastic variables,
both with normal Gaussian pdf, their joint pdf is

p(y1, y2)dy1dy2 =
1

2π
e−

1
2 (y

2
1+y

2
2)dy1dy2 . (2.3.5)

Passing to polar coordinates y1 = r cosϕ, y2 = r sinϕ the joint distribution function of the stochas-
tic variables r and ϕ is

p(r, ϕ)drdϕ =
1

2π
e−

1
2 r

2

rdrdϕ =

(
dϕ

2π

)(
e−

1
2 r

2

rdr
)
, (2.3.6)

hence ϕ and r are stochastically independent, with ϕ uniformly distributed on [0, 2π) and r dis-

tributed with pdf p̃(r) = re−
1
2 r

2

dr. Since we know the primitive of this pdf, we can use Eq. (2.3.2)
with r0 = 0, to get

x =

∫ r

0

r′e−
1
2 r
′2
dr′ = 1− e− 1

2 r
2

, (2.3.7)
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Algorithm 1 Box-Muller algorithm to generate two independent normal Gaussian random num-
bers starting from random numbers distributed with uniform pdf in (0, 1).

Require: x, z sampled from uniform pdf in (0, 1)
y1 =

√
−2 log(x) cos(2πz)

y2 =
√
−2 log(x) sin(2πz)

Algorithm 2 Polar form of the Box-Muller algorithm to generate two independent normal Gaus-
sian random numbers starting from random numbers distributed with uniform pdf in (0, 1).

Require: r1, r2 sampled from uniform pdf in (0, 1)
repeat

z1 = 1− 2r1
z2 = 1− 2r2
S = z21 + z22

until 0 < S < 1
y1 = z1√

S

√
−2 log(S)

y2 = z2√
S

√
−2 log(S)

from which r =
√
−2 log(1− x). If we use instead r0 = ∞ we get the slightly simpler expression

r =
√−2 log x. We have thus shown that, given two random number x, z ∈ (0, 1) with uniform

pdf, the two numbers y1 and y2 given by

y1 =
√
−2 log(x) cos(2πz) , y2 =

√
−2 log(x) sin(2πz) (2.3.8)

are sampled from two independent normal Gaussian distributions. This is the Box-Muller algorithm
to generate normal Gaussian random numbers, summarized in Alg. (1).

This basic form of the Box-Muller algorithm is typically (i. e., on standard CPUs) not the most
effective one, since the evaluation of the trigonometric functions is quite a slow operation. To
increase the computational efficiency of the algorithm it is however possible to completely avoid
the use of trigonometric functions: the pdf associated with the uniform probability inside the circle
of unit radius is (in polar coordinates)

rdrdϕ

π
= dr2

dϕ

2π
, (2.3.9)

hence by selecting with uniform probability a point inside the unit circle we are effectively selecting
an angle ϕ with uniform probability on [0, 2π) and the number r2 with uniform probability on [0, 1).
To select a point inside the unit circle with uniform pdf we can select a point inside [−1, 1]× [−1, 1]
with uniform pdf, which is equivalent to generate two numbers z1, z2 with uniform pdf in [−1, 1],
keeping only the selections for which the square distance S = z21 + z22 from the origin is smaller
than 1. Using the points generated in this way we thus have the following facts

1. S = z21 + z22 is uniformly distributed in [0, 1)
2. the angle ϕ such that z1 =

√
S cosϕ, z2 =

√
S sinϕ is uniformly distributed in [0, 2π)

3. cosϕ = z1/
√
S and sinϕ = z2/

√
S.

In this way we obtain the polar form of the Box-Muller algorithm (see Alg. (2)), which requires
on average 4

π ≃ 1.27 iteration to exit from the first cycle, but does not use any trigonometric
function. The time required to generate 5×108 random Gaussian numbers using the polar form of
the Box-Muller algorithm is ≃ 21.58s, while it is ≃ 27.30s using the basic version of the Box-Muller
algorithm.

We close this section by explicitly noting that to sample a Gaussian pdf with average µ and
standard deviation σ one can use y = µ + σx, where x is a normal Gaussian random variable, as
can be easily seen by using Eq. (2.3.1). Several other algorithms which generate normal Gaussian
pdf samples are discussed, e. g., in [8] §3.4.1.
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p(x)

cg(x)

Figure 2.1: von Neumann accept/reject method: example with p(x) = xe−x, g(x) = 1
2e
−x/2 and

c = 2.

Algorithm 3 von Neuman accept reject method to sample the pdf p(x) using samples drawn from
the pdf g(x) such that cg(x) ≥ p(x).
repeat

generate xt with pdf g(xt)
generate y in [0, cg(xt)] with uniform pdf

until p(xt) < y

2.4 The von Neumann accept/reject method

This method can be applied whenever we want to sample a pdf p(x) and we know how to sample
the pdf g(x) with cg(x) ≥ p(x), see Fig. (2.1); note that by integrating the inequality cg(x) ≥ p(x)
and using the normalization condition for a pdf we immediately get c ≥ 1.

The strategy to sample p(x) using samples drawn from g(x) is the following:

1. select a value xt according to the pdf g(x)
2. select a number y in [0, cg(xt)] using the uniform pdf
3. if y ≤ p(xt) the trial number is accepted, else it is rejected and we go back to point 1.

Points 2. and 3. could be stated in a different but equivalent way by saying that we accept xt with
probability p(xt)/[cg(xt)].

It is simple to verify that the numbers generated using this algorithm are distributed with pdf
p(x), indeed the average probability of accepting the trial state generated in point 1. is given by
(remember that c ≥ 1)

⟨Pacc⟩ =
∫
P (selecting x)P (accepting x)dx =

∫
g(x)

p(x)

cg(x)
dx =

1

c
, (2.4.1)

and the distribution of the accepted values is

P (selecting x)P (accepting x)∫
P (selecting y)P (accepting y)dy

=
g(x) p(x)cg(x)

1/c
= p(x) . (2.4.2)

Since 1/c is the average probability of accepting the trial state, c is the average number of iterations
required by the algorithm to accept a trial state, and measures the efficiency of the algorithm: the
closer c is to 1 the more efficient the algorithm is.

As a nontrivial example of application of the accept/reject method we discuss how to sample a
variable x ∈ [−1, 1] with pdf p(x) = A

√
1− x2eγx, where γ is a parameter and A is a normalization

constant whose value is fixed by imposing
∫ 1

−1 p(x)dx = 1. A possible algorithm to sample this
distribution uses the accept/reject method starting from an exponential distribution [11]. The
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distribution on [−1, 1] with pdf g(x) = Beγx, with B = γ/(eγ−e−γ), can indeed be easily sampled
by the change of variable method: assuming z to be a variable with uniform pdf in [0, 1] and using
x(z = 0) = −1 we get

B

∫ x

−1
eγx

′
dx′ = z , (2.4.3)

hence

x =
1

γ
log
(
e−γ +

γ

B
z
)
=

1

γ
log
(
e−γ + [eγ − e−γ ]z

)
. (2.4.4)

To apply the accept/reject method we now have to find a value c such that cg(x) ≥ p(x) for all
x values in [−1, 1]. Since

√
1− x2 ≤ 1, it is sufficient to use c = A/B and we can thus use the

following algorithm

1. generate xt with pdf g(xt) using the change of variable method

2. accept xt with probability p(xt)
cg(xt)

=
√
1− x2t , i.e. generate a random number r in [0, 1] with

uniform probability and accept xt if r <
√
1− x2t .

It should be intuitively clear that this algorithm becomes inefficient when γ ≫ 1, since in this case
g(x) is very peaked close to x = 1 but p(1) = 0, and it is thus very difficult for the trial state to
be accepted.

To be more quantitative we have to estimate A and thus c. We have

1

A
=

∫ 1

−1

√
1− x2 eγxdx

(1)
=

∫ π

0
sin2 θeγ cos θdθ

(2)
=

2
√
π

γ
Γ

(
3

2

)
I1(γ)

(3)
=

π

γ
I1(γ) , (2.4.5)

where in the step (1) we used the change of variable x = cos θ and in the step (2) we used the integral representation
of the modified Bessel functions of first kind (see Eq. 9.6.18 of [12])

Iν(z) =

(
1
2
z
)ν

√
πΓ
(
ν + 1

2

) ∫ π

0
ez cos θ sin2ν θdθ , (2.4.6)

which is valid for ℜν > −1/2. Finally in step (3) we used Γ(3/2) =
√
π/2 (see Eq. 6.1.9 of [12]). For γ ≫ 1 we can

use the approximate expression (see Eq. 9.7.1 of [12])

I1(γ) ≃
eγ

√
2πγ

, (2.4.7)

hence for γ ≫ 1 we find

c =
A

B
≃
√

2γ

π
≫ 1 . (2.4.8)

A more efficient algorithm to sample p(x) when γ ≫ 1 is discussed in [13].
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Chapter 3

Markov Chain Monte Carlo

3.1 Markov chains: general properties

A Markov chain is a discrete time stochastic process, in which the probability of passing from the
state x at time t = n to the state y at time t = n+1 depends only on x, y, and n. In the following
we consider only stationary chains, in which case the transition probability is independent of time.
We denote by Ω the set of all the possible states of the Markov chain, and in the following we will
assume Ω to be a finite set; for an analysis of the countably infinite case see, e. g., [2] §XV or [4]
§1.8, for the most general case see, e. g., [14] §5.8.

In a stationary Markov chain, we denote by Wab = P (b→ a) the probability for the system to
pass from the state b to the state a at any given time1. Some obvious properties of the matrix W ,
which completely characterize the Markov chain, are the following:

1. 0 ≤Wab,
2.
∑
aWab = 1 for every state b

The second property means that every state b will surely go somewhere in Ω at any step, and can
be rephrased by saying that any column of W must sum up to 1. A matrix that satisfies these two
requirements is usually called stochastic matrix. It is also convenient to introduce the probability
of passing from state b to state a in k steps of the Markov chain, which is given by

P (b→ a in k steps) =
∑

c1,...,ck−1

Wac1Wc1c2 · · ·Wck−1b = (W k)ab . (3.1.1)

We note that it is simple to show that any power of a stochastic matrix is again a stochastic matrix:
if W is a stochastic matrix it is immediate to see that the elements of Wn are non negative, and
if we assume W k to be a stochastic matrix we have∑

i

(W k+1)ij =
∑
iα

Wiα(W
k)αj =

∑
α

(W k)αj = 1 , (3.1.2)

hence also W k+1 is a stochastic matrix.
A Markov chain is said to be irreducible if for every couple of states a, b ∈ Ω a k ∈ N exists such

that (W k)ab > 0; if this is not the case the Markov chain is said to be reducible. It is possible to
represent any Markov chain by a graph: the states are the vertices of the graph, and two vertices
b and a are connected by an oriented edge going from b to a if Wab > 0. The Markov chain
is irreducible if and only if, starting from any given vertex, we can reach any vertex (included
the starting one) by traveling along the graph following the oriented edges. If a Markov chain is
reducible then (at least) two disjoint subsets A and B of Ω exists such that all the states of A will

1Note that in the mathematical literature the different convention Wba = P (b→ a) is typically used.
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Figure 3.1: Examples of graphs associated with Markov chains.

never reach B during the evolution, hence we can order the states in such a way that the matrix
W has the block form

W =

(
# #
0 #

)
. (3.1.3)

A sufficient condition for a Markov chain to be irreducible is obviously Wab > 0 for any a, b.
For any state a of a Markov chain we define the set of its recurrence times by

Ra = {k ∈ N \ {0}|(W k)aa > 0} . (3.1.4)

The meaning of this definition is the following: if at time t0 = n the state of the Markov chain is
a, then the state at time t1 = n+ s > t0 can be again a only if s ∈ Ra. The period of the state a,
denoted by Ta, is the greatest common divisor of Ra:

Ta = GCD(Ra) , (3.1.5)

so if k is not a multiple of Ta we surely have (W k)aa = 0; note however that not all the multiples
of Ta are necessarily in Ra. If all the states of a Markov chain have period equal to one, then the
chain is said to be aperiodic. A sufficient condition for a chain to be aperiodic is Waa > 0 for any
a, since in this case 1 ∈ Ra and thus 1 = GCD(Ra) for any a.

Let us consider some examples of simple Markov chains.

• The matrix

W =

(
1 1/2
0 1/2

)
(3.1.6)

is associated with the graph in Fig. (3.1a), and the corresponding Markov chain is reducible,
since there is no way of passing from the state 1 to the state 2 in the evolution. Moreover
R1 = R2 = {1, 2, 3, . . .}, and T1 = T2 = 1, hence the Markov chain is aperiodic, which follow
also from the fact that Wii > 0

• The matrix

W =

(
0 1/2
1 1/2

)
(3.1.7)

is associated with the graph in Fig. (3.1b), and the corresponding Markov chain is irreducible,
since W12 = 1/2 > 0 and W21 = 1 > 0 (alternatively, it is always possible to pass from 1 to
2 and viceversa in the graph). R1 = {2, 3, 4, . . .} and R2 = {1, 2, 3, . . .}, hence T1 = T2 = 1
and the Markov chain is aperiodic (although W11 = 0).

• The matrix

W =

(
0 1
1 0

)
(3.1.8)
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is associated with the graph in Fig. (3.1c), and the corresponding Markov chain is irreducible,
since W12 = 1 > 0 and W21 = 1 > 0 (alternatively, it is always possible to pass from 1 to
2 and viceversa in the graph). R1 = R2 = {2, 4, 6, . . .} and T1 = T2 = 2, hence the Markov
chain is not aperiodic.

• The matrix

W =


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 (3.1.9)

is associated with the graph in Fig. (3.1d), and the corresponding Markov chain is reducible,
since the graph is disconnected and there is, e. g., no way of passing from site 1 to site 4
in any number of steps. R1 = R2 = R3 = {3, 6, 9, . . .} and R4 = R5 = {2, 4, 6, . . .}, hence
T1 = T2 = T3 = 3, T4 = T5 = 2, and the Markov chain is not aperiodic.

Theorem 3.1.1. In an irreducible Markov chain all the states have the same period.

Proof. Let a, b ∈ Ω be states with period Ta and Tb, respectively. Since the Markov chain is
irreducible, positive k1 and k2 exist such that (W k1)ab > 0 and (W k2)ba > 0, hence in k̄ = k1 + k2
steps it is possible to start from a, reach b and go back to a. In particular k̄ ∈ Ra, hence k̄ is
divisible by Ta.

We can go from a to a also in other ways: in k2 steps we go from a to b, then in n steps we go
from b to b and, finally, in k1 steps we go from b to a:

a
k2−→ b

n−→ b
k1−→ a . (3.1.10)

Since k̄+ n ∈ Ra, k̄+ n is divisible by Ta, but we have seen before that k̄ is divisible by Ta, hence
also n has to be divisible by Ta. Since n is the length of a generic b→ b path, it follows that Tb is
divisible by Ta. By switching the roles of a and b we obtain analogously that Ta is divisible by Tb,
hence Ta = Tb.

Theorem 3.1.2. In an irreducible Markov chain of period T it is possible to decompose the con-
figuration space as Ω = A0 ∪ · · · ∪AT−1, where An ∩Am = ∅ if n ̸= m and if i ∈ An and Wji > 0,
then j ∈ A(n+1) mod T .

Proof. Let us define the sets An, with n ∈ {0, . . . , T − 1}, as follows2:

An = {j ∈ Ω | ∃k such that k ≡ n mod T and (W k)j1 > 0} . (3.1.11)

An is thus the set of those states that can be reached, starting from the state 1, in a number of
steps that is congruent to n modulo T . Since the Markov chain is irreducible we have Ω = ∪nAn,
moreover we can show that if n ̸= m the intersection An ∩Am is empty. If this were not the case,
a j should exist such that (W k1)j1 > 0, (W k2)j1 > 0, with k1 ̸≡ k2 mod T ; however, since the
Markov chain is irreducible, a q exists such that (W q)1j > 0, hence k1 + q ∈ R1 and k2 + q ∈ R1,
hence k1 + q and k2 + q are both divisible by T , from which it follows that k1 − k2 is divisible by
T , contradicting k1 ̸≡ k2 mod T .

We have thus shown that the T sets An form a disjoint cover of Ω. Let us now assume that
i ∈ An and Wji > 0. Then, by the definition of An, a k exists such that k ≡ n mod T and
(W k)i1 > 0, but then

(W k+1)j1 =
∑
m

Wjm(W k)m1 ≥Wji(W
k)i1 > 0 , (3.1.12)

hence j ∈ A(n+1) mod T since (k + 1) ≡ (n+ 1) mod T .

2We remind the reader that the notation a ≡ b mod c means that a− b is divisible by c.
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Corollary 3.1.1. If W is the matrix associated with an irreducible Markov chain of period T > 1,
then the Markov chain with matrix WT is reducible.

Proof. Using the decomposition of the previous theorem we immediately see that applying WT to
an element of An we can only obtain an element of An, hence the corresponding Markov chain is
reducible.

Using the matrix

W =

(
0 1
1 0

)
(3.1.13)

we get an example of application of the previous corollary: the Markov chain associated with W
is irreducible and of period 2. The matrix W 2 is the identity, which corresponds to a reducible
Markov chain.

We now recall some elementary facts about greatest common divisors which are needed to prove the following
theorem.

Lemma 3.1.1. If a ≡ c mod b then GCD(a, b) = GCD(b, c).

Proof. By hypothesis we have a = c + nb for some n ∈ Z, hence if d divides b and c it also divides a. Moreover,
from c = a− nb we see that if d divides a and b it also divides c. Hence

{divisors of a, b} = {divisors of b, c} , (3.1.14)

and in particular GCD(a, b) = GCD(b, c).

Using the previous lemma we get Eulcid’s algorithm for the computation of GCD(a, b). Let us assume that
a > b, then we can write a = bq1 + r1, with 0 ≤ r1 < b, hence a ≡ r1 mod b and by Lemma 3.1.1 we have
GCD(a, b) = GCD(b, r1). We can now go on by writing b = r1q2 + r2, with 0 ≤ r2 < r1, hence b ≡ r1 mod r2 and
GCD(b, r1) = GCD(r1, r2), and so on, until we find rk = 0. In this way we get

GCD(a, b) = GCD(b, r1) = GCD(r1, r2) = · · · = GCD(rk−1, 0) = rk−1 . (3.1.15)

At each iteration of the Euclid’s algorithm the remainder is a linear combination with integer coefficients of a, b:
in the first iteration r1 = a − bq1, in the second iteration r2 = b − r1q2 = b − (a − bq1)q2, and using the general
relation rn+2 = rn − qn+1rn+1 it is immediate to prove the result by induction. From this fact it follows that
GCD(a, b) can be written as a linear combination with integer coefficients of a and b, a fact that is known under
the name of Bezout identity.

Using the fact that GCD(a, b, c) = GCD(a,GCD(b, c)) it is possible to prove by induction that the Bezout
identity can be generalized: given a set S ⊂ N, the greatest common divisor of S, GCD(S), can be written as a
linear combination with integer coefficients of a finite number r of elements of S, i. e.

GCD(S) =

r∑
i=1

tisi , si ∈ S , ti ∈ Z . (3.1.16)

Lemma 3.1.2. Let A ⊂ N be a set such that GCD(A) = 1 and if α, β ∈ A then α + β ∈ A. Then a number N
exists such that if n ∈ N and n ≥ N then n ∈ A.

Proof. By the Bezout identity we know that we can chose r elements ai ∈ A and r integer numbers ti such that

r∑
i=1

aiti = 1 . (3.1.17)

Let us define t̄ = max |ti| and ā =
∑r
i=1 ai. A generic integer number n can then be written in the form n = kā+ s,

with 0 ≤ s ≤ ā, and we can rewrite n as follows

n = kā+ s =
r∑
i=1

kai + s =
r∑
i=1

kai + s
r∑
i=1

aiti =
r∑
i=1

(k + sti)ai . (3.1.18)

From this expression we see that, if k ≥ āt̄, the number n is a linear combination with integer and non negative
coefficients of the numbers ai, hence by the properties of A we have n ∈ A if n ≥ ā2 t̄.

Theorem 3.1.3. For an irreducible aperiodic Markov chain a value N exists such that (Wn)ij > 0 for every
i, j ∈ Ω if n > N .
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Proof. It is sufficient to show that if m ≥ m̄ then (Wm)ii > 0 for every i ∈ Ω, since from the fact that the Markov
chain is irreducible it follows that for every i, j ∈ Ω a kij exists such that (Wkij )ij > 0, and hence

(Wm+kij )ij =
∑
α

(Wm)iα(W
kij )αj ≥ (Wm)ii(W

kij )ij > 0 . (3.1.19)

We can thus choose N = m̄+maxij kij (we are obviously using the fact that Ω is a finite set).
Let us now show that for large enough m we have (Wm)ii > 0 for every i. For this purpose it is sufficient to

show that the set Ri of the return times of i ∈ Ω satisfies the hypotheses of the Lemma 3.1.2: if n,m ∈ Ri then

(Wn+m)ii =
∑
α

(Wn)iα(W
m)αi ≥ (Wn)ii(W

m)ii > 0 , (3.1.20)

hence n +m ∈ Ri, moreover GCD(Ri) = 1 since the Markov chain is aperiodic. Using once again the fact that Ω
is a finite set we can thus find a m̄ such that (Wm)ii > 0 for every i if m ≥ m̄.

3.2 Markov chains: spectral and ergodic properties

If we consider an ensemble of Markov chains we can introduce the probability pa to be, at a given
time, in the state a ∈ Ω, and study how this probability depends on the time of the Markov chain.

If p
(k)
a is the probability of finding the state a at time k, we have the evolution equation

p
(k+1)
b =

∑
a

Wbap
(k)
a , (3.2.1)

and it is meaningful to investigate what happens when k →∞. In particular, we want to investigate

whether a pdf πa exists such that πa = limk→∞ p
(k)
a . If such a pdf exists, by performing the limit

for k → ∞ in Eq. (3.2.1) we get πb =
∑
aWbaπa, hence πa has to be an eigenvector of W with

eigenvalue 1. To study this topic it is thus useful to investigate the spectrum of the matrix W
associated with the Markov chain, and we will obtain a particular case of the Perron-Frobenius
theorem (for the general case, which is valid for general non negative matrices, see [15] §XIII).

Theorem 3.2.1. A stochastic matrix W has λ = 1 as one of its eigenvalues.

Proof. The condition
∑
aWab = 1 of the stochastic matrix can be rewritten as

∑
a(Wab− δab) = 0

for every b, hence the rows of the matrix W − I are linearly dependent, thus det(W − I) = 0 and
λ = 1 is an eigenvalue of W .

Theorem 3.2.2. If λ is an eigenvalue of a stochastic matrix then |λ| ≤ 1.

Proof. Let va be the eigenvector corresponding to the eigenvalue λ, hence
∑
bWabvb = λva. Since

Wab ≥ 0 we have

|λ||va| = |λva| =
∣∣∣∣∣∑
b

Wabvb

∣∣∣∣∣ ≤∑
b

|Wabvb| =
∑
b

Wab|vb| , (3.2.2)

and using
∑
aWab = 1 we get

|λ|
∑
a

|va| ≤
∑
ab

Wab|vb| =
∑
b

|vb| , (3.2.3)

thus finally |λ| ≤ 1.

Theorem 3.2.3. If va is an eigenvector with eigenvalue λ ̸= 1 of a stochastic matrix then we have∑
a va = 0.

Proof. From λva =
∑
bWabvb and

∑
aWab = 1 we get λ

∑
a va =

∑
b vb, and since λ ̸= 1 we

conclude that
∑
a va = 0.
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Theorem 3.2.4. If W is the stochastic matrix associated with an irreducible Markov chain and va
is an eigenvector of W with eigenvalue 1, then all the components of va have the same sign (i. e.,
va > 0 for every a ∈ Ω or va < 0 for every a ∈ Ω).

Proof. Since Wab ∈ R we can assume without loss of generality that va ∈ R, moreover it is
convenient to introduce the operator M defined by

M =
1

n
(W +W 2 + · · ·+Wn) . (3.2.4)

Obviously Mij ≥ 0, and we have seen before that the power of a stochastic matrix is a stochastic
matrix, hence also M is a stochastic matrix, and since the Markov chain associated with W is
irreducible (and Ω is finite), we can assume n to be large enough for Mij to be strictly positive for
any i, j: Mij ≥ δ > 0. Since va =

∑
bWbavb we also have va =

∑
bMabvb.

Let us now introduce the notations

v+a = max{va, 0} , v−a = max{−va, 0} , α = min

{∑
i

v+i ,
∑
i

v−i

}
. (3.2.5)

Obviously va = v+a − v−a and we have

(Mv+)i =
∑
j

Mijv
+
j ≥ δ

∑
j

v+j ≥ αδ , (3.2.6)

and analogously (Mv−)i ≥ αδ, so∑
i

|vi| =
∑
i

|(Mv)i| =
∑
i

|(Mv+)i − (Mv−)i| =
∑
i

|(Mv+)i − αδ + αδ − (Mv−)i| ≤

≤
∑
i

|(Mv+)i − αδ|+
∑
i

|(Mv−)i − αδ| =
∑
i

(Mv+)i +
∑
i

(Mv−)i − 2Nαδ ,
(3.2.7)

where the last equality follows from the fact (Mv±)i ≥ αδ, and we denoted by N the number of
elements of Ω. Using

∑
iMij = 1 we thus get∑
i

|vi| ≤
∑
ij

Mijv
+
j +

∑
ij

Mijv
−
j − 2Nαδ =

=
∑
j

v+j +
∑
j

v−j − 2Nαδ =
∑
j

|vj | − 2Nαδ ,
(3.2.8)

from which we conclude that α = 0 and we can thus assume (up to a global sign) va ≥ 0 for any
a ∈ Ω. We conclude by noting that

va = (Mv)a =
∑
j

Majvj ≥ δ
∑
j

vj > 0 (3.2.9)

since δ > 0, and
∑
j vj = 0 would imply vj = 0 for every j ∈ Ω, since va ≥ 0.

Theorem 3.2.5. If W is the stochastic matrix associated with an irreducible Markov chain the
eigenvalue λ = 1 of W is non degenerate.

Proof. Let us assume that v and v′ are two different eigenvectors of W with eigenvalue 1. By the
previous theorem we can assume va > 0 and v′a > 0 for every a ∈ Ω, and we can normalize them
in such a way that

∑
a va =

∑
a v
′
a = 1. We now introduce wa = va − v′a, which is still another

eigenvector of W with eigenvalue 1. By the previous theorem we have wa > 0 for all a ∈ Ω or
wa < 0 for all a ∈ Ω, but this is in contradiction with

∑
a wa =

∑
a va −

∑
a v
′
a = 0.
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The previous two theorems are finite dimensional analogues of the fact that in quantum me-
chanics the ground state is always non degenerate and its wave function can be chosen to be
positive definite, see, e. g., [16] §15.4 for a sketch of the proof, or [17] §3.3.3, [18] §10.5 for more
details.

Theorem 3.2.6. If W is the stochastic matrix associated with an irreducible and aperiodic Markov
chain and λ ̸= 1 is an eigenvector of W , then |λ| < 1.

Proof. We know from Theorem. 3.2.2 that |λ| ≤ 1 and let us assume that |λ| = 1, i. e., λ = eiθ for
some θ ∈ R. If we denote by wa the eigenvector associated with λ, we can write wa = rae

iθa , with
ra ≥ 0 and

∑
a ra = 1, and the eigenvalue equation λwa =

∑
bWabwb becomes

rae
iθ+θa =

∑
b

Wab rb e
iθb . (3.2.10)

Multiplying this equation by e−i(θ+θa) and summing on a we get∑
ab

Wab rb e
i(θb−θa−θ) = 1 . (3.2.11)

SinceWabrb ≥ 0 and
∑
abWabrb =

∑
b rb = 1, the previous equation implies that ei(θb−θa−θ) = 1

for every a, b ∈ Ω such that Wabrb > 0. If rb = 0 we can chose arbitrarily the angle θb, hence we
can assume the stronger condition

ei(θb−θa−θ) = 1 for every a, b such that Wab > 0 . (3.2.12)

When used in Eq. (3.2.10) this relation shows that the vector ra is an eigenvector of W with
eigenvalue 1, hence, in particular, ra > 0 for any a ∈ Ω by Theorem 3.2.4, since the Markov chain
is irreducible. Due to the irreducibility, Eq. (3.2.12) determines all the θa values once θ1 = 0 has
been arbitrarily fixed.

For any k such that (W k)11 > 0 (i. e., k ∈ R1, and R1 ̸= ∅ since the Markov chain is irreducible),
k elements a1, . . . , ak ∈ Ω exist such that

W1a1Wa1a2 · · ·Wak1 > 0 , (3.2.13)

and Eq. (3.2.12) implies

1 = ei(θa1
−θ1−θ)ei(θa2

−θa1
−θ) · · · ei(θ1−θak

−θ) = e−ikθ , (3.2.14)

hence kθ is an integer multiple of 2π, and we can assume θ = 2πα for some α = n
d , with n and

d positive, relatively prime, and n < d. Since the previous property is true for any k ∈ R1, we
must have kiα ∈ Z for any ki ∈ R1, hence d must be a divisor of any ki ∈ R1. Since the chain is
aperiodic we have GCD(R1) = 1, thus d = 1 and θ = 0, which gives λ = 1.

Summarizing, we have shown that for the stochastic matrix W corresponding to an aperiodic
and irreducible Markov chain the following fundamental facts are true

1) all the eigenvalues λ ̸= 1 satisfy |λ| < 1
2) λ = 1 is a non degenerate eigenvalue and, with an appropriate choice of sign, all the compo-

nents of the corresponding eigenvector are strictly positive

These points can be rephrased by saying that any aperiodic and irreducible Markov chain has a
unique invariant probability density function, that we will denote by πa, and πa is strictly positive
for any a ∈ Ω. These fundamental facts will now be used to discuss the large-k behavior of the
quantity (W kp), where pa is pdf on Ω.

Sometimes it can be useful to note that the previous implications also work in the opposite
direction. If W is the stochastic matrix associated with a Markov chain, and λ = 1 is a nondegen-
erate eigenvalue of W , then the Markov chain is irreducible, indeed for a reducible Markov chain
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we can find at least two irreducible sub-chains, each one with its own λ = 1 eigenvalue, and λ = 1
is thus a degenerate eigenvalue of the original chain. If moreover all the eigenvalues of W different
from λ = 1 satisfy |λ| < 1, then the Markov chain is also aperiodic. This is true since, by slightly
modifying the proof of theorem 3.2.6, it can be shown that if an irreducible Markov chain has
period T , then in the spectrum of W the T -th roots of the identity are present.

Note that we have investigated the spectrum of the stochastic matrix W associated with a
Markov chain, but in general stochastic matrices are not diagonalizable (even for irreducible and
aperiodic Markov chains). An explicit example is provided by

M =
1

5

 2 2 1
1 2 1
2 1 3

 . (3.2.15)

It is easily seen that this matrix has eigenvalues 1 and 1/5, with algebraic degeneracy 1 and 2,
respectively, but a single eigenvector corresponds to the eigenvalue 1/5 (the vector 1√

2
(1, 0,−1)),

hence this matrix is nondiagonalizable, and its Jordan canonical form is

MJ =

 1 0 0
0 1/5 1
0 0 1/5

 . (3.2.16)

To study the large-k behavior of (W kp)a =
∑
b(W

k)abpb, where W is associated with an
irreducible and aperiodic Markov chain, let us start by considering the simpler case in which the
matrix W can be diagonalized. In this case we can expand the vector pa on an eigenbasis of W ,
hence

pa = c1πa +
∑
j>1

cjv
(j)
a , (3.2.17)

where πa is the unique invariant pdf of the Markov chain and v
(j)
a is the j-th eigenvector with

j > 1, associated with an eigenvalue of absolute value smaller than 1. The pdf pa and the invariant

pdf πa are normalized by
∑
a pa =

∑
a πa = 1, while for the eigenvectors v

(j)
a with j > 0 we have∑

a v
(j)
a = 0 due to Theorem 3.2.3, and we can assume

∑
a |v

(j)
a | = 1. We thus get

1 =
∑
a

pa = c1
∑
a

πa +
∑
j>1

(
cj
∑
a

v(j)a

)
= c1 , (3.2.18)

and thus
pa = πa +

∑
j>1

cjv
(j)
a . (3.2.19)

Applying W k to this equation we get

(W kp)a = πa +
∑
j>1

cjλ
k
j v

(j)
a , (3.2.20)

and we can introduce 0 ≤ Λ = maxj>1 |λj | < 1 to estimate the convergence rate of (W kp)a to πa
as follows ∑

a

|(W kp)a − πa| =
∑
a

∣∣∣∣∣∣
∑
j>1

cjλ
k
j v

(j)
a

∣∣∣∣∣∣ ≤
∑
a

∑
j>1

|λj |k|cj ||v(j)a | ≤

≤ Λk
∑
j>1

|cj |
∑
a

|v(j)a | = Λk
∑
j>1

|cj | ,
(3.2.21)

where in the last step we used the normalization
∑
a |v

(j)
a | = 1. Introducing the notation A =∑

j>1 |cj | we have thus ∑
a

|(W kp)a − πa| ≤ AΛk = Aek log(Λ) , (3.2.22)
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which, by introducing the exponential autocorrelation time τexp > 0 defined by

τexp = − 1

log(Λ)
= − 1

logmaxj>1 |λj |
, (3.2.23)

can finally be written in the form∑
a

|(W kp)a − πa| ≤ Ae−k/τexp . (3.2.24)

The quantities (W kp)a thus converge exponentially fast in k to πa, and the typical timescale is set
by the largest value of |λj | smaller than 1.

If the matrix W associated with the irreducible and aperiodic Markov chain is non diagonaliz-
able we need to slightly modify the previous discussion. A possible way to investigate the problem
in this case is to use the basis in which W assumes its Jordan canonical form. In this basis W is a
block diagonal matrix, with a single unidimensional block with 1 on its diagonal, and blocks with
|λ| < 1, which can be of the following two forms:

Bλ =


λ 1 0 0 0
0 λ 1 0 0

0 0
. . .

. . . 0
0 0 0 λ 1
0 0 0 0 λ

 , Dλ =


λ 0 0 0 0
0 λ 0 0 0

0 0
. . . 0 0

0 0 0 λ 0
0 0 0 0 λ

 . (3.2.25)

It is immediate to verify by induction that

Bkλ = λk−1


λ k 0 0 0
0 λ k 0 0

0 0
. . .

. . . 0
0 0 0 λ k
0 0 0 0 λ

 , (3.2.26)

hence limk→∞Bkλ → 0 and obviously also limk→∞Dk
λ → 0. We thus see that limk→∞W k = P1,

where P1 is the projector on the eigenspace corresponding to the eigenvalue λ = 1. Given any
pdf pa on Ω we thus have limk→∞(W kp)a = απa, and by summing on a we see that α = 1.
The estimate of the convergence rate of (W kp)a to πa changes in the nondiagonalizable case only
(possibly) by logarithmic corrections3, becoming∑

a

|(W kp)a − πa| ≤ CΛk−1(k + Λ) , (3.2.27)

where Λ has the same meaning as before, hence (using Λ < 1)∑
a

|(W kp)a − πa| ≤ C(k + 1)e−(k−1)/τexp . (3.2.28)

Note that for large k we have asymptotically

e−k/τexp ≤ (k + 1)e−(k−1)/τexp ≤ e−k/(τexp+ϵ) (3.2.29)

for any ϵ > 0, so the nondiagonalizability of W does not significantly affects the asymptotic
convergence rate.

3This happens if the largest value of |λj | smaller then 1 corresponds to a non-diagonal Jordan block.
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3.3 Sampling a pdf using Markov chains

We have seen in the previous section that in an irreducible and aperiodic Markov chain, given any
initial pdf pa, the late time distribution (W kp)a approaches the unique invariant pdf πa of the
Markov chain. In particular, we can start from the completely deterministic initial distribution
pa = δab, which means that at time t = 0 the state of the Markov chain is b, and generate
new states according to the transition probabilities of the Markov chain: the states in Ω will be
asymptotically visited, during the evolution, with pdf πa. This method to sample the pdf πa is
known as the Markov Chain Monte Carlo method (MCMC for short). Note that this method
differs in an important aspect from the methods discussed in Chap. 2: in this case the draws are
not independent.

In the present section we address the following problem: given a probability distribution func-
tion πa, can we build an aperiodic and irreducible Markov chain whose invariant pdf is πa? We
thus want to find a way of constructing an aperiodic and irreducible Markov chain whose associated
stochastic matrix W satisfies

πa =
∑
b

Wabπb , (3.3.1)

where now πa is a preassigned pdf, and the unknowns are the matrix elementsWab. In this context
the previous equation is usually known as the “balance equation”, and it should be clear that, in
general, this equation does not uniquely determine the matrix W : a stochastic N × N matrix
has N2 − N independent elements (since there are N constraints

∑
aWab = 1) and the balance

equation adds N constraints, thus leaving N2 − 2N degrees of freedom.
The balance equation can be rewritten, using

∑
bWba = 1, in the form∑

b

Wbaπa =
∑
b

Wabπb (3.3.2)

and by subtracting Waaπa on both the sides we get∑
b̸=a

Wbaπa =
∑
b̸=a

Wabπb . (3.3.3)

The left hand side of this equation gives the average probability of leaving the state a: if at time
t we have a probability πa of being in the state a, the probability that the state at time t + 1
is different from a is

∑
b ̸=aWbaπa. The right hand side of the previous equation is instead the

average probability of reaching the site a: if we have a probability πb of being in b ̸= a at time t,
the probability that the state at time t + 1 is a is

∑
b ̸=aWabπb. The balance equation can thus

be interpreted as an equilibrium condition between the probabilities of leaving and of reaching the
generic state a.

The balance equation is the necessary condition that must be satisfied for πa to be the invariant
pdf of the Markov chain associated with the stochastic matrixW . Since this condition leaves much
freedom in the choice of W , it is customary to impose a much stronger requirement, known as the
“detailed balance condition”:

Wbaπa =Wabπb for any a, b ∈ Ω . (3.3.4)

By summing on b the detailed balance condition, and using
∑
bWba = 1, we immediately recover

the balance condition. The balance condition ensures that, for any state a ∈ Ω, the average
probability of leaving the state a is the same as the average probability of reaching the state a.
The detailed balance condition ensures instead that the average probability of the transition a→ b
is the same as the average probability of the transition b→ a for any a, b ∈ Ω.

Lemma 3.3.1. If the matrix W is associated with an irreducible Markov chain and satisfies the detailed balance
condition, then W is diagonalizable.
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Algorithm 4 Metropolis algorithm to generate a Markov chain which satisfies the detailed balance
condition with pdf πa (F (x) = min(1, x) or F (x) = x/(1 + x)).

loop
a is the present state of the Markov chain
select b with probability Aba = Aab
draw a random number in [0, 1) with uniform pdf
if r ≤ F (πb/πa) then

the next state of the Markov chain is b
else

the next state of the Markov chain is a
end if

end loop

Proof. if πa is the invariant distribution of an irreducible Markov chain we have seen in Theorem 3.2.4 that πa > 0
for any a ∈ Ω, hence we can introduce the scalar product

(v, u) =
∑
a

πavaua , (3.3.5)

and we have
(v, tWu) =

∑
ab

πavaWbaub =
∑
ab

πbWabvaub = (tWv, u) , (3.3.6)

hence tW is Hermitian with respect to the scalar product ( , ), and thus diagonalizable. As a consequence also W
is diagonalizable.

In the following subsections we discuss two algorithms to build a Markov chain which satisfies
the detailed balance condition with respect to a given pdf πa.

3.3.1 The Metropolis(-Hastings) algorithm

The idea of the Metropolis algorithm [19] is somehow similar to that of the von Neumann ac-
cept/reject method discussed in Sec. 2.4: we start from a Markov chain with transition matrix
Aba, which does not have πa as invariant pdf, and introduce a correction step to generate a
Markov chain for which πa is an invariant distribution. Note that the final Markov chain is not
automatically irreducible and aperiodic; these properties has to be verified a posteriori.

The starting point is thus the stochastic matrix Aba, which is used to generate a trial state
b starting from the state a at time t, and it is assumed to be a symmetric matrix (Aab = Aba).
The state b is then accepted or rejected with an acceptance probability of the form F (πb/πa) if
b ̸= a, where 0 ≤ F (x) ≤ 1 is a function to be determined, while it is always accepted if b = a. If
b is accepted, the state at time t+ 1 is b, otherwise the state remains a. The complete transition
probabilities are thus

Wba = AbaF

(
πb
πa

)
if b ̸= a ,

Waa = Aaa +
∑
z ̸=a

Aza

(
1− F

(
πz
πa

))
.

(3.3.7)

Note that the state at time t + 1 can be a for two different reasons: either the state a has been
selected by the Markov chain associated with the matrix A, and thus surely accepted, or a state
z ̸= a has been selected and rejected. It is immediate to show that W is a stochastic matrix:
clearly Wba ≥ 0, moreover∑

b

Wba =
∑
b ̸=a

AbaF

(
πb
πa

)
+Aaa +

∑
z ̸=a

Aza

(
1− F

(
πz
πa

))
=
∑
b

Aba = 1 . (3.3.8)
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Algorithm 5 Metropolis-Hastings algorithm to generate a Markov chain which satisfies the de-
tailed balance condition with pdf πa (F (x) = min(1, x) or F (x) = x/(1 + x)).

loop
a is the present state of the Markov chain
select b with probability Aba
draw a random number in [0, 1) with uniform pdf
if r ≤ F [(Aabπb)/(Abaπa)] then

the next state of the Markov chain is b
else

the next state of the Markov chain is a
end if

end loop

The detailed balance condition Wabπb = Wbaπa is trivially satisfied if b = a, while for b ̸= a it
becomes

AabF

(
πa
πb

)
πb = AbaF

(
πb
πa

)
πa . (3.3.9)

Using the symmetry of A we thus obtain for F (x) the functional equation

F (x) = xF (1/x) . (3.3.10)

This equation has infinite solutions, but the two that are most commonly used are F1(x) =
min(1, x) and F2(x) = x

1+x . These functions can be easily shown to be solutions of the above
functional equation, indeed

xF1

(
1

x

)
= xmin

(
1,

1

x

)
=

{
if x ≥ 1 : x · (1/x) = min(1, x) = F1(x)
if x < 1 : x · 1 = min(1, x) = F1(x)

, (3.3.11)

and

xF2

(
1

x

)
= x

1/x

1 + 1/x
=

1

1 + x
= F2(x) . (3.3.12)

Putting everything together we thus obtain the algorithm Alg. (4), and the accept/reject step
is often called Metropolis step or Metropolis filter. As already noted, the Metropolis algorithm
generates a Markov chain which leaves invariant the pdf πa, however we also have to check (using
the specific form of the matrix Aab and of the function F ) that the Markov chain generated in
this way is irreducible and aperiodic, in order to be sure that (W kp)a converges to πa for large k
values.

Nonsymmetric selection probabilities Aba can also be used, however in this case the previous
algorithm has to be slightly modified: the acceptance probability to be used in the accept/reject
step becomes

F

(
Aabπb
Abaπa

)
(3.3.13)

instead of F (πb/πa). In this case the algorithm is called Metropolis-Hastings algorithm [20], and
it is summarized in Alg. (5).

It is worth noting a peculiarity of the Metropolis(-Hastings) algorithm: the acceptance prob-
ability depends only on the ratio πb/πa, hence it is independent of the normalization of the pdf
πa. If this were not the case, this algorithm would be useless in statistical mechanics, since the
computation of the normalization of the Gibbs distribution (i. e., the partition function) is as
difficult as any other computation.

We now consider a simple example to illustrate the use of the Metropolis algorithm. Let f(x)
be a strictly positive (f(x) > 0 for any x) and integrable function, like, e. g., a Gaussian, and
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define the pdf π(x) by

π(x) =
f(x)∫ +∞

−∞ f(y)dy
. (3.3.14)

If we want to sample the pdf π(x) a possible strategy is the following: given an arbitrary x0 (the
initial state of the Markov chain) and a value δ > 0, we can build a Markov chain as follows:

loop
xk is the present state of the Markov chain
select x̄ ∈ (xk − δ, xk + δ) with uniform pdf
select r ∈ [0, 1) with uniform pdf
if r ≤ min[1, f(x̄)/f(xk)] then

xk+1 = x̄
else

xk+1 = xk
end if

end loop

The selection probability is

Ayx =

{
1/(2δ) if |x− y| < δ
0 elsewhere

, (3.3.15)

and is clearly symmetric. Since f(x) > 0 it is possible to reach any point in a finite number of
steps, hence the chain is irreducible, moreover it is possible to select x̄ = xk, hence the chain is
aperiodic4. In this way, after a number of iterations that is large with respect to τexp, this algorithm
asymptotically sample the pdf π(x). This is true for any value of the parameter δ, however the
numerical efficiency of the algorithm is not independent of δ, as we will discuss in Chap. 4. In
particular τexp does depend on δ.

It is possible to slightly improve the algorithm to sample π(x) which we have just seen, in order
to make it faster on typical CPUs. For this purpose we can substitute the block

select r ∈ [0, 1) with uniform pdf
if r ≤ min[1, f(x̄)/f(xk)] then

xk+1 = x̄
else

xk+1 = xk
end if

with the theoretically equivalent

y = f(x̄)/f(xk)
if y ≥ 1 then

xk+1 = x̄
else

select r ∈ [0, 1) with uniform pdf
if r ≤ min[1, y] then

xk+1 = x̄
else

xk+1 = xk
end if

end if

which is generically faster, since if y ≥ 1 we do not need to extract a random number, an operation
that is typically much slower than an if-else control.

4These sentences would obviously require more care, since single points have zero measure. From the operative
point of view, R is represented on any physical CPU by a large but finite number of points, so this problem does
not exist.
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3.3.2 The heat-bath algorithm

We now discuss a different way of generating a Markov chain with preassigned invariant pdf, which
can be applied whenever the state of the system is itself a set of several independent numbers which
characterize some properties of the system (natural examples are positions and momenta of the
particles in classical statistical mechanics). For reason that will become obvious this method is
called heat-bath in the physics literature, or Gibbs sampler in mathematics and statistics.

Let us denote the state of the system by the couple (a, α), where a is one of the numbers which
characterize the state (e. g. the position of one of the particles) and α collectively denotes all the
other numbers needed to uniquely specify the state. The conditional probability of a given α is

P (a|α) = π(a,α)∑
a′ π(a′,α)

, (3.3.16)

which is independent of the absolute normalization of the pdf π(a, α). The elementary step of the
heath-bath algorithm consists in generating the new state (b, β) with probability

W(b,β)(a,α) = δαβP (b|α) , (3.3.17)

hence only the variable a is modified, sampling the conditional probability at fixed α, something
that is assumed to be feasible. The name of the algorithm is due to the fact that the part α of the
state acts as a heat-bath for the single variable a. Note that the heat-bath algorithm differs from
the Metropolis(-Hastings) in one important aspect: there is no rejection.

Let us verify that the transition probability W defined in this way satisfies the detailed balance
principle with respect to π(a,α). We have indeed

W(b,β)(a,α)π(a,α) = δαβP (b|α)π(a,α) = δαβ
π(b,α)π(a,α)∑

b′ π(b′,α)
,

W(a,α)(b,β)π(b,β) = δβαP (a|β)π(b,β) = δβα
π(a,β)π(b,β)∑

a′ π(a′,β)
=W(b,β)(a,α)π(a,α) ,

(3.3.18)

where the last equality is due to the presence of δαβ .
The Markov chain generated by the heat-bath algorithm is aperiodic since there is a nontrivial

possibility of remaining in the same state5. By randomly selecting at each iteration the number a
to be updated, the Markov chain also becomes irreducible, and still satisfies the detailed balance
condition (see the next subsection for more details on this point).

As a simple example of application of the heat-bath method let us consider a system whose
state is a vector of N real numbers x1, . . . , xN , and suppose that we want to sample the pdf

π(x1, . . . , xN ) ∝ exp

(
−
∏
i

x2i

)
. (3.3.19)

If we denote by x
(k)
1 , . . . , x

(k)
N the state of the system at the k-th iteration, a MCMC heat-bath

algorithm to sample π(x1, . . . , xN ) is the following

1. select i ∈ {1, . . . , N} with uniform pdf

2. x
(k+1)
j = x

(k)
j if j ̸= i, while x

(k+1)
i is generated by using the Box-Muller method (see Sec. 2.3)

to sample the Gaussian √
π

A
e−Ax

2

, A =
∏
j ̸=i

(x
(k)
j )2 . (3.3.20)

5Once again, for continuous distribution this would require more care.
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3.3.3 Composition of Markov chains

Let us assume to have two different Markov chains, associated with the matrices W (1) and W (2).
For any 0 ≤ α ≤ 1 we can define the new matrix W by

Wab = αW
(1)
ab + (1− α)W (2)

ab . (3.3.21)

Clearly Wab ≥ 0, moreover∑
a

Wab = α
∑
a

W
(1)
ab + (1− α)

∑
a

W
(2)
ab = α+ 1− α = 1 , (3.3.22)

hence W defined in this way is a stochastic matrix, which corresponds to the Markov chain whose
elementary step is given by the following two operations

1. select r ∈ [0, 1) with uniform pdf,
2. if r < α apply W (1), else W (2).

The case α = 1/2 obviously corresponds to the case in whichW (1) andW (2) are selected randomly
and with the same probability at each step.

It should be clear that if 0 < α < 1 and at least one between W (1) and W (2) is an irreducible
aperiodic Markov chain, then W is an irreducible aperiodic Markov chain, since we have a finite
probability of always selecting W (1) or W (2) in step 2. above. The same is true if, e. g., W (1) is
irreducible and W (2) is aperiodic. It is also immediate to verify that if W (1) and W (2) satisfy the
balance or the detailed balance condition, then the same is true for W .

Let us consider a different way in which two Markov chain can be composed: we can define W
by

Wab = (W (2)W (1))ab =
∑
c

W (2)
ac W

(1)
cb , (3.3.23)

and the elementary step of the associated Markov chain is

1. apply W (1) ,
2. apply W (2) .

In this case the two Markov chain are not stochastically “mixed”, but executed sequentially.
It is immediate to see that if W (1) and W (2) satisfy the balance condition with respect to the

pdf π then also W does the same, however if W (1) and W (2) satisfy the detailed balance condition
it is not generically true that W does the same. Indeed we have (in the equality (1) we use the
detailed balance condition for W (1))

Wabπb =
∑
c

W (2)
ac W

(1)
cb πb

(1)
=
∑
c

W (2)
ac W

(1)
bc πc ,

Wbaπa =
∑
c

W
(2)
bc W

(1)
ca πa

(1)
=
∑
c

W
(2)
bc W

(1)
ac πc ,

(3.3.24)

and there is in general no reason for the two expression to coincide. Since the condition that is
really necessary to ensure the validity of the MCMC algorithm is the balance condition, this is
typically not a problem, however it is something to keep in mind if for some reason detailed balance
is needed.

Even if W (1) and W (2) are associated with irreducible and aperiodic Markov chains, the com-
positionW =W (2)W (1) can be associated with a reducible Markov chain, as can be explicitly seen
in the following example from [21]

W (1) =

 0 0 1/2
1 0 0
0 1 1/2

 , W (2) =

 0 1 0
0 0 1/2
1 0 1/2

 , (3.3.25)

W (2)W (1) =

 1 0 0
0 1/2 1/4
0 1/2 3/4

 . (3.3.26)

35



W (1) and W (2) are irreducible and aperiodic, but W (2)W (1) is clearly reducible. A sufficient, but

quite difficult to realize, condition for W to be aperiodic and irreducible is clearly W
(i)
ab > 0 for

any a, b ∈ Ω and for i = 1, 2.
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Chapter 4

Data analysis for MCMC

We have seen in Sec. 3.2 that if a stochastic matrix W is associated with an irreducible and
aperiodic Markov chain and pa is any pdf on the state space Ω, we have∑

a∈Ω
|(W kp)a − πa| ≤ Ae−k/τexp , (4.0.1)

where πa is the (unique) invariant pdf of the Markov chain.
If F : Ω→ R is a bounded function, and we are interested in computing the average value

⟨F ⟩ =
∑
a∈Ω

F (a)πa , (4.0.2)

we can estimate ⟨F ⟩ by using

F =
1

N

N∑
i=1

F (xi) , (4.0.3)

where xi are the N states obtained by evolving the Markov chain associated to W , starting from a
generic initial state x0. To verify that this is a reliable prescription, let us compute ⟨F ⟩s, where we
denote by ⟨ ⟩s the average on the possible samples, i. e., the possible statistical outcomes of the
Markov chain evolution; in ⟨ ⟩s the i-th draw of the sample is thus averaged with weight (W ip)a.

If we introduce the notation (W kp)a = πa + R
(k)
a , and use Eq. (4.0.1) and |F (a)| ≤ M for any

a ∈ Ω, we get

∣∣⟨F ⟩s − ⟨F ⟩∣∣ =
∣∣∣∣∣ 1N

N∑
i=1

∑
a∈Ω

F (a)(W ip)a − ⟨F ⟩
∣∣∣∣∣ =

∣∣∣∣∣ 1N
N∑
i=1

∑
a∈Ω

F (a)R(j)
a

∣∣∣∣∣ ≤
≤ 1

N

N∑
i=1

∑
a∈Ω
|F (a)| |R(j)

a | ≤
M

N

N∑
i=1

∑
a∈Ω
|R(j)
a | ≤

AM

N

N∑
i=1

e−i/τexp .

(4.0.4)

Moreover we have
N∑
i=1

e−i/τexp ≤
∞∑
i=1

e−i/τexp =
e−1/τexp

1− e−1/τexp , (4.0.5)

hence, finally, ∣∣⟨F ⟩s − ⟨F ⟩∣∣ ≤ AM

N

e−1/τexp

1− e−1/τexp . (4.0.6)

We thus see that F is a biased estimator for ⟨F ⟩, with a bias that vanishes as 1/N in the large
sample limit.
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To speed up the convergence of F to ⟨F ⟩ it is customary, in Monte Carlo simulations, to discard
the first Nth ≈ few τexp steps generated by the Markov Chain, which are the ones needed for the
system to “thermalize”. In this way the previous bound becomes

∣∣⟨F ⟩s − ⟨F ⟩∣∣ ≤ AM

N −Nth

N∑
i=Nth+1

e−i/τexp ≤ AMe−(Nth+1)/τexp

(N −Nth)(1− e−1/τexp)
. (4.0.7)

It is important to note that this thermalization removal procedure is very useful in practice,
however it is not needed from the purely theoretical point of view, nor it is really conclusive, since
a significantly smaller but nonvanishing 1/N bias remains. The fundamental point to stress is
however that a bias O(1/N) is negligible with respect to the Monte Carlo statistical error, which
approach zero as O(1/

√
N).

The 1/
√
N scaling of the statistical error should at this point sound reasonable, but it can not

be obtained from the simplest form of the Central Limit Theorem discussed in Sec. 1.1, since that
form assumed the draws to be independent, which is not the case for draws generated by using a
Markov chain. The effect of autocorrelation is discussed in the next section.

4.1 Coping with autocorrelations in MCMC

4.1.1 The integrated autocorrelation time(s)

Due to the presence of autocorrelations, we can not use the simple expression Eq. (1.1.8) for the
variance σ2

F
of the sample average F . We have to start again from the basic definition of σ2

F
:

σ2
F
=
〈
(F − ⟨F ⟩)2

〉
s
=

〈(
1

N

N∑
i=1

F (xi)− ⟨F ⟩
)2〉

s

=

=

〈(
1

N

N∑
i=1

(F (xi)− ⟨F ⟩)
)2〉

s

=
1

N2

N∑
i,j=1

⟨δFi δFj⟩s ,

(4.1.1)

where in the last step we introduced the notation δFi = F (xi) − ⟨F ⟩ and the average ⟨ ⟩ is
computed with respect to the invariant pdf of the Markov chain.

Let us introduce σ2
F = ⟨F 2⟩−⟨F ⟩2, which for N large enough coincides with σ2

F = ⟨F 2⟩s−⟨F ⟩2s.
For independent draws we would have

(independent draws) ⟨δFi δFj⟩s = σ2
F δij , (4.1.2)

and Eq. (1.1.8) would follow. In the general case it is convenient to introduce the autocorrelation
function of F by

CF (i, j) =
⟨δFi δFj⟩s

σ2
F

, (4.1.3)

so we can rewrite σ2
F
in the form

σ2
F
=
σ2
F

N2

N∑
i,j=1

CF (i, j) . (4.1.4)

It is now convenient to discuss some properties of the autocorrelation function CF (i, j) in the
post-thermalization regime i, j ≫ τexp, in which we can neglect the exponential corrections to the
asymptotic pdf πa. We have by definition

CF (i, i) = 1 , (4.1.5)
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and from

2δFiδFj = (δFi)
2 + (δFj)

2 − (δFi − δFj)2 = −(δFi)2 − (δFj)
2 + (δFi + δFj)

2 (4.1.6)

we get (using ⟨(δFi)2⟩s = ⟨(δFj)2⟩s for i, j ≫ τexp)

−⟨(δFi)2⟩s ≤ ⟨δFi δFj⟩s ≤ ⟨(δFi)2⟩s , (4.1.7)

hence
−1 ≤ CF (i, j) ≤ 1 . (4.1.8)

If we denote by z the state of the Markov chain at t = 0 and assume i > j, the probability of
having state a at time t = j and state b at time t = i is,

(W i−j)ba(W
j)az = (W i−j)baπa + (W i−j)baR

(j)
a ≃ (W i−j)baπa , (4.1.9)

where in the last step we assumed once again j ≫ τexp and neglected the exponentially small

correction due to R
(j)
a . Using this expression in the autocorrelation function we have

CF (i, j) =
1

σ2
F

⟨δFi δFj⟩s =
1

σ2
F

∑
ab

(W i−j)baπaδFa δFb = CF (i+ k, j + k) (4.1.10)

for any k ≥ 0. With analogous manipulations, assuming i, j ≫ τexp, we also find

CF (i, j) = CF (j, i) , (4.1.11)

which together with the previous identity shows that CF (i, j) depends only on |i− j|. With a clear
abuse of notation we can thus write CF (i, j) = CF (|i− j|).

Let us now investigate the behavior of CF (i, j) for large |i − j| (and always i, j ≫ τexp): if as
before we denote by z the state of the Markov chain at t = 0 and assume i > j, the probability of
having state a at time t = j and state b at time t = i is

(W i−j)ba(W
j)az = (W i−j)baπa + (W i−j)baR

(j)
a ≃ (W i−j)baπa = πbπa +R

(i−j)
ba πa , (4.1.12)

hence

|⟨δFi δFj⟩s| =
∣∣∣∣∣∑
ab

πaπbδFa δFb +
∑
ab

R
(i−j)
ba πaδFa δFb

∣∣∣∣∣ ≤
≤
∑
ab

|R(i−j)
ba πaδFa δFb| = O(e−(i−j)/τexp) ,

(4.1.13)

where we used
∑
a πaδFa = ⟨δF ⟩ = 0 and the exponential convergence to πa of (W k)ab. We thus

finally have
|CF (i, j)| ≤ Be−|i−j|/τexp . (4.1.14)

After this intermezzo on the properties of the autocorrelation function we can go back to our
original aim, the computation of σ2

F
. We have

σ2
F
=

1

N2

N∑
i=1

N∑
j=1

⟨δFi δFj⟩s =
σ2
F

N2

N∑
i=1

N∑
j=1

CF (i, j) =
σ2
F

N2

N∑
i=1

∑
j−i

CF (i, j)
(1)≃

≃ σ2
F

N2

N∑
i=1

∑
j−i

CF (|i− j|)
(2)≃ σ2

F

N2

N∑
i=1

+∞∑
k=−∞

CF (|k|) =
σ2
F

N

+∞∑
k=−∞

CF (|k|) ,
(4.1.15)

where in (1) we neglected O(τexp/N
2) terms coming from 1 ≤ i, j ≲ τexp, while in (2) we as-

sumed N ≫ τexp and neglected terms exponentially small in N . If we now define the integrated
autocorrelation time of the observable F by

τ
(F )
int =

∞∑
k=1

CF (k) , (4.1.16)
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we have finally

σ2
F
=
σ2
F

N
(1 + 2τ

(F )
int ) . (4.1.17)

Pay attention to the fact that slightly different definitions of the integrated autocorrelation time
exist in the literature. The moral is that, when autocorrelations are present, the effective sample

size is reduced from N to N/(1 + 2τ
(F )
int ).

It is important to stress that τexp and τ
(F )
int are conceptually two very different objects. On

one hand τexp is the largest characteristic time of the MCMC evolution, and it is the typical time

needed to thermalize the system. On the other hand τ
(F )
int depends on the observable F , and it

is related to the timescale of the fluctuations of F in the thermalized part of the Markov chain
evolution. It is nevertheless possible to show that τexp is an upper bound of all the integrated
autocorrelation times.

We now show, following [6], that τ
(F )
int ≤ τexp when detailed balance is satisfied. We have seen in Lemma 3.3.1

that if a Markov chain satisfies the detailed balance, then the transpose of its associated stochastic matrix W is
Hermitian with respect to the scalar product

(u, v) =
∑
a

πauava . (4.1.18)

Using Eq. (4.1.10) we can write (assuming i > j)

⟨δFi δFj⟩s =
∑
ab

(W i−j)baπaδFa δFb = (δF, (tW )i−jδF ) , (4.1.19)

and thus

σ2
F = (δF, δF ) , CF (k) =

(δF, (tW )kδF )

(δF, δF )
. (4.1.20)

If we denote by v
(j)
a the j-th eigenvector of tW , from ⟨δFi⟩s = 0 it follows that δF has no component along

the eigenvector associated with the eigenvalue 1 (see Theorems 3.2.3-3.2.4), so δFa =
∑
j>0 c

(j)v
(j)
a (the j = 0

eigenvalue is λ = 1) and from λj ∈ (−1, 1) if j ̸= 0 we have

∞∑
k=1

(δF, (tW )kδF ) =

∞∑
k=1

∑
a,j

πa(c
(j))2λkj (v

(j)
a )2 =

∑
a,j

πa(c
(j))2

λj

1− λj
(v

(j)
a )2 ≤

Λ′

1− Λ′
(δF, δF ) , (4.1.21)

where Λ′ = maxj>0 λj and we used the fact that x/(1− x) is an increasing function on (−1, 1). We thus have (see
Eq. (4.1.16))

τ
(F )
int ≤

Λ′

1− Λ′
, (4.1.22)

and clearly (see Eq. (3.2.23))

Λ′ ≤ max
j>0

|λj | = e−1/τexp , (4.1.23)

hence

τ
(F )
int ≤

e−1/τexp

1− e−1/τexp
. (4.1.24)

Moreover the last expression is ≤ τexp and, when τexp ≫ 1, it approaches τexp.

We have computed σ2
F
, and to conclude this section we have to discuss the statistical distribution

of F . We thus recall one of the possible versions of the Central Limit Theorem for correlated
random variables (see, e. g., [4] §5.27, or [14] §8.3 for a different formulation), which can be stated
as follows: if X1, X2, . . . is a succession of dependent random variables, whose autocorrelation
function ⟨XiXi+k⟩ − ⟨Xi⟩⟨Xi+k⟩ vanishes at least O(k−5), with ⟨Xi⟩ = 0 and finite ⟨X12

i ⟩, then
the variance of SN = X1 + · · ·+XN satisfies

1

N
σ2
SN
→ σ2 = ⟨X2

1 ⟩+ 2

∞∑
k=1

⟨X1X1+k⟩ , (4.1.25)

and if σ > 0 then SN/(
√
Nσ) converges to a normal Gaussian distribution. The outcome of this

theorem is thus that in a MCMC simulation, in the large sample limit, F is distributed with a
Gaussian pdf and variance given by Eq. (4.1.17).
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4.1.2 Binning/blocking

It is possible to directly use Eq. (4.1.17) to estimate σ2
F
, however there are some subtleties that

have to be taken into account when doing this, which are discussed in [22] (see also [23] and, for
some background material, [24] §5.3, 6.2). For this reason a more indirect but straightforward
procedure is usually adopted, which goes under the names of binning or blocking, likely introduced
for the first time in [25], and systematized in [26].

Our aim is to numerically estimate the variance of F defined by

F =
1

N

N∑
i=1

F (xi) , (4.1.26)

where the xis are obtained by evolving a Markov chain. Let k be a positive natural number and
let us assume, for the sake of the simplicity, that k divides N ; if this is not the case it is sufficient
to consider the first1 k⌊N/k⌋ elements of the sample. We define a new sample composed of N/k
elements by averaging blocks of size k as follows:

F
(k)
i =

1

k

(
F (xki+1) + F (xki+2) + · · ·+ F (xki+k)

)
, i = 1, . . . , N/k , (4.1.27)

and we obviously have F = F (k), where

F (k) =
1

N/k

N/k∑
i=1

F
(k)
i . (4.1.28)

If we compute the variance of F (k) as if the F
(k)
i elements were independent, using Eq. (1.1.9),

we get (assuming N ≫ k)

σ2

F (k)
=

1

N/k

1

N/k − 1

N/k∑
i=1

(
F

(k)
i − F

)2
≃ k2

N2

N/k∑
i=1

1

k2
(
δFki+1 + · · ·+ δFki+k

)2
, (4.1.29)

where δFj = F (xj)− F . Moreover we have

(
δFki+1 + · · ·+ δFki+k

)2
=

k∑
j=1

(δFki+j)
2 + 2

k−1∑
j=1

δFki+jδFki+j+1+

+ 2

k−2∑
j=1

δFki+jδFki+j+2 + · · ·+ 2δFki+1δFki+k ,

(4.1.30)

and if k is large enough we can rewrite these sums as sample averages defining the correlation
function, hence (to be formally correct we should write CF for the sample estimator of CF )(

δFki+1 + · · ·+ δFki+k
)2

= kσ2
F + 2(k − 1)σ2

FCF (1) + 2(k − 2)σ2
FCF (2) + · · · . (4.1.31)

Since the correlation function CF (j) decays exponentially for large j, if k is large enough (in
the worst case large with respect to τexp) we have

(
δFki+1 + · · ·+ δFki+k

)2 ≃ kσ2
F

1 + 2

∞∑
j=1

CF (j)

 = kσ2
F (1 + 2τ

(F )
int ) . (4.1.32)

Using this expression in Eq. (4.1.29) we finally get, if k is large enough

σ2

F (k)
=

k2

N2

N/k∑
i=1

1

k2
kσ2

F (1 + 2τ
(F )
int ) =

σ2
F

N
(1 + 2τ

(F )
int ) , (4.1.33)

1For x ∈ R the floor function ⌊x⌋ is the largest n ∈ Z such that n ≤ x.
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Algorithm 6 Possible MCMC algorithm to sample a normal Gaussian distribution. The starting
point x0 has been fixed to 5 to clearly visualize the thermalization process.

x0 = 5
loop

select x̄ ∈ (xk − δ, xk + δ) with uniform pdf
y = − 1

2 x̄
2 + 1

2x
2
k

if y ≥ 0 then
xk+1 = x̄

else
select r ∈ [0, 1) with uniform pdf
if r ≤ min[1, ey] then

xk+1 = x̄
else

xk+1 = xk
end if

end if
end loop

which coincides with Eq. (4.1.17) found in the previous section.
We thus have a simple operative way of computing σ2

F
(i. e. the sample estimate of σ2

F
): for

several k values define the blocked averages as in Eq. (4.1.27), and compute the naive sample
variances σ2

F (k)
, as if the blocked variables were independent. The values σ2

F (k)
, as a function of k,

will saturate for large k at a value that is the correct estimate of σ2
F
. Note that this method works

well when the value of k for which σ2
F

saturates is small enough with respect to the sample size

N , otherwise the error of σ2
F
gets large, making the estimated values oscillate widely as a function

of k.

4.1.3 An explicit example

We now present a complete example of MCMC generation and data analysis for the simple case
already discussed in Sec. 3.3.1, i. e. for the sampling of a one dimensional distribution. For the
sake of the simplicity we consider the case of the normal Gaussian distribution.

A possible MCMC algorithm to sample a normal Gaussian distribution is shown in Alg. (6),
and the parameters of this algorithm are the starting point x0 and the value of δ. We chose x0 = 5
as the starting point, in order to better visualize the thermalization process, since random points
extracted from the Gaussian pdf will most likely lie in [−2, 2]. For what concern δ we will use
several values, in order to investigate how the choice of δ affects the efficiency of the algorithm,
measured by the statistical accuracy that can be achieved at fixed CPU time. We thus generated,
using the algorithm Alg. (6), 108 draws for several values of δ in the range between 0.1 and 50
(which required about 25s of CPU time for each δ).

In Fig. 4.1 the typical behavior of the beginning of a MC history is shown, for δ = 1 and δ = 0.2:
both the histories start from x0 = 5, then they drift toward zero (which is the average of the pdf
we are sampling) and start to oscillate, with oscillations whose typical amplitude is related to the
standard deviation of the invariant pdf (which in the present case is 1). Already looking at this
figure it should be clear that data obtained by using δ = 1 are less correlated than data generated
using δ = 0.2, hence δ = 1 is numerically more efficient.

In Fig. 4.2 (left) we show the estimated autocorrelation function

Cx(n) =
⟨xixi+n⟩s
⟨x2i ⟩s

(4.1.34)

of the draws xn, computed after removing the first 106 draws of each sample (in this way we are
significantly overestimating the thermalization time, but we had enough statistics not to worry
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Figure 4.1: Two Monte Carlo histories obtained by performing 1000 loops of the algorithm Alg. (6),
for δ = 1 and δ = 0.2.
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Figure 4.2: (left) Autocorrelation function Cx(n) of the numbers obtained using the algorithm
Alg. (6) for several values of the parameter δ. (right) The fitted exponential autocorrelation time
as a function of δ.

about it). Autocorrelation functions are well described by a simple exponential behavior starting
practically from n = 0, and it is thus simple to estimate τexp by performing a fit. Note however
that the values of the autocorrelation function for different time separations have been estimated
from the same sample, hence they are correlated. For this reason a simple uncorrelated fit pro-
vides a reasonable estimate of τexp but can not be used to estimate its uncertainty. If a reliable
uncertainty is needed a correlated fit has to be used. In Fig. 4.2 (right) we report the exponential
autocorrelation time estimated for all the valued of δ simulated. As was already clear from Fig. 4.2
(left) τexp is very large for small values of δ, it decreases by increasing δ until it reaches a minimum
for δ ≈ 4 (where τexp ≈ 2), then it increases again.

This behavior is quite typical and can be easily explained: for δ ≪ 1 the trial state x̄ is always
very close to the previous state xk (the typical scale of the “distance” being the standard deviation
of the pdf we are sampling, in this case 1), so it will be almost always accepted, but a large number
of steps will be needed to decorrelate, hence τexp is large. Since almost every update is accepted,
we can approximate the motion of the state by a random walk, and in a random walk the typical
distance traveled in a time t is proportional to

√
t. We thus expect τexp to scale O(δ−2) for δ ≪ 1,

since O(δ−2) steps are needed to travel an O(1) distance in the configuration space. By increasing
δ the acceptance probability decreases, but as far as δ ≈ 1 its scaling with δ is still quite mild,
however for δ ≈ 1 two consecutive draws are almost independent of each other, since their typical
distance is of the same order of the standard deviation of the pdf. Hence τexp reaches a minimum

43



for δ ≈ 1. If we consider the δ ≫ 1 limit we find a situation that is the dual of that found for
δ ≪ 1: two consecutive draws will be practically independent from each other, however it will be
very difficult for a draw to be accepted, since it is generated uniformly in (approximately) (−δ, δ),
and the pdf is concentrated in (−1, 1). The typical acceptance probability will scale as 1/δ and thus
we expect τexp = O(δ) for δ ≫ 1, since one draw every O(δ) is accepted. Both these asymptotic
behaviors are consistent with data reported in Fig. 4.2 (right).

The acceptance probabilities of the Metropolis accept/reject step for the simulations performed
at the different values of δ are the following

δ 50 20 10 5 4 3 1 0.5 0.1
acc. prob. 0.032 0.080 0.160 0.317 0.390 0.492 0.804 0.901 0.980

and a general rule of thumb is that the acceptance probability should be in the range 30% ≲
acc. prob. ≲ 70% for the exponential autocorrelation time to be reasonable. For computation-
ally intensive problems it is however in general convenient to perform a preliminary study of the
behavior of τexp as a function of the simulation parameters, in order to optimize the resource usage.

For the simple case of MCMC sampling of the normal Gaussian the previous reasoning can be easily made
quantitative in the case δ ≪ 1 [27, 28]: we have seen that the autocorrelation Cx(n) is exponential practically
starting from n = 0, and the autocorrelation after one step is (remember that σ2

x = 1)

Cx(1) = ⟨xixi+1⟩s =

∫ ∞
−∞

dx
√
2π
e−

1
2
x2
∫ +δ

−δ

dy

2δ
x [(x+ y)Pacc(x→ x+ y) + x(1− Pacc(x→ x+ y))] =

=
1

2δ
√
2π

∫ +∞

−∞
dxe−

1
2
x2
∫ +δ

−δ
dy x(x+ yPacc(x→ x+ y)) =

= 1 +
1

2δ
√
2π

∫ +∞

−∞
dxe−

1
2
x2
∫ +δ

−δ
dy xyPacc(x→ x+ y) ,

(4.1.35)

where Pacc(x→ x+ y) is given by

Pacc(x→ x+ y) = min

[
1, exp

(
−
1

2
(x+ y)2 +

1

2
x2
)]

. (4.1.36)

If we consider the limit δ ≪ 1 we can consider only the cases in which x and x+ y have the same sign. If they are
both positive we can approximate (since |y| ≤ δ ≪ 1)

Pacc(x→ x+ y) ≃
{

1 y < 0
1− xy y > 0

, (4.1.37)

hence ∫ +δ

−δ
dy xyPacc(x→ x+ y) ≃

∫ 0

−δ
xydy +

∫ δ

0
xy(1− xy)dy = −x2

δ3

3
. (4.1.38)

The same result is obtained also when x and x+ y are both negative, thus we obtain

Cx(1) ≃ 1−
1

2δ
√
2π

δ3

3

∫ ∞
−∞

x2e−x
2/2dx = 1−

δ2

6
, (4.1.39)

and using Cx(n) = e−n/τexp for n = 1 and τexp ≫ 1 we finally get τexp ≃ 6/δ2, which is also shown in Fig. 4.2

(right).

We now consider the numerical evaluation of the moments of the normal Gaussian pdf. In
particular we consider for example ⟨x⟩, ⟨x2⟩ and ⟨x4⟩, whose values are obviously analytically known
and are 0, 1, and 3, respectively. The first step for estimating these numbers is the computation of
the corresponding sample averages by using the Monte Carlo samples generated (also in this case
we discard the first 106 draws).

The nontrivial (but fundamental!) part is to estimate also the variance of these sample averages,
which requires the use of blocking, due to the autocorrelation of MC data. For several values of
the block size k we thus have to build the blocked samples, as in Eq. (4.1.27), using the functions
F (x) = x, F (x) = x2 and F (x) = x4. Then we have to compute the naive (i. e., neglecting
autocorrelations) standard deviation of the average of these blocked samples by using Eq. (4.1.29),
and study the dependence of the result on the block size.
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Figure 4.3: (left) Blocking analysis of σx for the output of the algorithm Alg. (6) for several values
of the parameter δ. (right) Blocking analysis of σx2 for the output of the algorithm Alg. (6) for
several values of the parameter δ.

The outcomes of this analysis are shown in Fig. (4.3) for some values of δ and for the cases of
the first and of the second momentum (the results for the fourth one are completely analogous).
In both the cases the standard deviation of the mean of the blocked variables grows as a power-
law in the block size when the block size is not large enough, then it saturates and becomes
approximately independent of the block size. This plateau value, as discussed in Sec. 4.1.2, is the
correct estimation of the error to be associated with the sample average. Note that in the present
case the gathered statistic is very large with respect to the exponential autocorrelation time (in
the worst case τexp is ≈ 620, while the sample size after thermalization is 0.99 × 108), so the
curves shown in Fig. (4.3) are very smooth. In more realistic cases oscillations are present, and
the plateau is not an horizontal straight line, but rather a line which oscillate randomly around a
constant value. The amplitude of these oscillations is related the error to be associated with the
standard error of the average.

Using the plateau values we obtain the estimates reported in Tab. (4.1) for the first, second
and fourth momenta of the normal Gaussian distribution, which are obviously consistent with
theoretical expectations. By looking at these values we can see that, since the gathered statistics

are the same for all the cases, the integrated autocorrelation times τ
(F )
int have the same behavior

of the exponential autocorrelation time τexp, being larger for very small and very large values of

δ. In case an estimate of τ
(F )
int is needed, it can be obtained from Eq. (4.1.33): 1 + 2τ

(F )
int is given

by the ratio of two σ2

F (k)
values, one computed using a large block size k (i. e., a block size which

corresponds to the plateau) and the other computed for k = 1.

δ ⟨x⟩ ⟨x2⟩ ⟨x4⟩
50 -0.00056(70) 0.9998(11) 2.9970(67)
20 0.00058(42) 0.99853(68) 2.9923(41)
10 0.00024(29) 0.99948(47) 2.9975(28)
5 0.00040(20) 0.99943(32) 2.9959(20)
4 -0.00006(19) 0.99976(29) 3.0005(19)
3 -0.00016(20) 1.00000(28) 2.9999(20)
1 -0.00008(40) 1.00013(45) 3.0004(32)
0.5 0.00004(75) 1.00008(80) 3.0009(54)
0.1 -0.0030(35) 1.0009(35) 3.002(22)

Table 4.1: Numerical results obtained by using Alg. (6) to extract 108 draws.
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4.2 Estimating secondary observables

We have considered up to now the so called “primary” observables, i. e., those observables that
can be written as average values. There is, however, also another important class of observables,
the so called “secondary” observables, which are functions of one or more average values, like e. g.

U4 =
⟨x4⟩
⟨x2⟩2 . (4.2.1)

A natural estimator for this quantity is obviously

U4 =
x4(
x2
)2 , (4.2.2)

however, when using such an expression, we have to face two different problems. The first problem
is related to the presence of a bias in the previous estimator, however it is easily seen that such a
bias is O(1/N) and hence subdominant with respect to the statistical errors; for this reason this
theoretical problem is practically irrelevant in MC simulations. The second problem is instead
more serious, and it is related once again to the estimation of the uncertainty. Using blocking
we are taking into account the autocorrelations of data generated using the MCMC approach,
however in computing the uncertainty to be associated with Eq. (4.2.2) we face a new problem.
Had x4 and x2 be computed using two independent MCMC we could combine their uncertainties
by using standard error propagation. However in standard circumstances both these quantities are
estimated by using the same statistical sample, hence their statistical uncertainties are correlated.

Let us start by discussing the first problem. If we are interested in evaluating F (⟨x⟩), we can
estimate the bias of the estimator F (x) using the following reasoning. The typical fluctuation of x
around ⟨x⟩ is σx/

√
N , where σx is the standard deviation of the variable x and N is the number

of (independent) samples used to estimate x. If N is large enough we can use a Taylor expansion
to get

⟨F (x)⟩ = ⟨F (⟨x⟩)⟩+ ⟨F ′(⟨x⟩)(x− ⟨x⟩)⟩+ 1

2
⟨F ′′(⟨x⟩)(x− ⟨x⟩)2⟩+ · · · ≃

≃ F (⟨x⟩) + 1

2
F ′′(⟨x⟩)σ2

x = F (⟨x⟩) + 1

2
F ′′(⟨x⟩)σ

2
x

N
,

(4.2.3)

where σ2
x is the variance of the sample average x, and in the last step we used Eq. (1.1.8). As

anticipated, the bias is O(1/N) and thus negligible, in the large sample limit, with respect to the
statistical error O(1/

√
N).

We now discuss the more serious problem of correlations: let A and B be two primary ob-
servables and let us suppose that we need to evaluate F (⟨A⟩, ⟨B⟩) (the discussion can be oviously
extended to more general cases). The uncertainty to be associated with F (A,B), is the square
root of the variance of the stochastic variable F (A,B), which is defined as usual by

⟨F (A,B)2⟩ − ⟨F (A,B)⟩2 . (4.2.4)

Proceeding as for the case of the bias, we can approximate

F (A,B) ≃ F + F ′AδA+ F ′BδB +
1

2
F ′′ABδA δB +

1

2
F ′′AA(δA)

2 +
1

2
F ′′BB(δB)2 , (4.2.5)

where all functions are computed at ⟨A⟩, ⟨B⟩ and we introduced the notation δA = A− ⟨A⟩, and
analogously for δB. We thus have

⟨F (A,B)⟩2 ≃ F 2 + F
(
F ′′AB⟨δAδB⟩+ F ′′AA⟨(δA)2⟩+ F ′′BB⟨(δB)2⟩

)
, (4.2.6)

and
⟨F (A,B)2⟩ ≃ F 2 + (F ′A)

2⟨(δA)2⟩+ (F ′B)
2⟨(δB)2⟩+ 2F ′AF

′
B⟨δA δB⟩+

+ F
(
F ′′AB⟨δAδB⟩+ F ′′AA⟨(δA)2⟩+ F ′′BB⟨(δB)2⟩

)
,

(4.2.7)

46



from which finally

⟨F (A,B)2⟩ − ⟨F (A,B)⟩2 = (F ′A)
2⟨(δA)2⟩+ (F ′B)

2⟨(δB)2⟩+ 2F ′AF
′
B⟨δA δB⟩ . (4.2.8)

If the fluctuations of A and B are independent, ⟨δAδB⟩ = 0, we recover the standard formula of
the error propagation, however this is the correct expression to be used also when correlations are
present.

If we have no information on the covariance ⟨δAδB⟩ we can only put an upper bound on the
true uncertainty: using the Schwartz inequality

|⟨δAδB⟩| ≤
√
⟨(δA)2⟩

√
⟨(δB)2⟩ (4.2.9)

we have indeed

⟨F (A,B)2⟩ − ⟨F (A,B)⟩2 ≤
(
|F ′A|

√
⟨(δA)2⟩+ |F ′B |

√
⟨(δB)2⟩

)2
. (4.2.10)

The use of this formula, however, largely overestimates the error in typical cases. Let us consider
the example discussed in Sec. 4.1.3 and the secondary observable ⟨x4⟩/⟨x2⟩2 for δ = 50: using data
in Tab. (4.1) we get for the error the upper bound (F (x1, x2) = x1/x

2
2, and F ′A = 1, F ′B = −6

when using the average values x1 = ⟨x4⟩ = 3 and x2 = ⟨x2⟩ = 1)

σU4
≤ 0.0067 + 6× 0.0011 = 0.0133 . (4.2.11)

If we wrongly assume that the errors of numerator and denominator are independent we get instead

σU4

?
=
√
0.00672 + 62 × 0.00112 ≃ 0.0094 . (4.2.12)

Finally, the true uncertainty, obtained by using the methods discussed in the following two sub-
sections, is

σU4
= 0.0032 , (4.2.13)

and the final estimate is U4 = 2.9983(32). This happens because the fluctuations of x4 and x2 are
obviously strongly correlated, and in this case, with 2F ′AF

′
B = −12, we can estimate a posteriori

⟨δAδB⟩ ≃ 0.88

√
⟨(δA)2⟩

√
⟨(δB)2⟩ . (4.2.14)

In principle nothing prevents us from using Eq. (4.2.8) to asses the uncertainty of F (A,B), since
the covariance ⟨δAδB⟩ can be straightforwardly estimated. The problem with Eq. (4.2.8) is that
it requires the computation of a significant number of derivatives and covariances if the function
F depends on several primary observables, and its numerical implementation thus becomes quite
baroque. To avoid these problems we can use the so called “plug-in estimators”, which are defined
by an algorithm in which the specific form of F enters only parametrically, without the need of
computing the derivatives and covariances appropriate for F . In practice we are trading the man
power need to code derivatives and covariances for the CPU power needed to execute these plug-in
estimators.

Since our principal aim is the computation of the statistical error to be associated with sec-
ondary observables, in the following subsection we initially assume to be able to generate uncorre-
lated samples. We will then comment on how to take autocorrelations into account.

4.2.1 Bootstrap

We are interested in evaluating a secondary observable F which depends on several primary observ-
ables, for example U4 = ⟨x4⟩/⟨x2⟩2. The sample estimator of this quantity is F , i. e. the function
F evaluated on the sample averages of the primary observables, for example U4 = x4/(x2)2, and let
us assume for the moment that the different draws are statistically independent from each other.
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Algorithm 7 Bootstrap estimation of the uncertainty of U4 = ⟨x4⟩/⟨x2⟩2 for iid draws.

Require: xi for i = 1, . . . , N
for r = 1, . . . , R do

S2 = 0, S4 = 0
for i = 1, . . . , N do

generate j ∈ {1, . . . , N} with uniform pdf
S2 ← S2 + x2j
S4 ← S4 + x4j

end for
x2 = S2/N
x4 = S4/N

U4
(r)

= x4/x2
2

end for
compute the sample variance of the mean of {U4

(r)}r=1,...,R, as in Eq. (4.2.15).

To compute the variance σ2
F

of the estimator F , in principle, one could use the following
strategy: perform R independent Monte-Carlo simulations, generating N draws in each case, and
estimate σ2

F
by using the sample variance σ2

F
defined by (see Eq. (1.1.7))

σ2
F
=

R

R− 1

 1

R

R∑
j=1

(F
(j)

)2 −

 1

R

R∑
j=1

F
(j)

2
 , (4.2.15)

where F
(i)

is the value of the sample estimator F computed by using the i-th sample. This method
is in general unfeasible, since to evaluate the uncertainty of the estimator evaluated on a given
sample we need to generate many more samples, using an algorithm that is in general nontrivial.

A way to apply Eq. (4.2.15) while minimizing the overhead of generating new samples is to
use what is called the plug-in principle, which consists in approximating a probability distribution
function with the empirical distribution of a sample of observations drawn from it. In practice: if
our sample consists of N independent elements, we can create a bootstrap sample by randomly
extracting N draws (with uniform pdf and with replacement) from this sample. The important
point to note is that the elements of the bootstrap sample have the same statistical distribution of
those of the original one. By resampling in this way the original sample {xi}i=1,...,N we can thus

generate R bootstrap samples {x(r)i }i=1,...,N (the index r = 1, . . . , R identifies the sample), that can

be used to evaluate the sample averages of the primary observables and obtain R estimates F
(r)

,
by which we can evaluate σ2

F
using Eq. (4.2.15). It is fundamental that the same bootstrap sample

is used to compute all the primary observables needed for evaluating F ; correlations are instead
lost if we use different bootstrap samples for different primary observables. A simple scheme of a
bootstrap computation is reported in Alg. (7), and many more details on the bootstrap and on its
statistical basis can be found, e. g., in [29] §10-11 and [30] §5-6-7.

Let us now finally consider the case of a Markov chain, in which different draws are not inde-
pendent from each other. The simplest way to take into account autocorrelations in the bootstrap
method is to divide the sample in N/k blocks (k is the block-size and we are assuming N to
be divisible by k), then generate R bootstrap samples by randomly selecting, with uniform pdf
and with replacement, N/k blocks each time. As for the case of primary observables discussed in
Sec. 4.1.2, the whole procedure has to be repeated for increasing values of the block-size k until
saturation is reached.
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4.2.2 Jackknife

The idea of the jackknife method is analogous to that of the bootstrap, with the only difference
that mock samples are not generated stochastically, but deterministically. Let us once again start
by discussing the case of independent draws x1, . . . , xN .

Jackknife samples are generated by removing a single drawn from the original sample, so we
get N samples of N − 1 draws, which provide N estimates of the primary observables2 ⟨gα(x)⟩:

gα (i) =
1

N − 1

∑
j ̸=i

gα(xi) , j = 1, . . . , N , (4.2.16)

from which we get N estimates F(i) = F (gα (i)) of the secondary observable. If we denote by FJ
the sample composed by the N estimates F(i), the quantity

F 2
J − FJ

2
=

1

N

N∑
i=1

F 2
(i) −

(
1

N

N∑
i=1

F(i)

)2

(4.2.17)

estimates the square fluctuation of F induced by changing the sample by removing an element.
Since all the elements of the sample enter in a symmetric way in the computation of F , and the
draws are independent from each other, we naively expect

σ2
F
≃ N

(
F 2
J − FJ

2
)
. (4.2.18)

To show that this expectation is indeed true we can rewrite the jackknife estimates gα (i) of the primary
observables as follows:

gα (i) =
1

N − 1

∑
j ̸=i

gα(xi) = ⟨gα⟩+
1

N − 1

∑
j ̸=i

δgα j , (4.2.19)

where we introduced the notation δgα j = gα(xj) − ⟨gα(x)⟩. Since the typical value of gα (i) − ⟨gα⟩ is σ2
α/

√
N we

can use the approximation

F(i) = F

⟨gα⟩+
1

N − 1

∑
j ̸=i

δgα j

 ≃

≃ F +
∑
α

F ′α
1

N − 1

∑
j ̸=i

δgα j +
1

2

∑
αβ

F ′′αβ
1

(N − 1)2

∑
j ̸=i

∑
k ̸=i

δgα jδgβ k ,

(4.2.20)

where F and its derivatives are computed in ⟨gα⟩. Analogously we have, using gα = ⟨gα⟩+ 1
N

∑N
i=1 δgα i,

F = F (gα) ≃ F +
∑
α

F ′α
1

N

∑
j

δgα j +
1

2

∑
αβ

F ′′αβ
1

N2

∑
j

∑
k

δgα jδgβ k . (4.2.21)

Using ⟨δgα i⟩ = 0 and ⟨δgα jδgβ k⟩ = Cαβδjk (where Cαβ is the covariance matrix), we get from the second
expression the identities

⟨F ⟩ ≃ F +
1

2N

∑
αβ

F ′′αβCαβ , (4.2.22)

and

⟨F 2⟩ ≃ F 2 +
1

N

∑
αβ

F ′αF
′
βCαβ +

F

N

∑
αβ

F ′′αβCαβ , (4.2.23)

from which

σ2
F

= ⟨F 2⟩ − ⟨F ⟩2 =
1

N

∑
αβ

F ′αF
′
βCαβ , (4.2.24)

which is the generalization of Eq. (4.2.8).
If we use instead the expression for F(i) we get

⟨F(i)F(j)⟩ ≃ F 2 +
1

(N − 1)2

∑
αβ

F ′αF
′
βCαβ

∑
k ̸=i

∑
ℓ ̸=j

δkℓ +
F

(N − 1)2

∑
αβ

F ′′αβCαβ
∑
k ̸=i

∑
ℓ̸=i

δkℓ , (4.2.25)

2We denote by greek indices the ones used for labeling the primary observables on which the secondary observable
depends. Latin indices will instead be used to label the different draws.
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Algorithm 8 Jackknife estimation of the uncertainty of U4 = ⟨x4⟩/⟨x2⟩2 for iid draws.

Require: xi for i = 1, . . . , N
S2 = 0, S4 = 0
for i = 1, . . . , N do

S2 ← S2 + x2i
S4 ← S4 + x4i

end for
for i = 1, . . . , N do

(x2)(i) = (S2 − x2i )/(N − 1)
(x4)(i) = (S4 − x4i )/(N − 1)
(U4)(i) = (x4)(i)/((x

2)(i))
2

end for
compute σ2

U4
using Eq. (4.2.32) with F(i) = (U4)(i).

and from the identities ∑
k ̸=i

∑
ℓ ̸=i

δkℓ =
∑
k ̸=i

(∑
ℓ

δkℓ − δki

)
=
∑
k ̸=i

(1− δki) = N − 1 (4.2.26)

and ∑
k ̸=i

∑
ℓ ̸=j

δkℓ =
∑
k ̸=i

(∑
ℓ

δkℓ − δkj

)
=
∑
k ̸=i

(
1− δkj

)
= N − 1−

∑
k ̸=i

δkj

= N − 1−
(∑

k

δkj − δij

)
= N − 2 + δij ,

(4.2.27)

we finally have

⟨F(i)F(j)⟩ ≃ F 2 +
N − 2 + δij

(N − 1)2

∑
αβ

F ′αF
′
βCαβ +

F

N − 1

∑
αβ

F ′′αβCαβ , (4.2.28)

and in particular

⟨F 2
(i)⟩ ≃ F 2 +

1

N − 1

∑
αβ

F ′αF
′
βCαβ +

F

N − 1

∑
αβ

F ′′αβCαβ . (4.2.29)

We can now evaluate

⟨F 2
J − FJ

2⟩ =
1

N

∑
i

⟨F 2
(i)⟩ −

1

N2

∑
ij

⟨F(i)F(j)⟩ , (4.2.30)

which using the previously written expressions becomes

⟨F 2
J − FJ

2⟩ =
(

1

N − 1
−

N − 2

(N − 1)2
−

1

N(N − 1)2

)∑
αβ

F ′αF
′
βCαβ =

=
1

N(N − 1)

∑
αβ

F ′αF
′
βCαβ =

1

N − 1
σ2
F
,

(4.2.31)

where in the last step we used Eq. (4.2.24). We have thus found that a sample estimator of σ2
F

is

σ2
F

= (N − 1)
(
F 2
J − FJ

2
)
= (N − 1)(FJ − FJ )2 =

N − 1

N

∑
i

(
F(i) − FJ

)2
. (4.2.32)

A summary of the jackknife method to estimate the uncertainty of B4 = ⟨x2⟩/⟨x2⟩2 is shown in
Alg. (8), where it is also shown that to compute all the jackknife samples it is sufficient to scan the
original sample only twice. For this reason the jackknife is computationally more efficient than the
bootstrap (which requires at least O(100) scans), however to use the jackknife method observables
have to be reasonably smooth functions of the sample. If this is not the case jackknife can provide
wrong estimates of the variance (larger than the real ones), as it famously happens for the case of
the sample median. More details on the jackknife and its relation with bootstrap can be found,
e. g., in [29] §10, [30], see also [31].

When autocorrelations are present in the sample, we can take them into account by dividing
the sample in N/k blocks of size k (we are assuming N to be divisible by k), then generating
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jackknife samples by removing the i-th block instead of the i-th draw. In this case we thus have

gα (i) =
1

N − k
∑

j ̸∈i−th block

gα(xj) (4.2.33)

and

σ2
F
= (N/k − 1)

(
F 2
J − FJ

2
)
= (N/k − 1)(FJ − FJ)2 =

N − k
N

N/k∑
i=1

(
F(i) − FJ

)2
. (4.2.34)
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Part II

Classical statistical mechanics and
phase transitions
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Chapter 5

The Ising model: physics and
simulations

5.1 Basic properties of the Ising model

The Ising model is a classical (i. e., non quantum) lattice model of a monoaxial ferromagnet. The
configuration space of this model is obtained by associating to each site of a D-dimensional lattice
(denoted by x) a variable sx which can only take the values ±1, and the energy of a configuration
is given by

E[{s}] = −J
∑
⟨x,y⟩

sxsy − h
∑
x

sx , (5.1.1)

where the expression
∑
⟨x,y⟩ denotes a sum on nearest neighbor sites of the lattice, and J and h

are parameters of the model.
To model a monoaxial ferromagnet, the “spins” sx are assumed to be always aligned along

a given direction, hence the restriction to sx = ±1, which only leaves the freedom of a “spin-
flip”. The first term in Eq. (5.1.1) reminds of a magnetic dipole interaction, and the restriction to
nearest neighbor sites is motivated by the fact that such an interaction decays quite rapidly with
the distance (∼ r−3). The strength of the dipole interaction is parametrized by J , with J > 0
corresponding to the ferromagnetic case (sxsy = 1 is favoured), while J < 0 corresponds to the
antiferromagnetic case (sxsy = −1 is favored). The second term in Eq. (5.1.1) represents instead
the interaction with an external magnetic field of intensity h. While any lattice can be used to
define the Ising model (in fact any graph), we will always consider the simplest case of the cubic1

lattice. It should be clear that this is a very simplistic modeling of a monoaxial ferromagnet,
however we will see in the next section that, due to the phenomenon of universality, it is sufficient
to quantitatively study what happens close to a continuous phase transition.

For the energy E to be well defined, the lattice has to be finite, hence we need also to specify
the boundary conditions (b. c.). The simplest and most used boundary conditions are the periodic
ones, which for a cubic lattice of linear size L can be written as

sx+Lµ̂ = sx , (5.1.2)

where µ̂ (with µ = 1, . . . , D) is the unit vector directed along the µ-th direction. These b. c. are
often used since they preserve translation symmetry and minimize the effect of boundaries, indeed
no boundary is present when using periodic boundary conditions, and the system considered is in
fact a torus. Other possible choices that sometimes can be useful are, e. g., anti-periodic boundary
conditions (sx+Lµ̂ = −sx) and open boundary conditions, which correspond to the case of a real

1For the sake of the simplicity we will always speak of “cubic” lattice also in D = 1, D = 2 and D > 3, instead
of using lattice, square lattice or hyper-cubic lattice, respectively.
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finite cubic lattice in RD. Once a b. c. is adopted on a finite lattice, the statistical physics of the
Ising model is encoded in the partition function

Z(β) =
∑
{s}

exp(−βE[{s}]) = exp(−βF (β)) , (5.1.3)

where β = 1/(kBT ) is the inverse temperature and F is the free energy. Two dimensionless numbers
thus characterize the phase diagram of the Ising model: βJ and βh. To avoid the proliferation of
redundant parameters two conventions can be used

1. measure J and h in units of kBT , which is equivalent to fix β = 1,
2. measure β in units of J , which is equivalent to fix J = 1 or J = −1 in the ferromagnetic or

antiferromagnetic case, respectively.

Here we adopt the second of these possibilities, and we only consider the ferromagnetic Ising model,
thus we fix J = 1.

The case h = 0 is the most interesting one, since it displays what is probably the most important
property of the Ising model: for neutral boundary conditions (i. e., b. c. which do not favor a specific
spin orientation, just like the periodic, anti-periodic or open b. c.) the energy E[{s}] is invariant,
for h = 0, under a global spin flip:

s′z = −sz for all z =⇒ E[{s′}] = E[{s}] if h = 0 . (5.1.4)

The h = 0 system is thus characterized by a Z2 discrete symmetry, since by inverting twice the
spins we come back to the original configuration.

A consequence the Z2 symmetry is that if we define the magnetization for unit volume by

m[{s}] = 1

LD

∑
x

sx (5.1.5)

we always have ⟨m⟩ = 0 for any inverse temperature β. This can be easily proven as follows

⟨m⟩ = 1

Z(β)

∑
{s}

m[{s}]e−βE[{s}] (1)
=

1

Z(β)

∑
{−s}

m[{−s}]e−βE[−{s}] (2)
=

=
1

Z(β)

∑
{−s}

−m[{s}]e−βE[{s}] = −⟨m⟩ .
(5.1.6)

In the equality denoted by (1) we changed the “mute index” of the sum, summing on the con-
figurations in which every spin has the opposite sign with respect to that in the original sum; in
step (2) we used the fact that E[{s}] is an even function under the Z2 symmetry, while m[{s}] is
odd under a global spin-flip m[{−s}] = −m[{s}]. The simple fact ⟨m⟩ = 0 seems at first sight to
preclude the possibility of a ferromagnetic phase, i. e. of a phase characterized by a spontaneous
magnetization. This point, however, needs to be investigated more thoroughly, since symmetries
in statistical mechanics (and in quantum field theories) presents a richer phenomenology that in
quantum mechanics. In particular, although ⟨m⟩ = 0 for all β values, the mechanism underlying
the vanishing of ⟨m⟩ is different at high and at low temperatures (if the space dimensionality is
larger than one, D > 1), as can be seen by numerically investigating the pdf P (m) of observing a
value m of the magnetization in a simulation.

In Fig. (5.1) we report data for P (m), obtained by simulating the two dimensional Ising model
on a L × L lattice with periodic boundary conditions. To obtain these figures we performed 107

updates of the whole configuration, using the local Metropolis algorithm that will be discussed in
Sec. 5.3. The first 105 measures have been discarded for thermalization, and the total simulation
time has been ≈ 310 s. In the high temperature phase, Fig. (5.1) (left), by increasing the lattice
size the function P (m) gets more and more peaked atm = 0, indicating that in the thermodynamic
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Figure 5.1: The pdf P (m) of observing a value m of the magnetization in a two dimensional L×L
Ising model with periodic b. c. (left) in the high temperature phase, β = 0.4, (right) in the low
temperature phase, β = 0.45.

limit all the configurations sampled by MCMC have m ≈ 0. What happens in the low temperature
phase, Fig. (5.1) (right), is completely different: the pdf P (m) gets more and more peaked (by
increasing the lattice size) close to two values ±m0, with m0 ̸= 0. In this case the exact result
⟨m⟩ = 0 does not mean that all configurations have m ≈ 0, but that every configuration has
m ≈ ±m0 and the probability of these two cases is the same, thus ⟨m⟩ = 0 is the consequence of
a cancellation between the contributions of different configurations.

By also looking at the time histories of the simulations one can see that, in the low temperature
phase, the time required for the system to switch, e. g., from the state m ≈ m0 to the state
m ≈ −m0, grows by increasing the lattice size. This suggests2 that in the thermodynamic limit
the magnetization would always remain frozen at m = ±m0, and which of the two possibility is
chosen depends on the initial condition. The low temperature phase is thus characterized, in the
thermodynamic limit, by ergodicity breaking (not all states can be reached) and by an instability
with respect to the initial condition.

In order to expose this instability we have to perform the thermodynamic limit more carefully:
let us denote by ⟨ ⟩L,β,h the statistical average carried out using a lattice of linear size L, at the
inverse temperature β, and using an external magnetic field h. What we proved before can be
written, using this notation, as ⟨m⟩L,β,h=0 = 0 for any β and L; in fact exactly in the same way we
can also prove the more general relation ⟨m⟩L,β,−h = −⟨m⟩L,β,h. It can be shown that (if D > 1)
a value βc > 0 exists such that if β ≤ βc (high temperature phase)

lim
h→0+

lim
L→∞

⟨m⟩L,β,h = lim
h→0−

lim
L→∞

⟨m⟩L,β,h = 0 , (5.1.7)

while if β > βc (low temperature phase) we have

0 < m0(β) ≡ lim
h→0+

lim
L→∞

⟨m⟩L,β,h = − lim
h→0−

lim
L→∞

⟨m⟩L,β,h . (5.1.8)

Note that in the previous equation the order of the limits is essential: at finite L the partition
function is analytic in h and β (it is a finite sum of exponentials), hence by using the different
order of limits we obtain at any temperature

lim
L→∞

lim
h→0
⟨m⟩L,β,h = lim

L→∞
⟨m⟩L,β,h=0 = lim

L→∞
0 = 0 . (5.1.9)

The functionm0(β) defined in Eq. (5.1.8) is the spontaneous magnetization, and the fact that in
the low temperature phase m0(β) is non-vanishing shows that the Z2 symmetry is spontaneously
broken at low temperature. When a symmetry is spontaneously broken, average values exists

2This is only a suggestion since the details of the MC histories are generically unphysical, depending on the
specific algorithm adopted, and only average values are physical (MC evolution is not a real physical evolution).
Nevertheless the local Metropolis algorithm is a reasonable approximation of how thermal fluctuations behave in a
real system.
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which are not invariant under a symmetry of the Hamiltonian: the symmetry group of the state
(identified by properly performing the thermodynamic limit) is smaller than the symmetry group
of the Hamiltonian. Spontaneous symmetry breaking (SSB for short) is a feature that is present
in statistical mechanics and quantum field theory, but not in quantum mechanical systems with
a finite number of degrees of freedom, even if their Hilbert space is infinite dimensional. This
is basically due to the fact that in quantum mechanical systems with a finite number of degrees
of freedom the fundamental state is always non-degenerate (see e. g., [16] §15.4 for a sketch of
the proof, or [17] §3.3.3, [18] §10.5 for more details), with a finite gap being present between the
fundamental and the first excited state, which makes the system stable under small perturbations.
From an algebraic point of view the same conclusion follows from the fact that an essentially unique
representation exists of the Heisenberg commutation relations (Stone-von Neumann theorem), see,
e. g., [32] §IV.6 for a proof, and [33] for the appearance of inequivalent representations in infinite
systems.

The physical interpretation of the previous results is quite simple, as can be seen by thinking
how the pdf P (m) of observing a value m of the magnetization in a numerical simulation would
change by adding a small external magnetic field h. At high temperature P (m) is peaked at m = 0,
and the presence of an external magnetic field would simply slightly distort the distribution, which
would then be peaked at a value proportional to h. A non-vanishing value for ⟨m⟩L,β,h would result,
but as far as h is small enough no instability emerges and limh→0 limL→∞⟨m⟩L,β,h = 0. Things
drastically changes in the low temperature case: by switching on a magnetic field h, and assuming

h > 0, the peak at m ≈ m0 is enhanced by eβhm0L
D

, while the one at m ≈ −m0 is suppressed by

the factor e−βhm0L
D

. Regardless of how small h is, in the thermodynamic limit only one of the two
peaks survives, and we get limL→∞⟨m⟩L,β,h = m0+χh, where χ is a constant related to the slight
shift of the peak at m0 induced by the external field. Thus finally limh→0+ limL→∞⟨m⟩L,β,h = m0.

Observables which transform non-trivially under the symmetry group of the Hamiltonian (more
precisely, transform as an irreducible representation of the symmetry group) are called order pa-
rameters, and their average values vanish in the unbroken phase, while they can be nonzero in
the broken phase. The specific values assumed by average values in the broken phase typically
depend on the specific way in which the thermodynamic limit is performed, e. g., on the presence
of external fields, on the boundary conditions adopted, and so on. The two cases considered in
Eq. (5.1.8), which are used to define the spontaneous magnetization m0(β), correspond to the
thermodynamic analogue of pure states, but also mixed states exists. A mixed state is obtained,
e. g., by using boundary conditions in which a fraction x of the spins on the boundary are fixed to
−1, with the remaining fixed at +1; in this way one gets in the thermodynamic limit

lim
L→∞

⟨m⟩L,β,h=0 = (1− 2x)m0(β) fixed b. c. with 0 < x < 1 . (5.1.10)

Rigorous proofs of the existence of a high temperature and a low temperature phases with the
previously stated properties can be found, e. g., in [34] §4, [35] §4-5, [36] §3, with the last reference
being the most introductory one. That in D = 1 no spontaneous magnetization is present at any
β > 0 can be shown or by explicitly solving the D = 1 Ising model, [37] §14, or by using a more
general reasoning valid for any short range model, [38] §163. Also the two dimensional Ising model
can be explicitly solved, see, e. g. [37] §15 or [38] §151 for two different approaches, or [39] for
many more details. The exact value βc = 1

2 log(1 +
√
2) ≈ 0.440687 . . . for D = 2 can also be

obtained without knowing the explicit solution of the model, by using the low-temperature/high-
temperature (self-)duality of the D = 2 Ising model, see, e. g., [40]. Several critical properties of
the Ising model, obtained by using analytical methods or numerical simulations, are reported in
Sec. 7.A.

5.2 Phase transitions and critical phenomena

The points of the phase diagram at which the free energy density f = F/LD is not an analytic
function of the control parameters (temperature, pressure, external magnetic field, . . .) are called
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h
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Figure 5.2: The phase diagram of the Ising model when D > 1. The black dot at βc denotes a
continuous transition, while the thick line for β > βc and h = 0 denotes a line of discontinuous
transitions.

phase transitions, and this non-analytic behavior can emerge only in the thermodynamic limit
L → ∞, since the partition function is always an analytic function of the parameters in a finite
volume.

In the modern classification phase transitions can be discontinuous or continuous. At dis-
continuous transitions different thermodynamic phases coexist and the free energy density has
some discontinuous first derivatives; examples of discontinuous (or first order, according to the old
Ehrenfest classification) transitions are boiling water and the solid-liquid phase transitions. At
continuous transitions there is no phase coexistence and, typically, at least some second derivatives
of the free energy density diverge at the transition; examples of continuous transitions are the
liquid-vapor critical end-point transition and the Curie transition in ferromagnets. Continuous
phase transitions are also often called critical points and, somehow extending the old Ehrenfest
definition, second order phase transitions.

From the discussion in the previous section, it follows that the phase diagram of the Ising
model in D > 1 dimensions is the one sketched in Fig. (5.2): for h ̸= 0 the free energy density
is an analytic function of β and h, and the same is true also for h = 0 in the high temperature
phase β < βc. For β > βc a line of discontinuous phase transitions is present, associated with
the appearance of a spontaneous magnetization which abruptly changes sign when h changes sign.
The point β = βc, h = 0 is the only point in which a continuous phase transition happens.

Close to a continuous transition a peculiar behavior (the so called critical behavior) emerges, in
which physical quantities behave as power-law functions of the “distance” from the critical point.
Using the Ising model as an example, the “distance” from the critical point is usually parametrized
by the so called reduced temperature

t =
βc − β
βc

, (5.2.1)

and by the intensity h of the external magnetic field (note that t > 0 corresponds to the high
temperature phase β < βc). The specific heat is defined by

C =
1

LD
∂

∂T
U =

1

LD
∂

∂T

(
− ∂

∂β
logZ(β, h)

)
=

β

TLD
∂2

∂β2
logZ(β, h) =

=
β

TLD
(
⟨E2⟩ − ⟨E⟩2

)
=
β

T
LD
(
⟨ε2⟩ − ⟨ε⟩2

)
,

(5.2.2)

where U is the internal energy and ε = E/LD is the energy density. For h = 0 and t ≈ 0 the
specific heat behaves, in the thermodynamic limit, as

C(β, h = 0) ≈ A±
|t|α , (5.2.3)

where A+ and A− are two constants that have to be used for t > 0 and t < 0, respectively.
Analogously, the magnetization m(β, h) = limL→∞⟨m⟩L,β,h has the following behavior for h = 0+
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and close to t ≈ 0 (and t < 0 since otherwise m(β, h = 0) = 0)

m(β, h = 0+) ≈ B × (−t)β , (5.2.4)

where B is a constant, while for t = 0 (i. e. on the critical isotherm) and h ≈ 0 it behaves as

m(β = βc, h) ≈ Bc × |h|1/δ , (5.2.5)

where Bc is another constant. Finally, the magnetic susceptibility is defined by

χ =
∂

∂h
⟨m⟩L,β,h =

∂

∂h

(
1

βLD
∂

∂h
logZ(β, h)

)
=

=
β

LD
(
⟨M2⟩ − ⟨M⟩2

)
= βLD

(
⟨m2⟩ − ⟨m⟩2

)
,

(5.2.6)

whereM =
∑

x sx is the total magnetization andm =M/LD is the magnetization for unit volume.
For h = 0 and t ≈ 0 the magnetic susceptibility behaves as

χ(β, h = 0) ≈ C±
|t|γ , (5.2.7)

where C+ and C− are two constants, to be used once again for t > 0 and t < 0, respectively. The
exponents α, β, γ, δ are called critical exponents, and, together with the amplitudes A±, B,Bc and
C±, characterize the critical behavior.

The power-law critical behavior is not typical only of macroscopic observables, but can be seen
also in microscopic ones. To define the “microscopic” critical exponents let us introduce the two
point connected correlation function G(x,y):

G(x,y) = ⟨sxsy⟩ − ⟨sx⟩⟨sy⟩ . (5.2.8)

If β ̸= βc (if h = 0, or for any β if h ̸= 0) the large distance behavior of this function is given by

G(x,y) ∝ 1

|x− y|(D−1)/2 e
−|x−y|/ξ , (5.2.9)

where ξ is the correlation length, and the previous expression is often referred to as the Ornstein-
Zernike form3. The correlation length ξ thus parametrizes the typical distance at which two spins
are correlated, however one does not have to think of ξ as the “size of a bubble”, since no bubble at
all exists if we are not at a discontinuous phase transition. A fundamental property of continuous
phase transitions is the divergence of the correlation length, which leads to the phenomenon of
critical opalescence at the critical end-point of the liquid-vapor transition. For the Ising model we
have, for h = 0 and t ≈ 0, the critical behavior

ξ(β, h = 0) ≈ f±|t|−ν . (5.2.10)

Finally, exactly at the critical point (t = 0 and h = 0) the large distance behavior of the two point
connected correlation function is

G(x,y) ∝ 1

|x− y|D−2+η , (5.2.11)

where the exponent η is typically called anomalous dimension.
All the previously introduced critical exponents are not independent of each other, but are

related by several equalities:

α+ 2β + γ = 2 , α+ β(1 + δ) = 2 , γ = ν(2− η) , 2− α = Dν . (5.2.12)

3The Ornstein-Zernike form corresponds to the large distance behavior of the inverse Fourier transform of the
scalar propagator G(k) ∝ 1/(k2+ξ−2), as will be shown in Sec. 14.1. This is the reason why ξ is sometimes denoted
by ξgap.
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The first three relations are examples of “scaling relations”, while the last one (the one explicitly
depending on D) is an example of an “hyperscaling relation”, and it is true only if D < 4. These
relations can be proved by assuming a phenomenological scaling form of the free energy density (see,
e. g., [41] §11) or, better, by using renormalization group techniques (see, e. g., [42] §3). Scaling
relations are typically limit cases of exact thermodynamic inequalities, like, e. g., the Rushbrooke
(α+2β+ γ ≥ 2) and the Griffiths (α+ β(1+ δ) ≥ 2) inequalities, which follow from the positivity
of the specific heat and the convexity of the free energy, respectively (see, e. g., [41] §4).

What makes continuous transitions particularly appealing from the theoretical point of view
is the property of universality: critical exponents (and other quantities like, e. g., some ratios of
amplitudes) do not depend on the microscopic details of the system considered, but only on some
very general properties of the system, like the symmetries, the dimensionality of the system, and
the nature of the order parameter. Critical phenomena can thus be classified in universality classes
(e. g., the 3D Ising universality class), and this is not only very important from the theoretical
point of view, it is also extremely convenient for computational purposes: if we are interested
in investigating the critical exponents of a monoaxial ferromagnet, we do need to know all the
details of a specific material, we can simply use the Ising model and the results will be the same.
Obviously this is not the case if we are interested in nonuniveral quantities, like, e. g., the critical
temperature.

To theoretically justify the phenomenon of universality it is often said, somehow colloquially,
that close to a critical point the correlation length diverges, and when ξ ≫ 1 the system “forgets”
its microscopic details. This is however quite misleading, since it implicitly suggests that only the
“large” length scales, those of the order of ξ, are important to describe the critical state. Reality
is more complicated/interesting [43]:

A classical hydrodynamic wave is characterized by a definite wavelength, and very little
motion of the fluid occurs at much shorter wavelengths. It is therefore a relatively trivial
matter to introduce continuum forms of density, pressure, etc. for a hydrodynamic
wave. However, the critical fluctuations in a magnet for very long wavelengths are not
the dominant fluctuations. Instead, fluctuations occur on all wavelength scales from
the correlation length to the atomic spacing and all these intermediate wavelengths are
crucial to the physics of critical phenomena. In particular there is no gap in wavelengths
between the wavelengths of fluctuations and the atomic wavelengths. This means it
is difficult to determinate which wavelengths of fluctuations to include in a continuum
description and which to exclude.

Renormalization group methods have been introduced to cope with this problem, and it is only
using this approach that universality becomes natural, see e. g. [42] §3 for an introductory presen-
tation, or [44], or [45] §5 and [46] §25- for a QFT approach.

To show that close to a critical point it is not possibile to simply “neglect” the short distance scales, let us
consider, following [42] §1, the connected two point functions in D = 3. Using translation invariance we immediately
see that G(x,y) = G(x − y), and it can be shown (see e. g. [42] §2) that in the mean field approximation
G(x,y) ∼ |x − y|−1 when h = 0. If we denote by a the lattice spacing in physical units, by dimensional analysis
we thus expect (assuming rotational invariance for the sake of the simplicity)

G(r) =
1

r
g

(
r

ξ
,
a

ξ

)
. (5.2.13)

Using the invariance under translations of the average values, we thus have (neglecting an irrelevant multiplicative
β factor)

χ ∝ LD
(
⟨m2⟩ − ⟨m⟩2

)
= LD

(
⟨msy⟩ − ⟨m⟩⟨sy⟩

)
=
∑
x

(
⟨sxsy⟩ − ⟨sx⟩⟨sy⟩

)
=

=
∑
x

G(x,y) ≈
∫
G(r)dr ,

(5.2.14)

and, by simply “neglecting” the a/ξ dependence of g(r) close to the critical point, we would get (in D = 3)

χ ∝
∫
G(r)dr =

∫
1

r
g

(
r

ξ
, 0

)
dr ∼ ξ2 . (5.2.15)
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The correct critical behavior of χ for h = 0 and t ≈ 0 is however (using the definition of γ, the third of Eq. (5.2.12),
and the definition of ν)

χ ∝ |t|−γ = |t|−ν(2−η) ∝ ξ2−η . (5.2.16)

The fundamental point is that we can not simply neglect the dependence on a/ξ. From the final result we however
see that this dependence is quite simple and, more precisely, the leading behavior for a/ξ ≪ 1 has to be of the form

g

(
r

ξ
,
a

ξ

)
∼
(
a

ξ

)η
g1

(
r

ξ

)
, (5.2.17)

to be consistent both with the correct critical behavior and with dimensional analysis. This is the reason why the

critical exponent η is called anomalous dimension: only for η = 0 we recover the results that could be guessed by

using dimensional analysis and a simple “hydrodynamical” separation of scales.

5.3 How to simulate the Ising model

We now discuss how to simulate the Ising model using the MCMC method. The simplest approach
is that which makes use of the local Metropolis algorithm, and the elementary step of the Markov
chain is given by the following operations:

1. select with uniform pdf a site r of the lattice,
2. define the trial configuration as the configuration in which only the spin in position r is flipped
with respect to the original configuration: sr → s′r = −sr,
3. accept the trial configuration with probability min(1, e−β(E

′−E)), where E is the energy of the
initial configuration and E′ is the energy of the trial configuration. If the trial configuration is not
accepted, keep the old one.

The first two points define the selection probability of the new configuration, which in Sec. 3.3.1
was denoted by Aba. If we denote by C the initial configuration and by C ′ the trial configuration
selected by using the points 1. and 2., the probability of selecting C ′ given C is the same as the
probability of selecting C given C ′, since in point 1. the lattice point r is selected with uniform pdf
and C and C ′ differ only for the value at a single site. The selection probability is thus symmetric,
and according to the general discussion in Sec. 3.3.1 this algorithm satisfies the detailed balance
condition with respect to the Gibbs distribution e−βE/Z(β).

What remains to be proven is that the Markov chain built in this way is irreducible and
aperiodic. Let us start from irreducibility: we have to show that in a finite number of steps
it is possible to reach any configuration C2 starting from a generic configuration C1. Since the
position of the spin to be flipped is chosen in point 1. with uniform pdf, there is a nonvanishing
probability of selecting in subsequent updates all the points, and only those, whose spins have
different orientations in C1 and C2. Moreover the spin-flip probability in point 3. never vanishes, so
we also have a nonzero probability of accepting all the proposed flips. We thus have a nonvanishing
probability of passing from configuration C1 to configuration C2 in less than LD steps, where L is
the linear size of the cubic lattice on which the Ising model is defined.

Since we have just seen that the Markov chain is irreducible, and in an irreducible Markov chain
all the states have the same period (see theorem 3.1.1), it is sufficient to show that the period of
a specific state is 1 to prove that the chain is aperiodic. Let us consider the configuration with
all spins equal to +1. The energy difference E′ −E due to the spin-flip of a randomly chosen site
is simply given by 4D, since any site has 2D next neighbor sites, and by flipping the spin sr the
quantity −srsx (where x is a next neighbor site of r) change from −1 to 1 (we remind the reader
that we conventionally set J = 1, see Sec. 5.1). The probability of accepting the spin flip is thus
in this case

min(1, e−4βD) = e−4βD , (5.3.1)

which is smaller than 1 if β > 0. We thus have a finite probability of rejecting the proposed
updated, and thus 1 ∈ R+1, where R+1 is set the of the recurrence times of the configuration with
all spins equal to +1. The period of this state/configuration is thus GCD(R+1) = 1 and the chain
is aperiodic.
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By iterating the three steps described above we thus obtain an irreducible and aperiodic Markov
chain, and the probability of sampling a specific configuration is, for large enough MC time,
given by its Gibbs weight. Note that it is not convenient to perform measures (e. g., energy
and magnetization measures) after every iteration of the above algorithm, since measures are
clearly strongly correlated after a single spin-flip update; measures are usually performed every
LD elementary single spin updates, or integer multiples of this number.

It is often suggested, instead of randomly selecting the point to be updated, to systematically
sweep the lattice following a specific order, however for the specific case of the Ising model this does
not generically ensure the Markov chain to be irreducible and aperiodic. To provide an explicit
example of this fact let us consider the somehow trivial case of a one dimensional lattice with 3
lattice sites and periodic boundary conditions. Let us assume to sweep the lattice starting from
the left and going to the right, and consider the configuration (+1,−1,+1). It is immediate to see
that by flipping the first spin on the left the energy of the configuration does not change, so the
spin-flip is accepted with probability 1 (see point 3. above), and we reach the state (−1,−1,+1).
Now we have to update the second spin, but also in this case the energy is unchanged by flipping
the spin, and the same happens also for all the subsequent updates. The states sampled by the
Markov chain are thus

(+1,−1,+1)→ (−1,−1,+1)→ (−1,+1,+1)→ (−1,+1,−1)→
→ (+1,+1,−1)→ (+1,−1,−1)→ (+1,−1,+1) ,

(5.3.2)

where the underlined number is the one to be updated. We see that after 6 updates we return back
to the initial state, and the states (+1,+1,+1) and (−1,−1,−1) are never reached. The Markov
chain is thus reducible, and the state (+1,−1,+1) has period 6. The source of the problem can be
traced back to the fact that for the chosen configuration all moves were in fact forced moves, since
the energy never changed and all the proposed spin-flips where thus accepted with probability
one. Analogous configurations, which generate the same problem, can be found also in less trivial
geometries, see [47]. To prevent this type of problem it is sufficient to modify point 2. as follows

2’. with probability 0 < 1− ϵ < 1 define the trial configuration as the configuration in which only
the spin in position r is flipped with respect to the original configuration: sr → s′r = −sr. With
probability 0 < ϵ < 1 the trial configuration is just the old configuration.

Using this prescription it is simple to verify that the Markov chain is irreducible and aperiodic
also if we seep the lattice in a deterministic way. If we start from the configuration C1, to reach
the configuration C2 it is sufficient to select the probability ϵ of not updating the site for all the
sites which have the same sign in C1 and in C2, and to select the probability 1− ϵ of updating the
site in all the other cases, with all the updates being accepted. This can be unlikely, but surely it
has a nonvanishing probability. Furthermore, since there is a nonzero probability of not updating
the configuration, aperiodicity is immediate (even for β = 0). A deterministic lattice sweep is thus
legitimate in this case; note however that the balance condition is satisfied using this approach,
but the detailed balance condition is not, see the analogous discussion in Sec. 3.3.3.

There are a couple of ways in which we can improve the computational efficiency of the basic
Metropolis update. The simplest and more important one is obtained by noting that the energy
of a configuration is written as a sum on nearest neighbors lattice sites. As a consequence, to
compute the difference of energies E′ − E needed in the accept/reject step we do not really have
to know the values E′ and E (whose computation would require a sum on all the lattice), but only
the values of the spins close to the point r where the spin flip is proposed. To make this more
explicit we can write the energy of a generic configuration as (we consider just the case h = 0, that
is the one that will be used in the following)

E[{s}] = −srSr + (independent of sr) , (5.3.3)

where Sr is

Sr =
∑
⟨x,r⟩

sx , (5.3.4)
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Algorithm 9 Metropolis algorithm to simulate the Ising model

loop
randomly select a site r of the lattice with uniform pdf
compute Sr =

∑
⟨x,r⟩ sx

if srSr ≤ 0 then
flip the spin: sr ← −sr

else
draw a random number w ∈ [0, 1) with uniform pdf
if w ≤ exp(−2βsrSr) then

flip the spin: sr ← −sr
end if

end if
end loop

i. e., the sum of the spins in the next neighbor sites of r. The energy difference E′ −E associated
with the spin flip sr → −sr is thus equal to

E′ − E = 2srSr , (5.3.5)

and the corresponding acceptance probability is exp(−2βsrSr). The basic form of the Metropolis
algorithm to simulate the Ising model can thus be written as in Alg. (9), where we implemented
also the optimization already discussed in Sec. 3.3.1: if E′ − E ≤ 0 the update will be surely
accepted, and we do not need to compute the exponential and draw a random number.

A further improvement can be obtained by noting that, apart from the unavoidable random
number generation, the slowest part of the algorithm is the computation of exp(−β(E′ − E)):
everything else can be done using integer arithmetic. However the difference E′ − E can only
assume a finite number of values, hence the possible values of exp(−β(E′−E)) be computed once
for all at the beginning of the simulation. If we define the vector pk by

pk = e−2βk , for k = 1, . . . , 2D , (5.3.6)

we can substitute the block

draw a random number w ∈ [0, 1) with uniform pdf
if w ≤ exp(−2βsrSr) then

flip the spin: sr ← −sr
end if

with the computationally simpler

draw a random number w ∈ [0, 1) with uniform pdf
k = srSr

if w ≤ pk then
flip the spin: sr ← −sr

end if

Note that we can assume k > 0 since if srSr ≤ 0 we do not even need to draw the random number,
see Alg. (9).

We can now discuss the heat-bath algorithm for the Ising model. The starting point is the
representation Eq. (5.3.3) of the energy of the model as a function of sr, where r is a given site
of the lattice. In the heat-bath algorithm the new configuration is generated by sampling the new
value of sr using its conditional probability evaluated at fixed {sx}x ̸=r, see Sec. 3.3.2. We thus
have to select sr = +1 with probability

p(sr = +1) =
eβSr

e−βSr + eβSr
, (5.3.7)
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Algorithm 10 Heat-bath algorithm to simulate the Ising model

loop
select r using a deterministic sweep or a random choice with uniform pdf
compute Sr =

∑
⟨x,r⟩ sx and p(sr = +1) = eβSr/(e−βSr + eβSr )

draw a random number w ∈ [0, 1) with uniform pdf
if w < p(sr = +1) then

sr ← +1
else

sr ← −1
end if

end loop

and sr = −1 with probability p(sr = −1) = 1 − p(sr = +1). This is what we have to do once a
lattice point r has been selected, but how do we select it? We have two possible choices: we can
either select r randomly with uniform pdf or sweep the lattice using a deterministic algorithm,
both the methods providing a irreducible and aperiodic Markov chain. This can be proven in a way
that is completely analogous to the reasoning presented above when discussing the variant move
2’. of the Metropolis algorithm. As for the Metropolis update, detailed balance is satisfied only
if we randomly select the site to be updated, while the balance condition is satisfied anyway. The
deterministic sweep is typically computationally more efficient for two different reasons: it does
not require to draw a random number, and at least some neighbor sites of the site to be updated
have been already updated. Summarizing, we thus obtain Alg. (10). As a further improvement it
is possible to pre-compute the possible values of the probabilities p(sr = +1) as a function of Sr,
in a way that is completely analogous to what has been done before for the Metropolis update.

Heat-bath algorithms are typically more efficient than the Metropolis algorithm, since in an
heat-bath update the value of the variable to be updated is generated using a process that does
not depend on the previous value of the variable. For the specific case of the Ising model, however,
since only two values are available, the two algorithms are practically equivalent.

5.4 Finite size scaling and critical slowing-down

As we repeatedly noted before, phase transitions do not happen in finite systems, and the computa-
tion of physical quantities related to phase transitions and critical phenomena (critical exponents,
critical temperatures, . . .) thus require an infinite volume extrapolation. Finite Size Scaling (FSS)
is the technique that has been developed to systematically carry out this extrapolation.

Before describing FSS it is convenient to preliminary discuss the two different expressions that
can be used to define the susceptibility in the present context, which correspond to different physical
conditions. If we define the average magnetization for unit volume as ⟨m⟩, where

m =
1

LD

∑
x

sx , (5.4.1)

we have seen in Sec. 5.1 that we always have ⟨m⟩ = 0 (we assume periodic b. c.). We have however
also seen, in Sec. 5.2, that the dynamics underlying the vanishing of ⟨m⟩ is very different in the
high and in the low temperature phases.

Let us start by considering the high temperature phase, in which everything is analytic and,
in the large volume limit, all configurations have m ≈ 0. In this case it can be shown that the pdf
P (m) of obtaining a configuration with magnetization for unit volume m is well approximated by

Pht(m) =

√
1

2πσ2
exp

(
−m

2

2σ2

)
, (5.4.2)
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where σ2 = ⟨m2⟩. In [38] §110 this result is obtained by using the microscopic definition of the
entropy and considering only slight deviations from equilibrium. We can reach the same conclusion
by assuming that the value m ≈ 0 is “typical” (i. e. ⟨m⟩ = 0 does not emerge from a cancellation)
and using the central limit theorem when L ≫ ξ, where L is the linear size of the sample and ξ
the correlation length. If we add a small external magnetic field we get, remembering Eq. (5.1.1),

Pht(m) ∝ exp

(
−m

2

2σ2
+ βhLDm

)
, (5.4.3)

from which we see that ⟨m⟩h = hβσ2LD. We can then define the susceptibility χ by the relation
⟨m⟩h = hχ, and we get χ = βσ2LD, i. e. χ = βLD⟨m2⟩, consistently with the definition used in
Sec. 5.2. To summarize we thus have, in the high temperature phase

Pht(m) =

√
βLD

2πχ
exp

(
−βL

D

2χ
m2

)
, (5.4.4)

where χ is the magnetic susceptibility. If we compute ⟨|m|⟩ using this pdf we get

⟨|m|⟩ =
√

2

π

√
χ

βLD
, (5.4.5)

hence ⟨|m|⟩ is nonvanishing at finite volume but approach zero as
√
1/LD by increasing the lattice

size.
Let us now consider the low temperature phase, where ⟨m⟩ = 0 emerges from the cancellation

between the two “typical” values m = ±m0. Each of these values is associated with a stable ther-
modynamic state, which is identified by performing the thermodynamic limit with an infinitesimal
external magnetic field, as discussed in Sec. 5.2. We can thus expect each of these thermodynamic
states to be well approximated by a Gaussian distribution for m, obtaining the pdf

Plt(m) =
1

2

√
1

2πσ2
exp

(
− (m−m0)

2

2σ2

)
+

1

2

√
1

2πσ2
exp

(
− (m+m0)

2

2σ2

)
. (5.4.6)

Note that, since the two thermodynamic phases are related by the Z2 symmetry, the variance σ2 is
the same in both the phases. As before χ′ = βσ2LD, where now χ′ is the magnetic susceptibility
measured in one of the two broken phases, i. e.

χ′ = lim
h→0±

lim
L→∞

βLD(⟨m2⟩h − ⟨m⟩2h) . (5.4.7)

Note that in the low temperature phase we have

lim
h→0±

lim
L→∞

⟨m⟩h = ±m0 , (5.4.8)

and it is not difficult to show that

⟨|m|⟩ = m0 erf

m0

√
βLD

2χ′

+

√
2

π

√
χ′

βLD
exp

(
−m2

0

βLD

2χ′

)
, (5.4.9)

where erf is the error function defined by

erf(z) =
2

π

∫ z

0

e−t
2

dt . (5.4.10)

Since for z ≫ 1 we have (see [12] Eq.7.1.23)

erf(z) ≃ 1− 1

πzez2
, (5.4.11)
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we obtain
lim
L→∞

⟨|m|⟩h=0 = m0 = lim
h→0+

lim
L→∞

⟨m⟩h . (5.4.12)

We thus conclude that ⟨|m|⟩ can be used as a proxy for the spontaneous magnetizationm0 when
performing simulations at h = 0: in the high temperature phase ⟨|m|⟩ vanishes in the large volume
limit, while in the low temperature phase ⟨|m|⟩ converges to m0. For the magnetic susceptibility
we should use

χ = βLD⟨m2⟩ , χ′ = βLD(⟨m2⟩ − ⟨|m|⟩2) (5.4.13)

at high and low temperature, respectively. If we use χ′ at high temperature we get χ′ = χ
(
1− 2

π

)
,

while if we use χ in the low temperature phase we get χ ≃ βLDm0, which diverges in the thermo-
dynamic limit.

From the theoretical point of view χ is a perfectly well defined function also in the low tem-
perature phase (for finite L), and can be used in finite size scaling analyses, however it is not
the susceptibility that would be measured by observing the response of a real ferromagnet to an
external magnetic field. Since our principal aim in the following will be the study of the critical
behavior, we will use χ′ both in the high and in the low temperature regime, in order to simplify
the analysis. The advantage of χ′ with respect to χ is that, in the thermodynamic limit, it diverges
only at the critical point, while χ diverges, in the same limit, in all the low temperature phase.
Note that that the notation χ, χ′ is non standard, so some care is required to understand what
“susceptibility” really means.

Let us now come back to Finite Size Scaling (FSS): in the thermodynamic limit we have, close
to the critical point

χ′ ∼ |t|−γ = (|t|−ν)γ/ν ∼ ξγ/ν . (5.4.14)

In a finite and cubic geometry the maximum value that ξ can reasonably reach is L, i. e. the
size of the lattice. As a consequence we expect the maximum of χ′ to scale, as a function of
the lattice size, as χ′max ∼ Lγ/ν . This simple expectation is confirmed by the result of a more
accurate renormalization group analysis, whose outcome is that the behavior for large L of χ′ can
be parametrized by the form (see [42] §4.4 for an introduction, and [48] for many more details)

χ′(β, L) = Lγ/νχ1(L/ξ) + corr. = Lγ/νχ2

[
(β − βc)L1/ν

]
+ corr. , (5.4.15)

where χ1 and χ2 are universal scaling functions (which also depend on the boundary conditions
adopted and are defined up to multiplicative constants), and the last equality follows from the
leading behavior ξ ∼ |t|−ν and the definition of the reduced temperature t ∝ β − βc. The depen-
dence on all the other dynamical scales (smaller than ξ) has been reabsorbed in the dependence
on ξ using the renormalization group. In the previous equation the term “corr.” stand for finite
size corrections, which diverge with L slower than the leading behavior or can even be background
analytic terms. In the following analyses we will generally neglect these correction terms, although
we will see that they are needed when numerical data are precise enough. Note however that in
some cases, e. g. when the leading critical behavior is non-analytic but not divergent their role
is essential to explain numerical results (the typical example being that of the specific heat in 3D
O(N) models, in which the specific heat exponent α is negative).

The FSS limit, in which Eq. (5.4.15) is valid, is the limit L → ∞ at fixed L/ξ, and it is
important to note that, by fixing any value of L/ξ, we are approaching the critical point when
L → ∞. The standard thermodynamic limit is instead defined by L → ∞ at fixed ξ, and it can
be performed only outside criticality. The connection between the two limit is typically hidden in
the asymptotic behavior of the scaling function χ1 for ξ/L→ 0.

Eq. (5.4.15) is an example of a FSS relation, and using this equation we can, in principle,
determine βc, 1/ν and γ/ν as follows. Let us consider the typical case in which the function
χ2(x) has a single maximum at x = x0, with χ2(x0) = y0. We now have to perform simulations
for several values of L; for each L value we perform different simulations varying β, until we
identify the β value at which the peak is present, which depends on L and will be denoted by
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βpc(L) (often called the “pseudo-critical” inverse temperature). From Eq. (5.4.15) it follows that[
βpc(L)− βc

]
L1/ν = x0 if L is large enough that we can neglect the scaling corrections, hence

βpc(L) = βc + x0L
−1/ν . (5.4.16)

By fitting the numerically obtained values of βpc(L) using this expression we can thus estimate
both βc and 1/ν. Analogously, we can fit the peak values of χ′ using (corrections to this behavior
scale typically as Lγ/ν−ω, where ω > 0 is a further critical exponent)

χ′peak = y0L
γ/ν , (5.4.17)

thus estimating also the value of γ/ν. If βc and the critical exponents have been correctly estimated,
when plotting χ′/Lγ/ν as a function of (β−βc)L1/ν all numerical data should collapse, up to scaling
corrections, on a single curve.

Analogous FSS relations hold for any observable which develops a nontrivial critical behavior,
and, in particular, from ⟨|m|⟩ ∼ (−t)β for t ≲ 0 one gets

⟨|m|⟩(β, L) = L−β/νm2[(β − βc)L1/ν ] + corr. , (5.4.18)

and from C ∼ |t|−α it follows that

LD(⟨ε2⟩ − ⟨ε⟩2) = Lα/νC2[(β − βc)L1/ν ] + corr. , (5.4.19)

where ε is the energy density E/LD. To determine βc using ⟨|m|⟩ is nontrivial, while using the
specific heat we can adopt, if α > 0, a procedure that is completely analogous to the one used
when discussing the magnetic susceptibility.

Another commonly used observable in FSS is the Binder cumulant

U =
⟨m4⟩
⟨m2⟩2 . (5.4.20)

Note that different notations for this observable exist in the literature (U , U4, B4, . . .) as well as
different normalization constants. The peculiarity of U is that it assumes, in the thermodynamic
limit, constant but different values in the high and in the low temperature phases. In the high
temperature regime we can use the single Gaussian approximation in Eq. (5.4.2) for the pdf of m,
hence we immediately see that U = 3 in this phase. In the low temperature phase we have instead
to use the double Gaussian approximation in Eq. (5.4.6), from which it follows that, in the large
volume limit, U converges to 1. The FSS behavior of the Binder cumulant is particularly simple,
since it just depends on the critical exponent ν:

U(β, L) = U2[(β − βc)L1/ν ] + corr. . (5.4.21)

In order for U(β, L) to assume, for large L, the correct high and low temperature limits, the
function U2(x) has to satisfy the constraints

lim
x→∞

U2(x) = 1 , lim
x→−∞

U2(x) = 3 . (5.4.22)

The values of U(β, L) computed for several β values on different lattices have thus to cross at a
point which, up to scaling corrections, coincides with βc, and the slope of U(β, L) at the crossing
point is proportional to L1/ν . These properties can be used to estimate βc and 1/ν. The critical
value of the Binder parameter4, often denoted by U∗, is another universal quantity (whose value
depends also on the boundary conditions adopted).

4While the universal function, e.g., of the susceptibility is defined up to two nonuniversal multiplicative factors
(one for the function and one for its argument), the universal function of the Binder cumulant depends just on a
single nonuniversal factor, related to the normalization of its argument, since multiplicative terms simplify in the
ratio defining the Binder cumulant.
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Another very useful quantity, which we however do not discuss, is the so called second moment
correlation length ξ2nd, often denoted simply by ξ when there is no possibility of confusion with
the infinite volume correlation length, see, e. g., [48] §1.2 or [49]. A peculiarity of this observable
is that the values of ξ2nd/L computed on different lattice sizes cross close to a critical point, and
the FSS of ξ2nd/L is again of the form Eq. (5.4.21).

Close to a critical point also autocorrelation times diverge, a phenomenon known as critical
slowing down, and new critical exponents, related to the “dynamics” of the system, are introduced
to describe this behavior:

τexp ∼ ξz , τ
(F )
int ∼ ξz

′
. (5.4.23)

Note that in these definitions, when local updates are used, the autocorrelation times are defined
in unit of complete lattice updates, and not of single site update, with a complete lattice update
consisting of LD single site lattice updates. Although there are theoretical reasons to expect in
general z ̸= z′ (see [6] §2), with z′ ≤ z (since τint ≤ τexp, see Sec. 4.1.1) in practice z and z′ often
turns out to have consistent values. It is important to stress that z and z′ are not in general physical
quantities, since they characterize the Monte Carlo dynamics, which is completely arbitrary as far
as its long time distribution converges to the Gibbs distribution. In particular, different algorithms
can exist to simulate the same physical system with very different dynamical critical exponents; an
explicit example will be presented in Sec. 6.4. Only in some cases the MC update can be associated
with a real physical evolution, and only when this happens the dynamical critical exponents acquire
direct physical significance. For example, the dynamics of random thermal fluctuations is analogous
to the dynamics generated by the single site Metropolis update, which in this context is known as
Glauber or Model A dynamics, see [50].

Although generic dynamical critical exponents (i. e. the dynamical critical exponents of generic
updates) are typically of little direct physical relevance, they are extremely important from the
algorithmic point of view, since the values of z, z′ determine the numerical effectiveness of the MC
algorithm. We have indeed seen in Sec. 4.1.1 that the (square) error to be associated with the
primary observable F is given by

σ2
F
=
σ2
F

N
(1 + 2τ

(F )
int ) , (5.4.24)

where N is the size of the sample, σ2
F is the variance of the observable F , and τ

(F )
int the associated

integrated autocorrelation time. Let us consider, for example, the case of the magnetization |m|:
close to a critical point we have

σ2
|m| = ⟨m2⟩ − ⟨|m|⟩2 ∼ χ′/LD ∼ Lγ/ν−D , (5.4.25)

ad if we use τ
|m|
int ∼ Lz

′
we get

σ2
|m| ∼

1

N
Lz
′+γ/ν−D . (5.4.26)

If we denote by TCPU the CPU time needed to generate the sample, we have N ∼ TCPU/L
D and

finally

σ2
|m| ∼

1

TCPU
Lz
′+γ/ν . (5.4.27)

To understand the effective numerical significance of this scaling we need some numerical values:
typically γ/ν is close to 2, and for local update algorithms (Metropolis or heat-bath), which behaves
roughly as a diffusion process5, we expect z, z′ ≈ 2. If we want the error of |m| not to grow when
increasing L, we thus have to scale the CPU time approximately as TCPU ∼ L4. If we use instead
the cluster algorithm discussed in Sec. 6.4, which is characterized by a extremely small dynamical
exponents, it is sufficient to scale the CPU time as L2.

It is interesting to note that the scaling with L just discussed emerges only close to a critical
point. When performing simulations far from phase transitions χ′ assumes a finite value in the

5We remind the reader that for a diffusion process the mean square distance reached at time t is ∝
√
t, where

the proportionality constant depends both on the diffusion constant and on the dimensionality of the system.
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thermodynamic limit, as well as the integrated autocorrelation time; from the previous reasoning
we thus conclude that the CPU time needed to keep the error of |m| constant does not scale with L.
This despite the fact that the number of samples decreases as L−D by increasing L at fixed TCPU.
This phenomenon goes under the name of (strong) self-averaging, and can be easily explained: far
from criticality one has easily L≫ ξ, and in this regime different parts of the lattice are effectively
independent from each other. If we double the size of L, the number of independent components
will be multiplied by 2D, and for local observables this factor compensates for the smaller number
of updates that can be performed at fixed CPU time. Note that locality is essential in the previous
reasoning: for quantities that are not written as the average of a local observable, like the specific
heat or the magnetic susceptibility, self-averaging simply fails, see [51] §2.3.8.

5.5 An explicit example

In this section we discuss some numerical results obtained for the finite size scaling of the two
dimensional Ising model (with vanishing external magnetic field). Our goal is twofold: on one
hand we want to show that the leading order FSS relations discussed in the previous section
correctly describe numerical data in the large size limit, on the other hand we also want to show
that corrections to these relations do exist, which become negligible in the large size limit. For
these purposes we reach quite large lattice sizes and use the very efficient single cluster algorithm
that will be introduced in Sec. 6.4, in order to keep statistical errors under control also for the
largest lattices. Much larger statistics would be required to reach the same accuracy using the
local Metropolis or heath-bath updates of Sec. 5.3, as will be discussed in the end of this section
when presenting numerical data for the critical slowing down.

Numerical data have been generated using lattice sizes ranging from L = 20 up to L = 160,
performing simulations at 40 different β values for each lattice size. The statistics accumulated is
of the order of 106 single cluster updates for each simulation point, which correspond to a CPU
time ranging from about 30s for each β value on the smallest lattice size to about 80min on the
largest lattice size.

In Fig. (5.3) we report data for the main thermodynamic observables as a function of β for the
different lattice sizes simulated. Note that, when studying critical phenomena, it is customary to
symplify the form of the specific heat and the susceptibilities by removing irrelevant powers of β,
which do not affect the critical behavior:

C = LD(⟨ε2⟩ − ⟨ε⟩2) , χ = LD(⟨m2⟩) , χ′ = LD(⟨m2⟩ − ⟨|m|⟩2) . (5.5.1)

The observed behavior is consistent with theoretical expectations: the average magnetization al-
ways vanishes, the average absolute magnetization slowly converges to the spontaneous magneti-
zation by increasing the lattice size, the energy density does not show any divergence, while the
specific heat seems to develop a divergence for increasing L. The susceptibility χ diverges, in the
thermodynamic limit, in the whole low temperature phase β > βc, while χ

′ diverges only at the
critical point β = βc. The Binder cumulant U at finite L smoothly interpolates between 3 and 1,
with a crossing point at β = βc, where the slope diverges for large L.

Of these critical behaviors the only one which requires some more worlds of explanation is that
of the specific heat C: the analytically known critical index α of the two dimensional Ising model
is α = 0, and one could naively think that the specific heat does not diverge at the critical point.
This is however not the case: for the two dimensional Ising model α = 0 just means that the
specific heat diverges for large L slower than any positive power in L. In fact it can be shown
that the divergence of C is logarithmic in L, since for β ≈ βc we have in the thermodynamic limit
C ∝ log |β − βc| (see, e. g. [45] §2.2.4 or [39] §V).

As a first check that finite size scaling works, we show the collapse plots of the appropriately
rescaled observables as a function of (β − βc)L1/ν (see, e.g., Eq. (5.4.15)), using the know critical
properties of the two dimensional Ising model,

βc =
1

2
log(1 +

√
2) ≃ 0.4406867935 , ν = 1 , γ = 7/4 = 1.75 , β = 1/8 , (5.5.2)
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Figure 5.3: Plot of average magnetization, average absolute magnetization, energy density, specific
heat, susceptibility χ, subtracted susceptibility χ′, and Binder cumulant as a function of β. The
solid red line in the plot of ⟨|m|⟩ reprents the analytically known spontaneous magnetization for
L → ∞, which is given by m0(β) = (1 − sinh−4(2β))1/8 (see e. g. [45] §2.2.5 or [39] §X). The
solid red line in the inset of the plot of U denotes the analytically computed value of the Binder
cumulant at βc for periodic b. c.: U∗4 = 1.1679227(4), see [52].
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see Sec. 7.A and references therein. This check is possible (almost) only in the two dimensional
Ising case, for which analytical results exist; however we will soon show how to estimate βc, ν and γ,
so a collapse plot of this type can always be used, to check a posteriori the consistency of estimated
critical properties. We do not consider the finite size scaling of C due to the subtleties related to
the logarithmic divergence previously noted. Numerical results are displayed in Fig. (5.4), and a
nice data collapse for the large lattices is clear; corrections to scaling, that have been neglected in
the previous section and vanish as L−2 (see, e. g., [48] §3.5), can be easily seen from the zooms
presented in the insets. Numerical data are thus fully consistent with the analytically known values
of βc, ν, γ and β (critical exponent).

To estimate the values of the critical temperature βc, and of the critical exponents γ and ν, we
can follow the strategy outlined in Fig. (5.4): as a first step we have to estimate, for several lattice
sizes L, the temperatures βpc(L) at which χ

′(β) reaches its maximum value. For this purpose we
can fit χ′(β), for fixed L and for β close to the peak position, with a function of the form

χ′(β) ≈ a(β − βpc(L))2 + χ′max(L) , (5.5.3)

where a, βpc(L) and χ′max(L) are fit parameters. Close enough to the peak value of χ′(β) this
function surely well describes numerical data (it is just a Taylor expansion truncated to second
order), but the range of validity of this functional form is not known a priori. For this reason we
have to try several fit ranges, to identify the ones corresponding to fits with reasonable χ2/d.o.f
values. The residual dependence of the optimal fit parameters on the fit range has to be considered
as a systematic error of the fit procedure.

The results obtained for βpc(L) and χ′max(L) are shown in Fig. (5.5). It is clear that βpc(L)
saturates to a finite limiting value for increasing L values, while χ′max diverges in the same limit. As
discussed in the previous section, the values of βpc(L) should scale, for large values of L, according
to the functional form

βpc(L) ≈ βc + bL−1/ν , (5.5.4)

while χ′max(L) should scale as (for the two dimensional Ising model the exponent ω parametrizing
the leading scaling correction is larger then γ/ν).

χ′max(L) ≈ c0 + c1L
γ/ν . (5.5.5)

By fitting the data displayed in Fig. (5.5) using these functional forms for several fit ranges, i. e.
by systematically removing the smallest lattice sizes (note that the previous functional forms are
just leading large L terms), we can estimate the values of βc, ν and γ/ν (and hence of γ). The
results of this analysis are shown in Fig. (5.6), where we report data corresponding to four different
fit ranges: L ≥ Lmin with Lmin = 20, 40, 60, 80. The χ2/d.o.f of all these fits is reasonable, and
fit results are quite stable; obviously errorbars increase by reducing the fit range used, and hence
the size of the data set. Taking into account the systematics of the fit procedure we report as our
final estimates the following values

βc = 0.44075(10) , 1/ν = 1.005(25) , γ/ν = 1.746(4) , (5.5.6)

which correspond to the bands shown in Fig. (5.6).
Using just the data of the Binder cumulant close to the crossing, and performing a slightly

more sophisticated analysis using Eq. (5.4.21), we get instead

βc = 0.44069(3) ; ν = 1.000(10) . (5.5.7)

We close this section by discussing the critical slowing down in the two dimensional Ising model,
comparing the local Metropolis and the cluster updates. For this purpose we performed simulations
at fixed β = βc, using 5 × 107 updates of the whole lattice when adopting the local Metropolis
algorithm (i. e., 5× 107L2 local updates) or 5× 107 single cluster updates. The scaling with L of
the error bars is shown in Fig. (5.7) for two test observables (⟨|m|⟩ and χ), but the same behavior
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Figure 5.4: FSS of the average absolute magnetization, of the susceptibility, of the substracted
susceptibility χ′, and of the Binder cumulant U , obtained by using the analytically known values
reported in Eq. (5.5.2). Scaling corrections can be clearly seen in the insets.

is seen for all observables: errors scale almost proportionally to L for the local Metropolis update,
while they are independent of L for the cluster update. From Eq. (5.4.26) we expect errors to scale
proportionally to L(z′+γ/ν−2)/2, and we have just seen that γ/ν = 1.75, hence we conclude that
z′ ≈ 2.25 for the local Metropolis update. For the cluster update we have instead z′ ≲ 0.25, since
no divergence can be seen for increasing L values in the cluster update data of Fig. (5.7).

A similar conclusion can be reached by studying the autocorrelation function of the magnetiza-
tion using local Metropolis updates: results for the autocorrelation function (again at β = βc) for
different lattice sizes are shown in Fig. (5.8) (left panel). By fitting with an exponentially decreas-
ing function these data we can extract the exponential autocorrelation times τexp(L), which are
shown in Fig. (5.8) (right panel) together with a fit of the form τexp ≈ aLz. The optimal fit value
for the exponent z is z ≈ 2.1. The precise determination z = 2.1667(5) of the dynamic critical
exponent of the two dimensional Ising model with local Metropolis update has been obtained in
Ref. [53], and this result is in the same ball-park of our rough estimates.
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obtained by taking into account the systematic errors of the fit procedure.
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Chapter 6

Other models and algorithms

6.1 Potts models

The q-states Potts model differs from the Ising model in that the variables associated with each
lattice site can assume q values instead of the 2 values of the Ising model: sx = 0, 1, . . . , q−1. The
energy of a configuration in the Potts model is given by

E[{sx}] = −J
∑
⟨x,y⟩

δsx,sy − h
∑
x

δsx,0 , (6.1.1)

hence there is a contribution −J for each couple of nearest neighbor sites with the same “orien-
tation”, and a contribution −h for each site whose variable has the 0 value. The model is thus
ferromagnetic if J > 0 and anti-ferromagnetic if J < 0, while h acts as an external magnetic field
for the variables whose value is 0. Note that the choice of coupling the magnetic field only to sites
x with vanishing sx is completely arbitrary: the use of −hδsx,α with any value 0 ≤ α ≤ q − 1 is
equally legitimate. As we did for the Ising model, we consider only the ferromagnetic case, and by
measuring the temperature in units of J we can formally fix J = 1 (see Sec. 5.1). To completely
define the model we also have to specify the boundary conditions, and, if not otherwise specified,
we will always assume periodic b. c.

When using periodic b. c. (or, more generally, b. c. which do not favor any state), for h = 0 the
energy of a configuration just depends on the number of nearest neighbor sites whose site variables
have the same value. As a consequence, if denote by Vi (with i = 0, . . . , q − 1) the set of the sites
with sx = i, and we perform the transformation

if y ∈ Vi then sy = σ(i) , (6.1.2)

where the function i → σ(i) is a permutation of the integers 0, . . . , q − 1, the energy does not
change. The q-states Potts model is thus invariant under the symmetric group Sq, i. e. the group of
permutations of q objects. Note that S2 = Z2 and the 2-states Potts model can be exactly mapped
to an Ising model: for q = 2 we have indeed sx = 0, 1, and we can define Ix = 2(sx − 1/2) = ±1.
It is then immediate to verify that in this case

δsx,sy =
IxIy + 1

2
(for q = 2) , (6.1.3)

hence the q = 2 Potts model with couplings J and h is equivalent to the Ising model with couplings
J/2 and −h.

When h = 0, the Sq symmetry of the q-states Potts model is spontaneously broken to Sq−1 in
the low temperature phase β < βc. For D = 2 it can be shown that βc = log(1 +

√
q) and that

the transition is continuous for q = 2, 3, 4 and discontinuous for q ≥ 5, with the latent heat being
a monotonously increasing function of q ≥ 5 (see, e. g., [54], [55] §12). In D = 3 the transition
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is continuous only for q = 2. When h > 0 a single state is favored, and the symmetry Sq is
explicitly broken to its subgroup Sq−1, which does not get spontaneously broken for any value of
β. If instead h < 0 a single state is disfavoured, and the symmetry is once again explicitly broken
to Sq−1; however in this case this residual symmetry is spontaneously broken to Sq−2 (if q > 2,
obviously) in the low temperature phase, see, e. g., [56] for the D = 3, q = 3 case.

Two different order parameters can be introduced for the Potts model: a real and a complex
one. Let us start from the real one:

m1 =
1

LD

∑
x

qδsx,0 − 1

q − 1
. (6.1.4)

Using this definition ⟨m1⟩ = 0 if all the states have the same probability of occurring in the
simulation, and ⟨m1⟩ ≠ 0 otherwise (more precisely: if the state 0 has a probability of occurring
which is not equal to the average probability of the other q−1 states). As for the magnetic coupling
in Eq. (6.1.1), the use of the 0 state as reference state in the definition ofm1 is completely arbitrary.
The complex order parameter is more symmetric, since it does not use a reference state, and it is
defined by

m2 =
1

LD

∑
x

exp

(
i
2π

q
sx

)
. (6.1.5)

Also in this case ⟨m2⟩ vanishes if all the states are equiprobable and it is nonzero otherwise.
On a finite lattice with periodic boundary conditions we always have, for h = 0, ⟨m1⟩L =

⟨m2⟩L = 0, as can be shown by adapting the proof of the analogous identity ⟨m⟩L = 0 presented
in Sec. 5.1 for the Ising model (instead of a spin flip we have to use a permutation of the states).
This means that the numerical estimates of ⟨m1⟩L and ⟨m2⟩L have to be compatible with zero
if the simulation time is long enough. Since the order parameter m1 uses a reference state in
its definition, it is not completely trivial to introduce for this order parameter a proxy of the
spontaneous magnetization, which plays a role analogous to ⟨|m|⟩ for the Ising model. For the
order parameter m2 we can instead use ⟨|m2|⟩, where now | | denotes the absolute value of a
complex number. If we use m1 we can thus only study the susceptibility LD⟨m2

1⟩ (as in Sec. 5.5
we neglect irrelevant powers of β), which diverges in the whole low temperature phase; if we use
instead m2 we can once again introduce both the susceptibility χ = LD⟨|m2|2⟩ and the subtracted
susceptibility χ′ = LD(⟨|m2|2⟩− ⟨|m2|⟩2), and χ′ diverges only at βc. Let us stress once again that
both χ and χ′ can be used in a FSS analysis, the only advantage of χ′ being that it simplifies the
estimation of βc (and ν).

Let us now discuss the numerical simulation of the Potts models. Following the same line of
thought of Sec. 5.3 it is immediate to see that the following algorithm produces an irreducible and
aperiodic Markov chain, which satisfies the detailed balance with respect to the Gibbs distribution:

1. select with uniform pdf a site r of the lattice,
2. define the trial configuration as the configuration in which only the value sr is changed; in
particular define the trial state s′r by sampling with uniform pdf the q− 1 states different from sr,
3. accept the trial configuration with probability min(1, e−β(E

′−E)), where E is the energy of the
initial configuration and E′ is the energy of the trial configuration. If the trial configuration is not
accepted, keep the old one.

Step 2. is the analogous of the spin flip in the Ising model, and the selection probability of s′r has
to be uniform in order to guarantee the symmetry of the selection matrix, and thus the possibility
of using the Metropolis algorithm instead of the Metropolis-Hastings one. If we denote by r a
random number in [0, 1) with uniform pdf, step 2. can be implemented as follow:

s′r = ⌊sr + 1 + (q − 1)r⌋ mod q , (6.1.6)

indeed the argument x of the floor function ⌊ ⌋ satisfies sr +1 ≤ x < sr + q, hence sr +1 ≤ ⌊x⌋ ≤
sr + q − 1, with all the integer values in this range being equiprobable.
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An algorithm associated with an irreducible and aperiodic Markov chain, which satisfies the
balance condition but not the detailed balance condition is instead the following (compare with
the analogous discussion in Sec. 5.3)

1’. sweep the lattice in a deterministic way, selecting site r
2’. define the trial configuration as the configuration in which only the value sr is changed; in
particular define the trial state s′r by sampling with uniform pdf all the q states,

followed by the usual accept/reject step 3., which does not change. Point 2. can obviously be
implemented by using s′r = ⌊qr⌋, where r ∈ [0, 1) is a random number with uniform pdf.

In Sec. 5.3 it was shown by an explicit example that the condition 2’. (or analogous ones
in which a nontrivial possibility of selecting the same value is introduced) has to be necessarily
adopted when using a deterministic sweep of the lattice, since otherwise the associated Markov
chain is not irreducible nor aperiodic. It is a peculiarity of the models with q > 2 (not necessarily
Potts models) that an irreducible and aperiodic Markov chain is obtaining also by using

1’. sweep the lattice in a deterministic way, selecting site r
2. define the trial configuration as the configuration in which only the value sr is changed; in
particular define the trial state s′r by sampling with uniform pdf the q− 1 states different from sr,

once again followed by the step 3.
The proof of this fact is not completely trivial, and we approximately follow the discussion presented in

[47]. We denote by W (1), . . . ,W (LD) the stochastic matrices associated with a single spin update, and by W =

W (σ(1)) · · ·W (σ(LD)) the stochastic matrix associated with a deterministic sweep of the whole lattice, where i→ σ(i)
is a permutation which specifies the way in which the lattice is swept. Since the matrices W (k) are associated with
the update of a single site, since all the values of the site variable different from the original one are equiprobable,
and since the acceptance probability never vanishes, the restriction of the matrix W (k) to the single site variable

on which it acts nontrivially is a q × q matrix a
(k)
ij whose elements satisfy a

(k)
ij > 0 if i ̸= j and a

(k)
ii = 0. It is then

immediate to show that all the entries of the matrix (a(k))2 are positive definite if1 q > 2. From this fact we can
draw two consequences: it can be easily shown that the stochastic matrix

W ′ = [W (σ(1))]2 · · · [W (σ(LD))]2 (6.1.7)

represents an irreducible and aperiodic Markov chain, moreover it follows from the theorems of Sec. 3.2 that (a(k))2

has a single eigenvalue λ = 1, with all the other eigenvalues satisfying |λ| < 1. In particular, if λ is an eigenvalue
of a(k) with |λ| = 1, then λ = 1. Since W (k) can be written in a block diagonal form, in which the two diagonal

blocks are a qL
D−1 × qL

D−1 identity matrix and a(k), the same property is true also for W (k): if λ is an eigenvalue
of W (k) with |λ| = 1, then λ = 1.

Let us now suppose that v is an eigenvector of W , and the eigenvalue satisfies |λ| = 1. From

W (σ(1))W (σ(2)) · · ·W (σ(LD))v = λv (6.1.8)

it follows that W (σ(2)) · · ·W (σ(LD))v is an eigenvector of W (σ(1)) with eigenvalue λ, which satisfies |λ| = 1, hence,
due to the previous discussion, we must have λ = 1. Moreover, by induction, it easily follows that v is an eigenvector
of any W (k) with eigenvalue 1.

Let us finally assume that two linearly independent eigenvectors ofW exist, denoted by v and w, both associated
with the eigenvalue λ = 1. From what we have just seen v and w have to be also eigenvectors of all theW (k) matrices,
with eigenvalue 1. Then they should also be two linearly independent eigenvectors of W ′ with eigenvalue 1, which
is however impossible: W ′ is associated with an irreducible and aperiodic Markov chain, hence the eigenspace of
λ = 1 is unidimensional.

We have thus proved the following properties of the spectrum of the stochastic matrix W : the eigenvalue λ = 1

is nondegenerate, and all the eigenvalues with λ ̸= 1 satisfy |λ| < 1. As noted on pag. 27 (“Sometimes it can be

useful to note. . .”) this implies that the Markov chain associated with W is irreducible and aperiodic.

Analogously to the Ising model case, to compute the difference of energies E′ −E entering the
Metropolis step we do not need to sum up the contributions of all the sites, we just need to study
the nearest neighbors of the site r we want to update. In particular, it is convenient to define the

q quantities N
(r)
i :

N
(r)
i =

∑
⟨x,r⟩

δsx,i , (6.1.9)

1This is the only point in which this fundamental assumption is used. This sentence is not true for q = 2, as the
Ising case shows.
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i. e. the number of nearest neighbors of the site r whose site variable is equal to i. Using this
definition we immediately have

exp
(
− β(E′ − E)

)
= exp

(
βJ(N

(r)
s′r
−N (r)

sr )
)
, (6.1.10)

moreover these numbers can be computed once at the beginning of the simulation and stored in
an array.

Using the variables N
(r)
i it also simple to write an heat-bath update algorithm for the q-states

Potts model: it is sufficient to select sr = α with probability

pα =
exp

(
βJN

(r)
α

)
∑q−1
k=0 exp

(
βJN

(r)
k

) , (6.1.11)

which can be done by introducing Qi =
∑
α≤i pα (for i = 0, . . . , q−1), generating a random number

r ∈ [0, 1) with uniform pdf, and selecting the smallest i such that r ≤ Qi. Note that the largest
the value of q is, the more efficient the heat-bath algorithm is with respect to the Metropolis one.

6.1.1 FSS at discontinuous transitions

Finite size scaling at discontinuous transitions is in some cases formally similar to the one that is
present at continuous phase transitions, but the physics underlaying the two cases is completely
different: at a discontinuous transition the correlation length is not divergent, and RG arguments
can not be directly applied. Strictly speaking there is not even universality in discontinuous
transitions, since the observed FSS behavior strongly depends on the boundary conditions adopted,
see, e. g., [57].

If we consider periodic b. c. (which do not favor any state and do not induce domain-walls), we
can use for the pdf of the energy density a double Gaussian approximation analogous to the one
used for the magnetization density in the low temperature phase of the Ising model in Sec. 5.4.
This does not happen by chance: in the low temperature phase of the Ising model a discontinuous
transition is present when going from h = 0− to h = 0+. Note however that in the Ising case
the two Gaussian distributions correspond to two different phases related by the Z2 symmetry,
hence the height and width of the two Gaussian have to be same; this is generically not the case
for the phases coexisting at a temperature driven discontinuous transition. Coexistence of the two
phases at the discontinuous transition only implies the statistical weights of the two phases to be the
same, hence the areas of the two Gaussian distributions have to be the same [58]. Using this double
Gaussian approximation it is possible to obtain the scaling χ′max ∝ LD and Cmax ∝ LD of the
maxima of χ′ and C as a function of the lattice size L, as well as the scaling βpc(L)− βc ∝ 1/LD

of the pseudo-critical temperature (see, e. g., [58], or [59] and references therein for a rigorous
discussion). When using periodic b. c., FSS at discontinuous transition is thus analogous to the
one observed at continuous transitions, with effective critical exponents α = γ = 1 and ν = 1/D.

An analogue of the critical slowing down is present also at first order phase transitions, although
in this case the precise form of the scaling depends on the boundary conditions adopted. For
periodic b. c. the autocorrelation time grows with the lattice size exponentially in LD when using
local update algorithms, and this timescale can be interpreted as the typical time needed to explore
the different coexisting phases. This time is the equivalent, in the quantum context, of the inverse of
the tunneling probability, which is indeed exponential in the volume. The reason for this behavior is
quite clear in the two Gaussian approximation: to switch from one Gaussian to the other by means
of local moves we have to cross a region where the probability density is exponentially small in the
volume. Note however that this behavior (unlike the case of continuous phase transitions) strongly
depends on the boundary conditions adopted: if open b. c. are used it is simpler for “bubbles”
of the other phase to enter from the boundary, and the critical slowing down is less severe, at the
expense of larger finite volume corrections. To cope with the exponential critical slowing down that
is present when using periodic b. c. one possibility is the use of the multicanonical algorithm [60]:
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Figure 6.1: Plot of average absolute magnetization, energy density, specific heat, susceptibility
χ, subtracted susceptibility χ′, and Binder cumulant as a function of β for the two dimensional
8-states Potts model.
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Figure 6.2: FSS of the average absolute magnetization, the specific heat, the susceptibility and the
subtracted susceptibility. The expected theoretical values βc = log(1 +

√
8), ν = 1/2, γ = 1 and

β = 0 have been used.

an auxiliary probability distribution is sampled, in which no obstacles prevent to move from one
coexisting phase the other, and the results are finally reweighted to estimate expectation values
with respect to the original Gibbs distribution2. For more informations of discontinuous transitions
and their simulation see, e. g., [57] and [61].

We close this section by presenting some numerical results for the 8-states two dimensional
Potts model, which displays a discontinuous phase transition at βc = log(1+

√
8) ≈ 1.34245. These

results have been obtained by using 2 × 107 complete lattice sweeps of the heat-bath algorithm
for L = 12, 16, 20, and 5 × 107 complete sweeps for L = 24, 28. Simulation time for a single β
value goes from approximately 5.5 min on L = 12 to about 70 min for L = 28. The complex order
parameter m2 has been used, and the β factors in C, χ, and χ′ have been neglected, as done in
Sec. 5.5.

In Fig. (6.1) raw data are presented, while in Fig. (6.2) data have been rescaled according to the
expected behavior at discontinuous transitions for two-dimensional models with periodic boundary
conditions. The discontinuous nature of the transition is quite clear (the Binder cumulant U
diverges), however significant scaling corrections are evident. To obtain result with similar accuracy
on larger lattices, without using more sophisticated simulation algorithms, would however require
a significantly larger simulation time, due to the exponential critical slowing down.

6.2 Clock models

The configuration space of the clock models is the same of the Potts models: to each site x of
the lattice a variable sx is associated, which takes value in {0, . . . , q − 1}, however the energy of a

2Note that in this case the overlap problem discussed in Sec. 2.2 is absent: the sampled distribution is broader
than the original one.
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configuration is now

E = −J
∑
⟨x,y⟩

cos

(
2π

q
(sx − sy)

)
− h

∑
x

cos

(
2π

q
sx

)
. (6.2.1)

Clock models can be rewritten also using the complex site variable Cx = exp
(
i 2πq sx

)
, indeed it is

immediate to verify that the energy of a configuration is equal to

E = −J
∑
⟨x,y⟩

ℜ (C∗xCy)− h
∑
x

ℜ (Cx) . (6.2.2)

Note that sometimes, especially in the early references, clock models are called planar Potts models.
In the Potts models the interaction energy of two nearest neighbor sites can only take two

values (for any q), depending whether the variables associated with the two sites are equal or not;
in clock models, instead, more possibilities exist, at least for q > 3. For q = 2 it is simple to show

that the clock model is just the Ising model, while for q = 3 the function cos
(

2π
q (sx − sy)

)
can

only assume two values (1 if sx = sy and −1/2 if sx ̸= sy), hence we have in this case

cos

(
2π

q
(sx − sy)

)
= δsx,sy −

1

2
(1− δsx,sy ) = −

1

2
+

3

2
δsx,sx (q = 3) , (6.2.3)

and the q = 3 clock model is thus equivalent to the q = 3 Potts model with J → 3
2J . For q > 3 the

symmetry group of the clock models is instead smaller than that of the Potts models: for h = 0 it
is easy to verify that the energy is invariant under the transformation

sx → s′x = (sx + α) mod q (6.2.4)

where α is a constant integer number. As a consequence, the invariance group of the clock model
is (for q ̸= 3) Zq, the group of integers modulo q, which for q > 2 is a proper subgroup of Sq.

It is not difficult to show that clock models with q = 4 and q = 2 (the Ising model) are related
to each other [62]. Using the complex formulation, the partition function of the q = 4 model can
be written (considering the case h = 0 for the sake of the simplicity) as

Zq=4(β) =
∑
{Cx}

e−βE =
∑
{Cx}

∏
⟨x,y⟩

eβJℜ(C
∗
xCy) , (6.2.5)

moreover, using Cx ∈ {±1,±i}, it is easily seen that the numerical values of the exponential
eβJℜ(C

∗
xCy), with their degeneracies, can only be

eβJℜ(C
∗
xCy) =

 eβJ deg = 4
e−βJ deg = 4
1 deg = 8

. (6.2.6)

The square of the partition function of the model with q = 2 can instead be written in the form

Zq=2(β)
2 =

∑
{D′x},{Dx}

∑
⟨x,y⟩

eβJ
[
DxDy+D

′
xD
′
y

]
, (6.2.7)

where Dx, D
′
x = ±1, and it is simple to verify that

eβJ
[
DxDy+D

′
xD
′
y

]
=

 e2βJ deg = 4
e−2βJ deg = 4
1 deg = 8

. (6.2.8)
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Since the values and the degeneracies of the exponentials are the same in the two cases (but for
a factor of two in the exponent) and the total number of configuration of Cx is equal to the total
number of configurations Dx, D

′
x, we conclude that

Zq=4(β) =
(
Zq=2(β/2)

)2
. (6.2.9)

In the low temperature phase, the Zq symmetry that is present when h = 0 gets spontaneously
broken to Zq−1, and an order parameter for this SSB is identical to the complex order parameter
m2 of the Potts models:

m =
1

LD

∑
x

Cx . (6.2.10)

If h > 0 the symmetry is explicitly broken to Z2 and no phase transition is present; this is the
case also if h < 0 and q is even, while if h < 0 and q is odd the residual Z2 symmetry can be
spontaneously broken in the low temperature phase.

In D = 2 the h = 0 transition between the low and the high temperature phases is always
continuous, however only the cases q = 2, 4 (Ising universality class) and q = 3 (3-states Potts
model) correspond to “standard” continuous phase transitions. For q ≥ 5 the more exotic case
of the Berezinskii-Kosterlitz-Thouless (BKT) transition appears, an infinite order phase transition
according to the old Ehrenfest classification, see [63] for an early investigation. In D = 3 the
transition is discontinuous for q = 3, it is continuous in the Ising universality class for q = 2, 4,
and it is continuous in the O(2) universality class for q ≥ 5; this is an example of symmetry
enlargement at a second order phase transition, which requires a renormalization group framework
to be understood (in short: the terms of the continuous effective action which are invariant under
Zq but not under O(2) are irrelevant if q ≥ 5).

To simulate the clock models we can use a Metropolis algorithm completely analogous to the
one used for the Potts models. However, especially in the low temperature phase, it can be more
convenient not to select the trial state with uniform pdf between the q different possibilities, but
use instead a trial state that is “close enough” to the previous state, in order for the acceptance
probability not to be too small. The minimal possibility is obviously

sx → s′x =
(
sx ± 1

)
mod q , (6.2.11)

where the two signs are selected with equal probability. Note however that also in this case the
acceptance probability will become negligibly small if β is large enough. As for all the models
whose variables only assume a finite number of values, it is also straightforward to use an heat-
bath update, computing (and storing in an array) at the beginning of the simulation all the required
conditional probabilities.

6.3 O(N) models and microcanonical updates

In O(N) models, to each site r of the lattice we associate a real, unit-length, vector in the N -
dimensional real space (sr ∈ RN , |sr| = 1), and each configuration has energy

E = −J
∑
⟨x,y⟩

sx · sy −
∑
x

h · sx . (6.3.1)

For h = 0 the model is invariant (assuming as usual periodic b. c.) under the transformation
sx → s′x = Msx, where M is an orthogonal N × N matrix, hence the name of the model. The
magnetic field is a vector in RN , however, since the first term of the energy in Eq. (6.3.1) is invariant
under O(N) transformations, we can safely assume h to be directed along the 1-axis. The N = 1
case of the O(N) models is just the Ising model, the N = 2 case is often called XY model, while
the N = 3 case is often called Heisenberg model.
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Algorithm 11 Algorithm to sample with uniform pdf the unit sphere in RN .

Require: ri (with i = 1, . . . , N) sampled from uniform pdf in [0, 1)
repeat

xi = 1− 2ri
S =

∑
i x

2
i

until 0 < S < 1
yi =

xi√
S

Algorithm 12 Algorithm to sample with uniform pdf the unit sphere in RN .

Require: gi (with i = 1, . . . , N) sampled from normal Gaussian distribution
repeat

xi = gi
S =

∑
i x

2
i

until 0 < S
yi =

xi√
S

In D > 2 the O(N) symmetry is broken to O(N − 1) in the low temperature phase, and an
order parameter is naturally

m =
1

LD

∑
x

sx . (6.3.2)

As for the Ising model it is possible to introduce a proxy of the spontaneous magnetization by using
|m|, where now |m|2 = m ·m, hence we can define also in this case two different susceptibilities
(neglecting irrelevant β factors): χ = LD⟨|m|⟩ and χ′ = LD(⟨|m|2⟩ − ⟨|m|⟩2). Some critical
properties of the three dimensional O(N) models with N = 2 and N = 3 are summarized in
Sec. 7.A. The D = 2 case is more involved, since in two dimensional models continuous symmetries
can not be spontaneously broken; this is the content of the so called Coleman-Mermin-Wagner
theorem, see, e. g. [45] §4.A or [42] §6.1 for an heuristic argument. For N = 2 a finite temperature
transition exists in D = 2, of the Berezinskii-Kosterlitz-Thouless type, see, e. g.,[42] §6.2-6.4 for
an elementary presentation or [45] §4.2 for some more details. When N > 2 there is no finite
temperature transition in D = 2, but a transition exists at T = 0, in which a correlation length
diverging exponentially in 1/T appears, see [42] §6.5 for an elementary presentation and [46] §14-15
for more details.

To simulate the O(N) models using single site updates it is convenient to introduce the sum

Sr =
∑
⟨x,r⟩

sx , (6.3.3)

where r is the site to be updated. Using this vector we can write the energy of a configuration (for
h = 0) in the form

E = −Jsr · Sr + (independent of sr) , (6.3.4)

which is completely analogous to the form used for the Ising model, see Eq. (5.3.3). The energy
difference required to accept/reject the update sr → s′r using a local Metropolis algorithm is thus
simply

E′ − E = −J(s′r − sr) · Sr . (6.3.5)

To generate the trial state s′r to be used in the local Metropolis update we have several pos-
sibilities. The simplest possibility is to generate s′r with uniform pdf in SN (the unit sphere in
RN ). In this case we can for example use the algorithm in Alg. (11), which start from a uniform
sampling of the hypercube, or the variant in Alg. (12), which is more efficient if N is large (since
when N ≫ 1 the volume of the sphere is much smaller than 2N ). A better possibility, especially
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for large N or in the low temperature phase, is to generate s′x by slightly changing sx, for example
by selecting with uniform pdf two indices i, j ∈ {1, . . . , N} (with i ̸= j, hence N ≥ 2) and using

(s′r)k = (sr)k if k ̸= i, j

(s′r)i = (sr)i cos θ + (sr)j sin θ

(s′r)j = −(sr)i sin θ + (sr)j cos θ

, (6.3.6)

where θ is generated with uniform pdf in the range [−α, α], and α is fixed at the beginning of
the simulation in order to have a reasonable acceptance probability. Note that for a rotation and
its inverse to be equiprobable (requirement needed for the use of the Metropolis algorithm) the
selection of i, j has to be performed with uniform pdf, and the range of the angle θ has to be
symmetric with respect to the origin.

A complete algorithm to simulate the O(N) model is thus the following

1. select the lattice site r to be updated (randomly, with uniform pdf, or by a deterministic sweep
of the lattice)
2. define the trial configuration as the configuration in which only the value sr is changed; the
trial site variable s′r can be generated by using Eq. (6.3.6) or Alg. (11), Alg. (12).
3. accept the trial configuration with probability min(1, e−β(E

′−E)), where E is the energy of the
initial configuration and E′ is the energy of the trial configuration. If the trial configuration is not
accepted, keep the old one.

This algorithm satisfies the detailed balance principle if in point 1. we use the random selection,
while only the balance equation is satisfied if a deterministic sweep is adopted. Since the evaluation
of E′ − E is straightforward once Sr has been computed, it can be convenient to repeat steps 2.
and 3. several times (depending on the values of N and α) before updating a different site.

Note that the transformation in Eq. (6.3.6) leaves invariant the constraint sr · sr = 1 in exact
algebra, however this is no more the case on a real CPU, where rounding errors are present (see,
e. g., [64] §2.4 for more details on the floating point arithmetic). The violation of the unit-length
constraint is almost certainly negligible after a single update, but the accumulation of rounding
errors can introduce a bias in the simulation. For this reason it is necessary, after a fixed number
of updates, to project back the variables on SN , using for example sr ← sr/|sr|.

Instead of using a local Metropolis update it is also possible to use a local heat-bath update. To
implement such an update we need to sample (for h = 0) the conditional probability distribution

P (sr) ∝ δ(sr · sr − 1) exp
(
βJsr · Sr

)
. (6.3.7)

For this purpose it is convenient to decompose sr as a sum of a longitudinal component s∥ and a
transverse component s⊥, with respect to Sr, i. e.

sr = s∥
Sr

|Sr|
+ s⊥ , with s⊥ · Sr = 0 . (6.3.8)

To generate sr using this decomposition we can first generate s∥ with distribution

P̃ (s∥) =

∫
P (sr)ds⊥ , (6.3.9)

and then generate the remaining components using a uniform pdf on the (N − 1)-sphere of radius√
1− s2∥ (some trigonometry is obviously needed to give these components the proper orientation

in the N -dimensional space). The probability P̃ (s∥) is given by (using a coordinate system in
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which x̂N is directed along Sr)

P̃ (s∥) ∝ exp
(
βJs∥|Sr|

) ∫
dx1 · · ·

∫
dxN−1δ(x

2
1 + · · ·+ x2N−1 + s2∥ − 1) ∝

∝ exp
(
βJs∥|Sr|

) ∫ ∞
0

rN−2δ(r2 + s2∥ − 1)dr ∝

∝ exp
(
βJs∥|Sr|

) ∫ ∞
0

y
N−3

2 δ(y + s2∥ − 1)dy = exp
(
βJs∥|Sr|

)
(1− s2∥)

N−3
2 ,

(6.3.10)

where in the third step we used the change of variable y = r2. The case N = 3 is thus particularly
simple, since it is enough to sample an exponential distribution with s∥ ∈ [−1, 1], while for N ̸= 3

an accept/reject von Neumann algorithm is generally required to sample the distribution P̃ (s∥).
Note, however, that the local heat-bath update is not particularly more efficient than the local
Metropolis update, especially when used together with the microcanonical update that we are now
going to introduce.

The basic idea of the micorcanonical method (sometimes also called overrelaxation) is to gen-
erate, using a deterministic procedure, a trial state s′r which is surely accepted by the Metropolis
test, and it is as far as possible from the previous state sr. If we remind that the energy of a
configuration is given by

E = −Jsr · Sr + (independent of sr) , (6.3.11)

it is simple to generate a trial state s′r such that E′ ≤ E: everything which does not increase
the relative angle between sr and Sr will do the job (we are obviously assuming N ≥ 2, so that
a continuous angle can be used). If we want s′r to be as far as possible from sr the simplest
possibility is to change sign to the transverse (with respect to Sr) components of sr: while in the
heat-bath update the most probable outcome is directed along Sr, in the microcanonical update
we overshoot the minimum of the energy, generating a mirror image with respect to Sr of the
original state3. In formulae

s′r =
(sr · Sr)Sr

|Sr|2
−
(
sr −

(sr · Sr)Sr

|Sr|2
)

= 2
(sr · Sr)Sr

|Sr|2
− sr . (6.3.12)

To avoid numerical errors it is convenient, when implementing this expression, to check that the
value of |Sr| is not too small, e. g. it has be larger than 10−13. If this is not the case the update
is aborted or a random vector is used for s′r.

It is simple to show that by applying twice the transformation Eq. (6.3.12) we come back to the
original configuration, i. e. sr → s′r → sr. This property ensures the symmetry of the selection
matrix, and thus the possibility of using a Metropolis test; moreover, since by construction we have
sr ·Sr = s′r ·Sr, the Metropolis test is always passed and the new configuration always accepted.
Note however that the simple condition of being energy preserving is not a sufficient condition
for the update algorithm to be accepted with unit probability: if the symmetry condition is not
satisfied the Metropolis-Hastings algorithm has to be applied, and the acceptance probability does
not depend just on E′ − E.

It is important to note that the microcanonical update does not generate an irreducible Markov
chain: since this update conserves the energy it can not connect two configurations with different
energies. Nevertheless the single site microcanonical update satisfies the detailed balance principle,
so it can be used together with local Metropolis or heat-bath updates to reduce the autocorrelation
time, and thus speed-up the simulation. Following the discussion of Sec. 3.3.3, a simple possibility
is to use a stochastic mixture of the different updates: after the extraction of a random number
r ∈ [0, 1) with uniform pdf, a complete update of the lattice using the local Metropolis or heat-
bath algorithm is performed if r < ϵ, while a complete update of the lattice using the single site
microcanonical update is performed if r ≥ ϵ. The parameter ϵ has to be fixed at the beginning

3The name overrelaxation originates from the similarity of this idea with the one used in the iterative solution
method for large linear systems known as Successive Overrelaxation Method (SOR), see, e. g. [65] §3.3.
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of the simulation, and it is usually convenient to have ϵ ≲ 0.2, i. e. to perform significantly more
microcanonical updates than Metropolis or heath-bath updates. Microcanoncial updates, being of
deterministic nature, are indeed associated with dynamical critical exponents close to one, z ≈ 1,
while Metropolis and heat-bath updates, which behaves like diffusion processes, are associated with
dynamical critical exponents z ≈ 2.

6.4 The cluster update for the Ising model

The cluster update (more precisely the “single” cluster update) that we are now going to introduce
is a nonlocal update scheme, in which a possibly large fraction of the sites change its value. For the
sake of the simplicity we discuss its application to the Ising model, but with minor modifications
it can be applied also to O(N) models, see [66].

The fundamental ingredient of the algorithm is the recipe to build the cluster. Roughly speak-
ing, the idea is to build a cluster of sites all having the same orientation (the same value of the
site variable), adding neighboring sites to the cluster with a probability Padd that is a parameter
of the algorithm. More precisely, at step 1 we initialize the cluster by using a randomly chosen
site r of the lattice, and we denote by Cn the set of sites added to the cluster at step n (hence
C1 = {r}). At step n + 1, for each site x in Cn we add to the cluster, with probability Padd, the
nearest neighbors of x having the same value of the site variable and that are not already in the
cluster. This process ends when an iteration n̄ is reached at which no new sites are added to the
cluster (i. e. Cn̄ is the empty set). It can happen that, at the step n+ 1, a site y exists which has
the same orientation of the site r and it is nearest neighbor of several sites in Cn; in this case the
site y has several chances of being added to the lattice, coming from different sites in Cn, and it
important to try them all.

It is important to stress that the way in which we described the algorithm to build the cluster
is not the most general one: what is really fundamental is that, once a site is added to the cluster,
all its nearest neighbor sites are (sooner or later) tested for joining the cluster, and that all the
possibilities of adding a site (e. g. coming from different neighboring sites) are examined. These
properties are automatically satisfied by the process described above, but this is by no means the
only way of satisfying them, the order in which the different sites are added to the cluster being
irrelevant.

A simple way to check if a given site has been already added to the cluster is to use an auxiliary
lattice; we can for example use a lattice with all the lattice variables initialized to zero, and set the
value at site x to one when the site x is added to the cluster. In this way the sentence “the site x
is not in the cluster” translates as “the variable at site x of the auxiliary lattice is zero”. Using this
trick it is simple to build the cluster with a recursive algorithm like that shown in Alg. (13). This
algorithm can be easily implemented in low level programming languages like C, Fortran or C++,
which allow for recursive functions to be defined, however such a recursive algorithm can lead to
a stack overflow for large lattices and low temperatures. In these cases the cluster to be built is

Algorithm 13 Function to recursively build the cluster starting from its first site

function build(site x)
for all y nearest neighbor of x do

if sy = sx and y is not already in the cluster then
if random number in [0, 1) with uniform pdf < Padd then

add y to the cluster
call build(y)

end if
end if

end for
end function
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Algorithm 14 Algorithm to build the cluster starting from its first site without using recursion

Require: array cluster to store the cluster sites
r fist site of the cluster, cluster[0]=r
nold = 0, nnew = ℓc = 1
while nnew > nold do

for p values in nold ≤ p < nnew do
for all x nearest neighbor of cluster[p] do

if x is not in the cluster and sx = sr then
if random number in [0, 1) with uniform pdf < Padd then

add x to the cluster
cluster[ℓc] = x
ℓc ← ℓc + 1

end if
end if

end for
end for
nold = nnew
nnew = ℓc

end while

very large, and its size could exceed that of the buffer used to store the recursion instructions in
the CPU, resulting in a segmentation fault at execution time.

A non recursive algorithm to build the cluster is shown in Alg. (14). Such an algorithm is
clearly less straightforward than the recursive one, but its logic is nevertheless quite simple, and
implements the building strategy described above. The auxiliary structures needed are the array
cluster, used to store the cluster sites, the cluster length ℓc, and the two integers nold and nnew,
which are used to keep track of the sites recently added to the cluster: nold is the cluster size
at the beginning of the previous step, while nnew is the cluster size at the beginning of present
step; nnew − nstep is thus the number of sites that have been added to the cluster in the previous
step. In the first step the cluster is composed of only the site r, nnew = ℓc = 1 and nold = 0
(this is obviously conventional, but it is useful to enter the “while” loop in its first occurrence).
The terminating condition nnew ≤ nold just means that in the previous step no sites have been
added to the cluster. If this is not the case we sweep the newly added sites, which are the one
corresponding to cluster[p] for nold ≤ p < nnew, and for each of these sites we test their nearest
neighbors. If any of these nearest neighbors is added to the cluster, its position is appended to the
cluster array, and we update the cluster size ℓc. After all nearest neighbors of the sites previously
added to the cluster have been tested, the values of nold and nnew are updated and the process
starts again, until the termination condition nold = nnew is reached.

+ − − − +

− + + + −
+ + + + −
− + − + −
− − + + −

+ − − − +

− − − − −
+ − − − −
− + − − −
− − + + −

Figure 6.3: Example of cluster update: in the left panel the initial configuration is represented,
and the region enclosed by the solid line is the cluster (obtained by using the algorithm described
in the main text). In the right panel we show the trial configuration, obtained by flipping all the
spins of the cluster.
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Once a cluster has been identified, the trial configuration is generated by flipping all the spins
of the cluster, as shown in Fig. (6.3) for the two dimensional case, and we now have to discuss
the probability for this trial configuration to be accepted. Let us start by noting that the simple
Metropolis algorithm is not applicable in the present case: the probability of selecting a cluster in
the original configuration is not the same as the probability of selecting the same cluster in the
trial configuration.

To verify this fact, let us denote by ne the number of bonds in the original configuration con-
necting cluster sites to sites outside the cluster having the same orientation (ne = 3 in Fig. (6.3)),
and by nd the number of bonds in the original configuration connecting cluster sites to sites outside
the cluster having different orientation (nd = 9 in Fig. (6.3)). Using the same notation of Sec. 3.3.1,
let us denote by Aba the probability of selecting a given cluster in the configuration a: we have

Aba = Pin(1− Padd)ne , (6.4.1)

where Pin is the total probability coming from the sites added to the cluster, and (1− Padd)ne is
needed since ns attempt of adding some more sites to the cluster have been rejected. The specific
form of Pin depends, e. g. on which is the fist site that has been added to the cluster, but we will
not need to know it. After the cluster has been flipped, the probability of selecting again the same
cluster (starting from the same initial site) is

Aab = Pin(1− Padd)nd , (6.4.2)

since now the sites that we have to reject to get the same cluster boundaries are the ones connected
by nd bonds, which in the original configuration connected sites with different orientations (that
could not be added to the cluster) while now they connect sites with the same orientations and
could be added to the cluster.

We thus generically have Aba ̸= Aba and the Metropolis-Hastings algorithm must be used,
which has acceptance probability

min

(
1,
Aabπb
Abaπa

)
, (6.4.3)

where πa and πb are Gibbs weights. In the specific case of the single cluster update we have

Aabπb
Abaπa

=
(1− Padd)ndπb
(1− Padd)neπa

. (6.4.4)

The energy of the configuration b (the one in which the cluster has been flipped) differs from the
energy of the configuration a only because of the different orientations of the spins at the boundary
of the cluster (this should remind of the Peierls argument, see, e. g., [37] §14.3), hence

πb
πa

=
eβJ(nd−ne)

eβJ(ne−nd)
= e2βJ(nd−ne) , (6.4.5)

and finally
Aabπb
Abaπa

= (1− Padd)nd−nee2βJ(nd−ne) =
(
(1− Padd)e2βJ

)nd−ne

. (6.4.6)

We thus see that if we chose Padd in such a way that (1− Padd)e2βJ = 1, i. e.

Padd = 1− e−2βJ , (6.4.7)

then the cluster flip is always accepted, and this is the value that (obviously) is used in simulations.
The Markov chain built as previously described satisfies by construction the detailed balance

with respect to the Gibbs weight, and before using the single cluster update in a simulation we
just need to show that this Markov chain is irreducible and aperiodic. Irreducibility is quite simple
to show: since we have a nonvanishing probability of always creating clusters composed of a single
site, and the starting seed of the cluster is selected with uniform pdf on the lattice, the proof of the
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irreducibility is the same as for the local Metropolis update. Aperiodicity requires just a little more
care, as cluster flips are accepted with probability 1. Since all the states of an irreducible Markov
chain have the same period, it is enough to show that a specific configuration has period equal to
one. Let us consider the completely polarized configuration and study its recurrence times. One
possible recurrence is the following

1. site r is selected to start the cluster,
2. the cluster composed of the only site r is selected,
3. site r is flipped,
4. site r is selected as cluster,
5. site r is flipped.

Note that in step 4. (unlike in step 2.) the cluster is surely coincident with the site r, since the
starting configuration was completely polarized, and after the spin flip (point 3.) the site r has
orientation different from that of all the other sites of the lattice. We have thus seen that 2 is a
recurrence time for the completely polarized configuration. A possible path of length 3 that starts
from (and arrives to) the completely polarized configuration is

1. site r is selected to start the cluster,
2. the cluster composed of the only site r is selected,
3. site r is flipped,
4. site x (which is a nearerst neighbor of r) is selected to start the cluster,
5. the cluster composed of the only site x is selected,
6. site x is flipped,
7. site r is selected to start the cluster,
8. the cluster composed sites r and x is selected,
9. sites r and x are flipped.

Since we have shown that 2 and 3 are possible recurrence times for the totally polarized configu-
ration, and GCD{2, 3} = 1, the Markov chain is aperiodic.

We close this section by signaling that when using the cluster update we not only have very
small autocorrelation times close to second order phase transitions, but we also have the possibility
of using “improved” estimators for some observables, like the magnetic susceptibility. Improved
estimators (see also Sec. 18.5) are quantities which have the same statistical averages of the standard
observables but smaller variances, hence smaller statistical errors, see [67].
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Chapter 7

Appendices to Part II

7.A Critical properties of some commonly used models

Ising model in D = 2

βc =
1

2
log(1 +

√
2) ≃ 0.44068679350977151262 ; ν = 1 ; γ = 7/4 ; β = 1/8

See, e. g. [45] §2 for a quick presentation or [39] for many more details. The Binder cumulant

is defined by U = ⟨m4⟩
⟨m2⟩2 , and its critical values is (with periodic boundary conditions) U∗4 =

1.1679227(4), see [52].

Ising model in D = 3

βc
[68] 0.221654626(5)

ν
[49] 0.63002(10)
[68] 0.629912(86)
[69] 0.6299710(40)
[70] 0.62997097(12)

γ
[49] 1.23719(21)
[68] 1.23708(33)
[69] 1.2370752(79)
[70] 1.23707549(27)

U4 = ⟨m4⟩
⟨m2⟩2

U∗4 (pbc)
[49] 1.6036(1)
[68] 1.60356(15)

XY/O(2) model in D = 3

βc
[71] 0.454169(4)
[72] 0.4541652(5)(6)
[73] 0.45416474(10)(7)
[74] 0.45416476(10)

ν
[72] 0.6717(1)
[73] 0.67169(7)
[75] 0.67175(10)

γ
[72] 1.3178(2)
[73] 1.31778(15)
[75] 1.31786(20)

U4 = ⟨(m2)2⟩
⟨m2⟩2

U∗4 (pbc)
[72] 1.2431(1)(1)
[73] 1.24296(8)
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Heisenberg/O(3) model in D = 3

βc
[76] 0.6930(1)
[71] 0.693001(10)

ν
[77] 0.7112(5)
[78] 0.7116(10)
[79] 0.71164(10)
[80] 0.71168(41)

γ
[77] 1.3960(9)
[78] 1.3963(20)
[79] 1.39635(20)
[80] 1.39641(81)

U4 = ⟨(m2)2⟩
⟨m2⟩2

U∗4 (pbc)
[77] 1.1394(1)(2)
[78] 1.1394(3)

7.B Benchmark for the two dimensional Ising model

Notation:

e =
E

L2
= − 1

L2

∑
⟨x,y ⟩

sxsy , m =
1

L2

∑
x

sx , Z =
∑
{s}

e−βE (7.B.1)

β ⟨e⟩ ⟨e2⟩ − ⟨e⟩2 ⟨|m|⟩ ⟨m2⟩ − ⟨|m|⟩2 ⟨m2⟩ ⟨m4⟩/⟨m2⟩2
0.000000 0.000000 0.125000 0.196381 0.023935 0.062500 2.875000

0.040000 -0.080345 0.126629 0.214653 0.027778 0.073854 2.828513

0.080000 -0.162853 0.131884 0.236667 0.032676 0.088687 2.764772

0.120000 -0.250180 0.141970 0.263841 0.039009 0.108621 2.675390

0.160000 -0.346083 0.159164 0.298240 0.047234 0.136181 2.549494

0.200000 -0.456135 0.186791 0.342766 0.057711 0.175199 2.376421

0.240000 -0.588063 0.227799 0.401043 0.070127 0.230963 2.153343

0.280000 -0.750199 0.279986 0.476252 0.082324 0.309140 1.895476

0.320000 -0.945770 0.328503 0.568067 0.089330 0.412030 1.637480

0.360000 -1.164138 0.346650 0.668913 0.085439 0.532884 1.417313

0.400000 -1.379116 0.317389 0.764712 0.070041 0.654826 1.255417

0.440000 -1.562847 0.253310 0.842716 0.049605 0.759774 1.149801

0.480000 -1.702039 0.182647 0.898543 0.031509 0.838888 1.086344

0.520000 -1.799371 0.124279 0.935246 0.018805 0.893490 1.049937

0.560000 -1.864728 0.082608 0.958399 0.010970 0.929498 1.029392

0.600000 -1.908070 0.054784 0.972867 0.006427 0.952898 1.017739

0.640000 -1.936904 0.036620 0.981994 0.003841 0.968152 1.011005

0.680000 -1.956281 0.024762 0.987853 0.002357 0.978211 1.007009

0.720000 -1.969454 0.016939 0.991690 0.001486 0.984936 1.004570

0.760000 -1.978511 0.011708 0.994250 0.000961 0.989494 1.003040

0.800000 -1.984798 0.008163 0.995984 0.000636 0.992620 1.002055

Table 7.1: Values computed by enumeration on the lattice 42 with periodic boundary conditions
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Part IV

The study of path-integrals in
quantum field theories
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Chapter 13

Statistical quantum field theory
and path-integrals

In this and in the following chapters we will mainly use the free scalar field as an example to
develop the theory, but almost nothing would change by adding also an interaction term in most
of the cases.

13.1 Path-integral formulation of the free scalar field

The Lagrangian of a free scalar field in D space-time dimensions is (in Minkowski metric and with
natural units ℏ = c = 1)

L =

∫
dD−1xL , L =

1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 , (13.1.1)

and the equation of motion is easily shown to be ∂µ∂
µϕ+m2ϕ = 0. The conjugate momentum of

the variable ϕ(t,x) is

πϕ(t,x) =
δL

δ∂tϕ(t,x)
= ∂tϕ(t,x) , (13.1.2)

and the Hamiltonian is thus

H =

∫
dD−1xH , H =

1

2
π2
ϕ +

1

2
(∇ϕ)2 +

1

2
m2ϕ2 . (13.1.3)

In order to refer back to the QM case discussed in Sec. 8 let us introduce a lattice spacing a
for the D− 1 spatial directions, in such a way that (we always assume the volume to be finite, for
concreteness)

L ≃ 1

2

∑
x

aD−1(∂tϕx)
2 − 1

2

∑
x

∑
µ>0

aD−1
(
ϕx+aµ̂ − ϕx

a

)2

− 1

2

∑
x

aD−1m2ϕ2x , (13.1.4)

where ϕx stands for ϕ(t,x) (time is implied), µ̂ is the versor of the µ-th direction (with time
corresponding to µ = 0), and we used the discretization ∂µϕ(t,x) ≃

(
ϕx+aµ̂ − ϕx

)
/a for µ > 0.

This is now the Lagrangian of a system with a finite number of degrees of freedom, the conjugate
momentum of ϕx is

px =
∂L

∂∂tϕx
= aD−1∂tϕx , (13.1.5)

which corresponds to px = aD−1πϕ(x), and the discretized Hamiltonian is

H =
1

2

∑
x

p2x
aD−1

+
1

2

∑
x

∑
µ>0

aD−1
(
ϕx+aµ̂ − ϕx

a

)2

+
1

2

∑
x

aD−1m2ϕ2x . (13.1.6)
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To write a path-integral formulation of the partition function of the system we introduce the
states |ϕx⟩, eigenstates of the discrete field operator ϕx(t = 0) (note that [ϕx, ϕy] = 0, hence the
operators corresponding to all the positions can be diagonalized simultaneously). The starting
point is obviously

Z(β) = Tr e−βH =
∑{∏

x

⟨ϕx|
}
e−βH

{∏
x

|ϕx⟩
}

, (13.1.7)

where the sum extends on all the states
∏

x |ϕx⟩ of the system. As in the QM case we write
e−βH = (e−βH/N )N , with N a large natural number, and we assume for the sake of the simplicity
that a = β/N , in such a way that the temporal and the spatial lattice spacings are equal. We then
insert N − 1 resolutions of the identity∫ {∏

x

dϕx

}∏
x

|ϕx⟩⟨ϕx| = 1 (13.1.8)

inside the trace, and to keep track of the integration variables we introduce the notation |ϕ(t)x ⟩ for
the integration variables at time t = 0, a, . . . , a(N − 1), where t = 0 variables are those used in
Eq. (13.1.7). In this way we obtain a product of terms of the form{∏

x

⟨ϕ(t+a)x |
}
e−aH

{∏
x

|ϕ(t)x ⟩
}
≃
{∏

x

⟨ϕ(t+a)x |
}
e−aT e−aV

{∏
x

|ϕ(t)x ⟩
}

=

= e−aV (ϕ(t)
x )

{∏
x

⟨ϕ(t+a)x |
}
exp

(
−
∑
x

p2x
2aD−2

){∏
x

|ϕ(t)x ⟩
}

,

(13.1.9)

where V is the potential energy term, and T is the kinetic energy term. We can now introduce the
momentum eigenvectors |p⟩ and |k⟩:

⟨ϕ(t+a)x |e−p2x/(2aD−2)|ϕ(t)x ⟩ =
∫

dpdk⟨ϕ(t+a)x |p⟩⟨p|e−p2x/(2aD−2)|k⟩⟨k|ϕ(t)x ⟩ =

=

∫
eipϕ

(t+a)
x

√
2π

e−p
2/(2aD−2)δ(p− k)e

−ikϕ(t)
x

√
2π

dpdk =

=
1

2π

√
2πaD−2 exp

−aD
2

(
ϕ
(t+a)
x − ϕ(t)x

a

)2
 ,

(13.1.10)

where in the last step we obviously used
∫ +∞
−∞ e−αt

2+βtdt =
√

π
αe

β2/(4α). This result is completely
analogous to the one obtained in QM (see Sec. 8), but for an important detail: for D > 1 the value

of ϕ
(t+a)
x does not generically converge to ϕ

(t)
x when a→ 0, and QFT configurations are much more

singular than QM configurations.
Putting all the pieces together, and neglecting proportionality factors, we obtain

Z(β) ∝
∑

ϕ
(0)
x =ϕ

(β)
x

{∏
t,x

dϕ(t)x

}
exp

−∑
t,x

aD

1
2

(
ϕ
(t+a)
x − ϕ(t)x

a

)2

+

+
1

2

∑
µ>0

(
ϕ
(t)
x+aµ̂ − ϕ

(t)
x

a

)2

+
1

2
m2(ϕ(t)x )2

 ,

(13.1.11)

where the sum extends on all configurations which satisfy the constraint ϕ
(0)
x = ϕ

(β)
x for all x

values. By formally sending a→ 0 we obtain the path-integral expression

Z(β) =

∫
ϕ(0,x)=ϕ(β,x)

[Dϕ(t,x)]e−SE [ϕ] , (13.1.12)
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where a (divergent) numerical factor has been absorbed in the definition of the integration measure
[Dϕ], and the Euclidean action SE [ϕ] is given by

SE [ϕ] =

∫ β

0

dt

∫
dD−1x

(
1

2
ϕ̇2 +

1

2
(∇ϕ)2 +

1

2
m2ϕ2

)
. (13.1.13)

The Euclidean action SE is formally obtained from the real-time action S =
∫
dt L by performing

the substitution t→ −iτ , which transforms iS → −SE .
It should be clear that for an interacting field with potential V (ϕ) the only modification that

is needed in Eq. (13.1.13) is 1
2m

2ϕ2 → V (ϕ) in the Euclidean action.

13.2 Discretization of the scalar field

Exactly as in Sec. 8, the thermal average of an observable O[ϕ] depending on the field operator ϕ,
but independent of the momenta πϕ, can be rewritten in the form

⟨O[ϕ]⟩ = Tr(Oe−βH)

Tr(e−βH)
=

∫
ϕ(0,x)=ϕ(β,x)

[Dϕ(t,x)]O[ϕ]e−SE [ϕ]∫
ϕ(0,x)=ϕ(β,x)

[Dϕ(t,x)]e−SE [ϕ]
, (13.2.1)

and we can interpret e−SE [ϕ][Dϕ]
Z as a probability density function. In order to perform a MC esti-

mation of ⟨O⟩ we have to discretize the Euclidean action, approximating it with a sum depending
on a finite number of variables.

We denote by a the lattice spacing in the temporal and spatial directions (we are thus using a
isotropic discretization), and we denote by ϕn the value of ϕ(t,x) (note that n is a point of the
D-dimensional space-time lattice and it entries are dimensionless: (t,x) ≃ an); as already done in
Sec. 13.1 we approximate derivatives by their so called forward lattice counterparts:

∂µϕ(t,x)→ ∂(F )
µ ϕn =

ϕn+µ̂ − ϕn
a

. (13.2.2)

In order to write the lattice action in dimensionless form it is usual, in QFT, to rescale all the
quantities by the appropriate powers of the lattice spacing a, and dimensionless quantities will
be denoted by a ˆ symbol. Since in D-dimensional space we have [ϕ] = (D − 2)/2, we introduce

ϕ̂n = a(D−2)/2ϕn and m̂ = am. With these notations the discrete Euclidean lattice action can be
written in the form

SL =
1

2

∑
n

aD

 1

aD
m̂2ϕ̂2n +

∑
µ≥0

1

aD
(ϕ̂n+µ̂ − ϕ̂x)2

 =

=
1

2

∑
n

(m̂2 + 2D)ϕ̂2n − 2
∑
µ≥0

ϕ̂n ϕ̂n+µ̂

 =
1

2

∑
n,j

ϕ̂nKnj ϕ̂j ,

(13.2.3)

where the symmetric kernel K is defined by

Knj = m̂2δn,j −
∑
µ≥0

(δn+µ̂,j + δn−µ̂,j − 2δn,j) , (13.2.4)

and the partition function is given by

Z(β) =

∫ (∏
n

dϕ̂n

)
e−SL . (13.2.5)

To approach the continuum limit we have to send a→ 0 at fixed physical mass m, hence in term of
the dimensionless coupling entering SL the continuum limit corresponds to m̂→ 0. Note that for
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interacting theories the relation between m̂ and m is nontrivial; we will come back to the definition
of the continuum limit for a generic interacting theory after having discussed the spectrum of
QFTs, in Sec. 14.2.

To convince ourselves that Eq. (13.2.3) is a proper discretization of the Euclidean action, we can study the
behavior of the lattice propagator in the a → 0 limit, to verify that the correct continuum expression is recovered.
Given a function fn defined on the sites of a lattice with periodic boundary conditions, we can define its lattice
Fourier transform by

f̃p =
∑
n

e−ip·nfn , (13.2.6)

where the components of the dimensionless momentum p can only take the values pµ = 2π
Nµ

bµ, Nµ = Lµ/a is the

number of sites of the lattice in the µ-th direction, and bµ = 0, 1, . . . Nµ − 1. In the solid-state terminology p is a
vector in the first Brillouin zone of the reciprocal lattice. The inverse lattice Fourier transform is given by

fn =
1

V̂

∑
p

eip·nf̃p , (13.2.7)

where the sum extends on all momenta in the first Brillouin zone, and V̂ =
∏
µNµ is the number of sites of the

lattice. To show that Eq. (13.2.7) is the inverse of Eq. (13.2.6) we can proceed as follows: if k is a vector in the first
Brillouin zone, and d a generic lattice point, by using translation invariance we have

eik·d
∑
r

eik·r =
∑
r

eik·(r+d) =
∑
r

eik·r . (13.2.8)

Since d is a generic lattice point, we can have eik·d = 1 only if k = 0, hence∑
r

eik·r = V̂ δk,0 , (13.2.9)

and analogously ∑
p

eip·r = V̂ δr,0 . (13.2.10)

Using these identities we have

1

V̂

∑
p

eip·nf̃p =
1

V̂

∑
p

eip·n
∑
m

e−ip·mfm ,=
∑
m

δn−m,0fm = fn , (13.2.11)

which proves Eq. (13.2.7).
Using Eq. (13.2.10) to rewrite the δs in the definition of Knj in Eq. (13.2.4) we have

Knj =
1

V̂

∑
p

m̂2 −
∑
µ≥0

(
eipµ + e−ipµ − 2

) eip·(n−j) =

=
1

V̂

∑
p

m̂2 − 2
∑
µ≥0

(2 cos(pµ)− 2)

 eip·(n−j) =
1

V̂

∑
p

m̂2 +
∑
µ≥0

4 sin2
(pµ

2

) eip·(n−j) .

(13.2.12)

where we used cos(α) = 1− 2 sin2(α/2) in the last step. It is now simple to verify that

(K−1)nj =
1

V̂

∑
p

1

m̂2 +
∑
µ≥0 4 sin

2
( pµ

2

) eip·(n−j) , (13.2.13)

indeed, defining K(p) = m̂2 +
∑
µ≥0 4 sin

2
( pµ

2

)
, we have (using Eqs. (13.2.9)-(13.2.10))∑

n

Kan(K−1)nb =
∑
n

1

V̂

∑
p1

K(p1)e
ip1·(n−a) 1

V̂

∑
p2

1

K(p2)
eip2·(b−n) =

=
1

V̂

∑
p1,p2

K(p1)
1

K(p2)
δp1,p2

eip1·(b−a) = δa,b .

(13.2.14)

We now have to rewrite the lattice propagator in physical units, and see what happens in the limit a → 0. In
this limit we have

∫
dDxdDy ≃ a2D

∑
n,j , hence from∑

n,j

ϕ̂nKnj ϕ̂j =
∑
n,j

aD−2ϕnKnjϕj =
∑
n,j

a2Dϕn
Knj

aD+2
ϕj (13.2.15)

we see that
Kn j

aD+2 is the kernel with the correct dimensionality, which should converge to K(x,y) (we denote here

by x a point of the Euclidean space-time). The continuum propagator K−1(y,z) is defined by the equation∫
dDyK(x,y)K−1(y,z) = δ(x− y) , (13.2.16)
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and close to the continuum we have δa,b ≃ aDδ(x − z). The lattice propagator with the correct dimensionality is
thus

(K−1)nj =
1

V̂

1

aD−2

∑
p

1

m̂2 +
∑
µ≥0 4 sin

2
( pµ

2

) eip·(n−j) =

=
1

V̂

∑
p

1

aD
1

m2 +
∑
µ≥0

4
a2

sin2
(aqµ

2

) eiaq·(n−j) ,

(13.2.17)

where in the last equality we introduced the dimensionfull (D-)momentum q = p/a. In the limit a→ 0 the sum on
the first Brillouin zone becomes

1

V̂

∑
p

→
∫ π

−π

dDp

(2π)D
= aD

∫ π/a

−π/a

dDq

(2π)D
, (13.2.18)

where the integration region of the last integral is the cube (−π/a, π/a)D. Hence

(K−1)nj →
∫ π/a

−π/a

dDq

(2π)D
1

m2 +
∑
µ≥0

4
a2

sin2
(aqµ

2

) eiq·(x−y) . (13.2.19)

To conclude it is sufficient to note that in the first Brillouin zone sin(aqµ/2) vanishes only for qµ = 0, hence in the
limit a→ 0 we can expand using |aqµ| ≪ π (since otherwise the denominator would diverge), and finally obtain the
standard continuum result

K−1(x,y) =

∫
dDq

(2π)D
1

m2 + q2
eiq·(x−y) . (13.2.20)

It is not difficult to show that not all the possible discretizations of the free scalar action produce
the correct continuum limit. In particular, let us investigate what happens by using the lattice
symmetric discretization of the derivative instead of the lattice forward discretization:

∂µϕ(t,x)→ ∂(S)µ ϕn =
ϕn+µ̂ − ϕn−µ̂

2a
. (13.2.21)

Using the symmetric discretization it is immediate to see that the lattice action takes the form

SL =
1

2

∑
n

m̂2ϕ̂2n +
1

4

∑
µ≥0

(
ϕ̂n+µ̂ − ϕ̂n−µ̂

)2 =

=
1

2

∑
n


(
m̂2 +

D

2

)
ϕ̂2n −

1

2

∑
µ≥0

ϕ̂n+µ̂ϕ̂n−µ̂

 ,

(13.2.22)

and this action has a peculiar property: it is the sum of 2D independent contributions. Let us
discuss, for the sake of the simplicity, the D = 2 case, but everything can be clearly extended to
the general case. The D = 2 lattice can be decomposed as the union of 4 sub-lattices, identified by
the parity of the components of the lattice sites. For example, the sub-lattice (e, e) is the one in
which all the lattice sites have even components, while the points of the sub-lattice (e, o) have the
first component which is even and the second that is odd. While this decomposition is obviously
independent of the discretization adopted, the peculiarity of the discretization in Eq. (13.2.22) is
that the variables of the different sub-lattices are decoupled from each other. This is probably
more clearly seen if we use the identity (valid for any value of µ)∑

n

(
ϕ̂n+µ̂ − ϕ̂n−µ̂

)2
=
∑
n

(
ϕ̂n+2µ̂ − ϕ̂n

)2
(13.2.23)

to rewrite SL in the equivalent form

SL =
1

2

∑
n

m̂2ϕ̂2n +
1

4

∑
µ≥0

(
ϕ̂n+2µ̂ − ϕ̂n

)2 , (13.2.24)

from which it should be clear that only sites with the same parity interact with each other. Since
the action is the sum of four independent and identical components, the partition function is the
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fourth-power of the sub-lattice partition function:

Z(β) = Z4
(e,e)(β) , Z(e,e)(β) =

∫ ∏
n∈(e,e)

dϕ̂ne
−S(e,e) . (13.2.25)

Note now that the action in Eq. (13.2.24), restricted to one of the sub-lattices, has exactly the same
form of Eq. (13.2.3), since in the sub-lattice the distance between two next-neighboring sites is 2a
instead of a: the lattice action written using the symmetric lattice derivative is thus equivalent, in
each sub-space, to the discretization carried out using the forward lattice derivative. For this reason
we expect the action Eq. (13.2.24) to describe, in the continuum, 4 (in general 2D) independent
scalar particles (known as “doublers”), instead of just one.

While for the scalar field case the symmetric discretization can appear quite pathological and
unnatural, a similar problem is present in all fermionic discretizations which preserves chiral sym-
metry, see, e. g., [81] §4, [82] §4 [83] §13.

The existence of doublers can be seen also by performing the continuum limit of the lattice propagator: the
action in Eq. (13.2.22) can be written in the form 1

2

∑
n,j ϕ̂nKnj ϕ̂j , with the kernel

Knj = m̂2δn,j +
1

4

∑
µ

(
2δn,j − δn+2µ̂,j − δn−2µ̂,j

)
. (13.2.26)

This can be written in Fourier transform (by using Eqs. (13.2.9)-(13.2.10)) as

Knj =
1

V̂

∑
p

m̂2 +
1

4

∑
µ

(
2− ei2pµ − e−i2pµ

) eip·(n−j) =

=
1

V̂

∑
p

m̂2 +
∑
µ

sin2 pµ

 eip·(n−j) ,

(13.2.27)

where we used 2− 2 cos(2α) = 4 sin2 α. By proceeding exactly as done in the case of the forward discretization we
obtain for the propagator in the a→ 0 limit the expression∫ π/a

−π/a

dDq

(2π)D
1

m2 + 1
a2

∑
µ sin2(aqµ)

eiq(x−y) . (13.2.28)

The function sin(aqµ) vanishes not only for qµ = 0 but also at the boundaries of the first Brillouin zone (note that

qµ = +π/a and −π/a are in fact the same value, due to periodic boundary conditions), and in total there are 2D

zeros. Developing sin(aqµ) close to one of these zeros we get the propagator of a scalar field in the continuum, thus

the symmetric discretization generates 2D independent scalar fields in the continuum.

13.3 Simulation of the lattice scalar field

To simulate the theory with Euclidean lattice action Eq. (13.2.3) it is convenient to rewrite the
action in the form

SL =
1

2

{
(m̂2 + 2D)ϕ̂2n − 2ϕ̂nSn

}
+ independent of ϕ̂n , (13.3.1)

where we introduced the notation

Sn =
∑
µ

(
ϕ̂n+µ̂ + ϕ̂n−µ̂

)
(13.3.2)

for the sum of the scalar variables in the next-neighbors of the site n.
The more general update scheme that can be used is the simple Metropolis algorithm: after

having selected the lattice site r we generate the trial variable ϕ̂tr by using

ϕ̂tr = ϕ̂r +∆(2 rand− 1) , (13.3.3)

where “rand” is a random number with uniform pdf in [0, 1), and ∆ is a fixed number. Such a

trial state is accepted or rejected with probability exp(−∆SL), where ∆SL = SL[ϕ̂
t]− SL[ϕ̂], and
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the parameter ∆ is selected in such a way that the average acceptance probability is neither too
small not too close to 1. This algorithm is clearly irreducible, since any value of ϕ̂n can be reached
in a finite number of steps, and it is aperiodic since there is the possibility that the state is not
changed1. The site r can be selected in two different ways: by randomly selecting a site of the
lattice with uniform pdf, or by performing a deterministic sweep of all the lattice sites. In the
first case the algorithm satisfies the detailed balance condition, while only the balance condition is
fulfilled in the second case, see Sec. 3.3.3 and the discussion in Sec. 6.1. The Metropolis update can
obviously be adopted also when studying interacting theories: we only have to use the interacting
action instead of the free action when computing ∆S.

When studying the free theory it is also easy to implement the heat-bath and microcanonical
updates. The conditional pdf of the variable ϕ̂n is indeed proportional to

exp

(
ϕ̂nSn −

m̂2 + 2D

2
ϕ̂2n

)
∝ exp

{
−m̂

2 + 2D

2

(
ϕ̂n −

Sn

m̂2 + 2D

)2
}

, (13.3.4)

i. e. a Gaussian pdf with average µ = Sn

m̂2+2D and standard deviation σ = 1√
m̂2+2D

, and such a

distribution can be easily sampled using the Box-Muller algorithm (see Sec. 2.3). The microcanon-

ical update is obtained by selecting for the site variable ϕ̂n a value which is obtained by reflecting
with respect to µ the original value:

ϕ̂n → 2
Sn

m̂2 + 2D
− ϕ̂n . (13.3.5)

It is immediate to verify that such a transformation is involutive and does not change the Euclidean
action, hence it is a legitimate microcanonical step (see the analogous discussion in Sec. 6.3). It
is possible to extend the heat-bath and microcanonical algorithms also to the case of interacting
theories, however in the interacting case a von Neumann accept/reject step (see Sec. 2.4) is typically
required in the heat-bath to sample the conditional pdf, and the numerical solution of a nonlinear
equation is needed to obtain the value to be used in the microcanonical step.

When we introduced Eq. (13.2.3), approximating the continuum derivative with its forward
lattice form, we neglected O(a2) terms, so it is natural to expect average values to converge to
their continuum limits with O(a2) corrections. This is indeed what happens, apart from the
renormalizations required by some observables, that will be discussed in Chap. 15.

1This sentence would obviously require more care, since single points have zero measure. From the operative
point of view, R is represented on any physical CPU by a large but finite number of points, so this problem does
not exist in practice.
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Chapter 14

MCMC in quantum field theory:
spectrum

14.1 Spectrum computation

Let us briefly recall what was found in quantum mechanics assuming the presence only of a discrete
spectrum (see Sec. 10): given an Hermitian operator O, if we define O(τ) = eHτOe−Hτ (which is
the analytic continuation under t→ −iτ of the Heisenberg representation O(t) = eiHtOe−iHt), we
have in the zero temperature limit1

⟨O(τ)O(0)⟩ − ⟨O⟩2 = ⟨0|eHτOe−HτO|0⟩ − ⟨0|O|0⟩2 =

=
∑
n

⟨0|eHτOe−Hτ |n⟩⟨n|O|0⟩ − ⟨0|O|0⟩2 =
∑
n

e−(En−E0)τ |⟨n|O|0⟩|2 − ⟨0|O|0⟩2 =

=
∑
n>0

e−(En−E0)τ |⟨n|O|0⟩|2 τ→∞−→ e−(En̄−E0)τ |⟨n̄|O|0⟩|2 ,
(14.1.1)

where in the last step we introduced the notation

n̄ = min {n ∈ N such that ⟨n|O|0⟩ ≠ 0} , (14.1.2)

and the large (Euclidean) time limit generally means (En̄+1−E0)τ ≫ (En̄−E0)τ . From the large
time behavior of the O correlator we can thus estimate the energy gap between the n̄-th state and
the fundamental state.

In a quantum field theory the single particle states have energies
√
m2 + p2, hence the spectrum

is always continuum, moreover also multiparticle states exist, which also have continuous spectra.
For these reasons some complications arise in the QFT case with respect to the QM case.

Let us start by studying the single particle case, considering for the sake of the simplicity the
example of a free scalar Hermitian field: we have in Minkowski space-time

ϕ(t,x) =

∫
dD−1p

(2π)D−1
1√
2Ep

(
ape
−i(Ept−p·x) + a†pe

+i(Ept−p·x)
)
, (14.1.3)

where
[ap, a

†
k] = (2π)D−1δ(p− k) . (14.1.4)

Simulation are carried out in a finite volume system of linear extent L, and the state with the
smallest nonvanishing momentum (assuming periodic b. c.) has energy

√
m2 + p2

min with pmin =

1We assume, as usual, the states to be ordered in such a way that E0 < E1 < E2 < · · · .
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(2π/L, 0, . . . , 0). The energy of the first excited state above the vacuum (E(0) = 0, conventionally)
is thus E(1) = m (corresponding to p = 0), and the energy of the second excited state is

E(2) =

√
m2 +

4π2

L2
≃ m

(
1 +

2π2

m2L2

)
. (14.1.5)

To correctly estimate the gap E(1)−E(0) = m between the fundamental and the first excited state
using Eq. (14.1.1), we need to use values of τ such that exp[−(E(2)−E(0))τ ]≪ exp[−(E(1)−E(0))τ ],
hence τ ≫ mL

2π2L. If we want finite volume effect to be negligible we need to use mL ≫ 1, hence
the previous relation imply that we have to study the correlator for times τ ≫ L≫ 1/m. This is
however unfeasible, since the correlator approaches zero with a timescale ≈ 1/m, and the physical
signal would be completely hidden by statistical errors.

The presence of the continuous spectrum (or of almost-degenerate states in a finite volume)
generates power-law corrections in the large distance behavior of Euclidean correlators. A simple
example is provided by the free Euclidean propagator

G(x,y) = ⟨ϕ(x)ϕ(y)⟩ =
∫

dDk

(2π)D
eik·(x−y)

m2 + k2
, (14.1.6)

which has the large distance behavior2

G(x,y) ∝ 1

|x− y|(D−1)/2 e
−m|x−y| . (14.1.7)

Note that D = 1 corresponds to QM, and in this case the behavior is exponential, as in Eq. (14.1.1).

Let us show that Eq. (14.1.7) is indeed the asymptotic behavior of Eq. (14.1.6): we introduce the Schwinger
proper time t:

G(x,y) =

∫
dDk

(2π)D
eik·(x−y)

m2 + k2
=

1

(2π)D

∫
dDk

∫ ∞
0

dt eik·(x−y)−t(m2+k2) , (14.1.8)

and by using
∫
dze−az

2−bz =
√
π
a
eb

2/(4a) for each component of k we get

G(x,y) =
1

(2π)D

∫ ∞
0

dt
(π
t

)D/2
e−

1
4t
|x−y|2−tm2

=
πD/2

(2π)D

∫ ∞
0

dt ef(t) , (14.1.9)

where we defined

f(t) = −tm2 −
1

4t
|x− y|2 −

D

2
log(t) . (14.1.10)

When |x − y| ≫ 1/m we can estimate the asymptotic behavior of this integral by using the Laplace method, see,
e. g., [84] §2.4 or [85] §6.4. When |x − y| ≫ 1/m the equation f ′(t) = 0 has positive solution t̄ ≃ 1

2m
|x − y|,

moreover

f(t̄) = −m|x− y| −
D

2
log

|x− y|
2m

, f ′′(t̄) ≃ −
4m3

|x− y|
, (14.1.11)

hence

G(x,y) ≃
πD/2

(2π)D

∫ ∞
−∞

dt ef(t̄)+
1
2
f ′′(t̄)(t−t̄)2 =

πD/2

(2π)D
ef(t̄)

√
2π

|f ′′(t̄)|
≃

≃
1

2m

(
m

2π|x− y|

)D−1
2

e−m|x−y| .

(14.1.12)

To avoid contaminations from the single particle continuum states it is customary to project
field operators on fixed momentum states: given an operator O(t,x) we define the operator Ok(t)
by means of a Fourier transform on spatial variables:

Ok(t) =

∫
dD−1x eik·xO(t,x) . (14.1.13)

Since O(t,x) = eix·pO(t,0)e−ix·p, we have ⟨0|O(t,x)|p⟩ = e−ip·x⟨0|O(t,0)|p⟩, and the matrix
element ⟨0|Ok(t)|p⟩ is proportional to δ(k − p). Hence all the almost degenerate single particle

2This large distance behavior is just the Ornstein-Zernike form of non-critical correlators with ξ = 1/m, see
Eq. (5.2.9).
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states with k ≈ p do not contribute to the correlators of Ok. Note that this is true whenever
translation invariance holds, not only for free fields.

Projecting the free field operator ϕ on fixed momentum states we get (in Minkowski space-time)

Ok(t) =

∫
dD−1xeik·xϕ(t,x) =

=

∫
dD−1xeik·x

∫
dD−1p

(2π)D−1
1√
2Ep

(
ape
−i(Ept−p·x) + a†pe

+i(Ept−p·x)
)
=

=
1√
2Ek

(
a−ke

−iEkt + a†ke
+iEkt

)
,

(14.1.14)

and it is simple to verify that no power-law corrections are present in the large time behavior of
the Euclidean temporal correlator of these operators: using the fact that in the Euclidean time we
have O(τ) = eHτO(0)e−Hτ , we get for τ > 0

⟨O†q(τ)Op(0)⟩ = ⟨eHτO†q(0)e−HτOp(0)⟩ =

=
1

2
√
EpEq

⟨0|aqe−Hτa†p|0⟩ = (2π)D−1δ(q − p)
1

2Ep
e−Epτ ,

(14.1.15)

where in the last step we used the fact that a†p|0⟩ is an eigenstate of the free Hamiltonian H with
eigenvalue Ep, and the canonical commutation relations. The same conclusion can be reached by
using the explicit form of the propagator:

⟨O†q(τ)Op(0)⟩ =
〈∫

dD−1x e−iq·xϕ(τ,x)

∫
dD−1y eip·yϕ(0,y)

〉
=

=

∫
dD−1x

∫
dD−1y eip·y−iq·x

∫
dDk

(2π)D
eik0τeik·(x−y)

m2 + k20 + k2 =

=

∫
dDk

(2π)D
(2π)D−1δ(q − k)(2π)D−1δ(p− k)

eik0τ

m2 + k20 + k2 =

= (2π)D−1δ(q − p)

∫
dk0
(2π)

eik0τ

m2 + k20 + p2
= (2π)D−1δ(p− q)

e−Epτ

2Ep
,

(14.1.16)

where the last integral has been computed using the residue theorem, closing the integral in the
upper half-plane since τ > 0.

On the lattice the integral entering the spatial Fourier transform at fixed time becomes a sum
on the lattice points of a given time-slice, and only the vectors of the first Brillouin zone are
legitimate momenta. On a finite lattice the spatial δ function is smoothed as

(2π)D−1δ(p− q)→ δp,qV̂s , V̂s =
∏
µ>0

Nµ , (14.1.17)

where Nµ is the lattice extent in the µ-th direction (time corresponds to µ = 0), and V̂s is the
number of sites in any lattice time-slice. For this reason the momentum projected operators are
usually normalized on the lattice as follows

Op(n0) =
1√
V̂s

∑
n∈n0 t.s.

eip·nO(n0,n) , (14.1.18)

where the sum extends on all the points of the n0-th time-slice of the lattice, and the (D − 1)-
dimensional vector n denotes the spatial components of each of these points. The correlators of
these fields are often called “wall-wall” correlators, since Op(n0) is computed by summing on the
wall at fixed n0.
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We have seen that momentum projected operators remove the almost degenerate contributions
of unwanted single particle states, however multiparticle contributions cannot be removed in this
way: for example, in the free case the state a†k−pa

†
p|0⟩ has momentum k but energy

E
(2p)
k−p,p =

√
m2 + (k − p)2 +

√
m2 + p2 , (14.1.19)

depending on the value of p. In free field theories these states can not be reached from the
ground state by using just one insertion of the field operator, but this is not the case in interacting
quantum field theories (see, e. g., [46] §6.9 or [86] §10.7 for the Källen-Lehmann representation of
the interacting propagator).

Note that this problem is not particularly serious if we are interested just in studying the
mass-gap, since the two particle states have energy ≥ 2m, hence a finite energy gap separates
them from the single particle zero-momentum states of energy m. In QM an analogous situation is
encountered when studying the bound states of a potential which also supports scattering states.
Two particle states are instead problematic if we are interested in studying single particle states
with p2 ≥ 3m2 (e. g. to verify the form of the dispersion relation), since in this case we need to study
energies above the two-particle threshold, and almost degenerate two-particle states contribute to
the matrix elements.

For the study of single particle states below the two-particle threshold, all the techniques that
have been introduced in Sec. 10 to study the large time behavior of two point functions in QM can
be used to study the large time behavior of correlation function of fixed momentum operators.

14.2 How to perform the continuum limit

When discussing the discretization of the free scalar field in Sec. 13.2 we noted that the continuum
limit is approached as m̂ → 0. This is quite trivial, since in the free case we know from the
beginning the mass value m, and m̂ = am. Moreover, as in QM, the approach to the continuum
limit can be seen as the approach to a critical point: the large time behavior of the appropriate
correlator is proportional to e−mτ , which on the lattice becomes e−m̂n0 , where n0 = τ/a is the
euclidean time in lattice units (i. e. the number of lattice slides between the two walls of the wall-
wall correlator). In the limit a → 0 at fixed m, we have m̂ → 0 and thus the lattice correlation

length ξ̂ = 1/m̂ diverges. Let us explicitly note that the lattice size has to be increased while
approaching the continuum limit: if we are interested in infinte volume quantities we have to use
Nµ/ξ̂ = Lµm≫ 1 (Nµ is the number of sites in the µ-th direction, Lµ = aNµ), but even if we are
interested in finite volume QFT we have to keep Lµm fixed, which means that Nµ →∞ as m̂→ 0
(this limit corresponds to the FSS limit of Sec. 5.4).

The same conclusions can be reached in an interacting theory: by measuring the correlation
function of appropriate (momentum projected) interpolating operator we can estimate the dimen-
sionless mass m̂ (i. e. the mass in lattice units) of a given state, which can for example be the
mass in lattice units of a glueball state with given spin, parity and charge conjugation properties
in Yang-Mills theory. By changing the simulation parameters we can change the value of m̂, and
in particular we have to find a set of parameters for which m̂→ 0, which correspond to a critical
point of the lattice model. We then interpret m̂→ 0 as a→ 0 at fixed physical mass. With respect
to the free case the difficulty is that m̂ is not a parameter that can be directly tuned, since it
can only be estimated a posteriori, after the simulation. Note that this is the case also if a mass
parameter m̂0 enters the lattice action, as for the interacting scalar field: the parameter m̂0 is the
equivalent of the bare mass in continuum QFT, which is related in a nontrivial way to the physical
mass.

The procedure to extract physical information form lattice simulations is thus the following:
we measure the mass in lattice unit of a given state, let it be m̂1, and perform several simulations
to approach the limit m̂1 → 0. In the meantime we also measure the mass in lattice unit of a
second state, let it be m̂2. If m̂2/m̂1 → α, with 0 < α < ∞, when m̂1 → 0 then we predict
that in the continuum limit m2/m1 = α. It should be clear that in this way we can only predict
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ratio of physical masses. In particular, a standard procedure is to fix the value of m1 to its known
physical value (obviously this can be done only when simulating a theory with a direct experimental
counterpart), measure m̂1 in a simulation, and extract the lattice spacing a = m̂1/m1 in physical
units. This procedure is usually called scale setting, and can be interpreted as a nonperturbative
renormalization of the lattice regularized QFT. Once the value in physical units of a is known we
can convert all the lattice masses to physical masses. This is obviously equivalent to compute mass
ratios with respect to a given reference mass.

When several parameters enter the theory, like the quark masses, several lattice quantities (e. g.
meson masses) have to be measured to set all the parameters, and the continuum limit has to be
performed keeping constant the ratios of these masses. This requirement identifies the so called
“lines of constant physics”. If, for example, we study QCD in the isospin symmetric limit, we have
to fix the lattice spacing and the lattice masses m̂u = m̂d and m̂s of the up, down and strange
quarks. The lattice spacing a is typically determined by using observables related to the static
potential between color sources, and once a has been fixed, the quantities m̂u and m̂s entering the
action have to be tuned to reproduce, e. g., the physical values of the π+ and K+ masses. Once
these 3 numbers (lattice spacing and bare quark masses) have been fixed, we can predict the mass
of the other mesons or baryons. The whole procedure has then to be repeated by decreasing the
lattice spacing, in order to extract the continuum limit.

Let us note explicitly that we have so far implicitly assumed that

• the continuum limit of a given lattice model exists,
• we know which QFT emerges when approaching the continuum limit of a give lattice model,

but life is not always that easy. Let us assume that we are interested in studying the nonperturbative properties of
a specific QFT. We have first of all to discretize the Euclidean action of this QFT, then to numerically simulate it,
looking for critical points. Several possibilities can happen:

1. no critical point is found,
2. a single critical point is found,
3. several critical points are found.

In case 1) we can not obtain continuum physical results. This can be due to a pathology of the discretization: the

QFT is well defined, but the lattice model is not “close enough” to it; more precisely, we are not in the attraction

basin of the RG fixed point associated to the QFT we are interested in (and in fact of any QFT at all). But this

could also be due to a pathology of the QFT, which is not well defined beyond perturbation theory. In case 2) we can

define a continuum limit, but we have to understand whether the emerging QFT is really the one we are interested

in, since it can happen that we are in the attraction basin of a different QFT. This can be done by comparing the

numerical results with some nonpertubative predictions available in particular limits (e. g. large-N results), or by

comparing directly with experimental data, when they are available. In case 3) we can define several continuum

limits, and we have to understand which (if any) is the one corresponding to the QFT we are interested in. Some

nontrivial examples of the problems encountered when discretizing a QFT are discussed in [87], for the case of three

dimensional multiflavor scalar QED.

In free field theories the continuum limit is approached with O(a2) corrections, just like the case
of quantum mechanics. This can be understood by using the same strategy used in QM (which
is viable since no renormalizations are present), or by directly checking the behavior of the lattice
propagator (see Sec. 13.2). For generic interacting field theories the approach to the continuum is
governed by a nontrivial exponent, just like the finite size scaling correction in Sec. 5.4, since the
continuum limit correspond to a continuus phase transition. We recover the scaling O(a2) (up to
possible logarithmic corrections) in asymptotically free theories, like four dimensional Yang-Mills
theory and QCD.
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Chapter 15

MCMC in quantum field theory:
thermodynamics

Since the lattices that will be used in the following are typically cubic, with the only possible
exception of the temporal direction (related to the inverse temperature, see Sec. 13.1), we introduce
the notation Nt to denote the number of lattice sites in the temporal direction (dentoted by µ = 0),
while Ns denotes the number of lattice sites in any of the spatial directions (denoted by µ > 0).

15.1 Anisotropic discretization

Let us start by discussing the case of the free scalar field, we will later comment on the interacting
case, and the changes that are needed to study it. The internal energy can be computed from the
partition function using the relation

U = − ∂

∂β
logZ , (15.1.1)

where the spatial volume Vs and other physical quantities (like, e. g., the masses) have to be kept
fixed while taking the derivative. Since β = aNt = Ntm̂/m and m has to be kept fixed, we could
think of using

∂

∂β
=
∂m̂

∂β

∂

∂m̂
=

m

Nt

∂

∂m̂
. (15.1.2)

Since m̂ directly enters the lattice Euclidean action in Eq. (13.2.3) it would then be straightforward
to estimate U . This is however not possible: m̂ is related to the lattice spacing a, and when changing
the value of m̂ (and hence of a) we are changing both the temperature and the volume.

To correct for this fact we can introduce an anisotropic discretization, by using the lattice
spacing at along the temporal direction and the lattice spacing a along the spatial direction. The
ratio ξ = at/a quantifies the anisotropy, and clearly β = Ntat = ξNta. Using the anisotropic
discretization it is immediate to see that∫

dDx→
∑
n

ata
D−1 =

∑
n

ξaD , ∂tf →
fn+0̂ − fn

at
=

1

ξ

fn+0̂ − fn
a

, (15.1.3)

hence the lattice action can be written in the form

SL =
∑
n

1

2

{
ξm̂2ϕ̂2n + ξ

∑
µ>0

(
ϕ̂n+µ̂ − ϕ̂n

)2
+

1

ξ

(
ϕ̂n+0̂ − ϕ̂n

)2}
. (15.1.4)

We can now use
∂

∂β
=
∂ξ

∂β

∂

∂ξ
=

1

aNt

∂

∂ξ
(15.1.5)
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to compute the internal energy, obtaining

U =
1

2aNt

〈∑
n

(
m̂2ϕ̂2n +

∑
µ>0

(
ϕ̂n+µ̂ − ϕ̂n

)2
− 1

ξ2

(
ϕ̂n+0̂ − ϕ̂n

)2)〉
ξ

, (15.1.6)

where we used ⟨ ⟩ξ to denote the average value computed by using the anisotropic action. Note
however that once the correct expression has been obtained, we can put ξ = 1 and use the isotropic
action to generate the configurations. From here on we thus assume ξ = 1.

It is more convenient to compute, instead of the internal energy U , the internal energy density
ε = U/Vs normalized by TD, which is a dimensionless quantity. Using

1

TDVs
=

ND
t a

D

ND−1
s aD−1

=
ND
t a

ND−1
s

(15.1.7)

we can rewrite ε/TD in the form

ε

TD
=
ND
t

2
⟨O1 +O2 −O3⟩ , (15.1.8)

where we introduced the definitions

O1 =
1

NtN
D−1
s

∑
n

m̂2ϕ̂2n , O2 =
1

NtN
D−1
s

∑
n

∑
µ>0

(
ϕ̂n+µ̂ − ϕ̂n

)2
,

O3 =
1

NtN
D−1
s

∑
n

(
ϕ̂n+0̂ − ϕ̂n

)2
.

(15.1.9)

Note that O1, O2 and O3 are just lattice averages of local operators, since NtN
D−1
s is the number

of lattices sites, and the “temporal” term O3 enters ε/TD with a minus sign (see Eq. (15.1.8)),
which is the analogous in QFT of what happened in Chap. 9 to the kinetic term.

This result is still not the end of the story: the average value ⟨O1 + O2 − O3⟩ in Eq. (15.1.8)
generates a divergence in the continuum limit, and an additive contribution is needed to cancel this
divergence, exactly as happened in QM. For the free scalar it would be possible to subtract ana-
lytically this divergence, which originates from the integrals over momenta performed in Sec. 13.1,
however this is not possible in interacting theories. To get a finite result in the general case we
have to take the difference between two values of ⟨O1 + O2 − O3⟩, computed for two different
temperatures. Ultraviolet divergences in QFT are indeed independent of the temperature (see [88]
§11). It is fundamental to stress that, for this subtraction to be effective, we have to change the
temperature keeping the lattice spacing (and hence m̂ in the free case, or the bare couplings in
the interacting case) constant: we thus must change the temperature by varying the dimensionless
lattice size (i. e. the number of sites) along the temporal direction.

In practice, it is convenient to use T ≈ 0 simulations to perform this subtraction, in such a way
that the renormalized energy density is normalized to zero at vanishing temperature. Since the
temperature is the inverse of the lattice extent (in physical units) along the temporal direction, to
perform the T ≈ 0 subtraction we have to use a lattice with

m

T
= N tm̂≫ 1 . (15.1.10)

The final expression for the renormalized energy density is thus

ε

TD

∣∣∣
R
=

1

2
ND
t

(
⟨O1 +O2 −O3⟩Nt

− ⟨O1 +O2 −O3⟩Nt

)
, (15.1.11)

where the subscripts in ⟨ ⟩Nt and ⟨ ⟩Nt
denote the dimensionless temporal extent of the lattice

used to estimate these average values.
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The method discussed in this section can be applied also to interacting theories: everything
goes on exactly as in the free case, but for a significant detail. We have to distinguish the bare
anisotropy ξB (the one entering the lattice action) from the physical anisotropy ξ, with the relation
∂ξ/∂β = 1/(aNt) which is valid for the physical ξ. In practice, we thus need to perform simulations
specifically targeted at determining ∂ξB/∂ξ|ξB=1 for each value of the lattice spacing used, see,
e. g., [89] for an early reference. In the work [90], where this method of estimating thermodynamic
observables has been introduced, perturbation theory was used to evaluate ∂ξB/∂ξ|ξB=1.

15.2 Thermodynamic integration

We have discussed in the previous section that to directly estimate the internal energy we have
introduce an anisotropic coupling, since otherwise it is not possible to rewrite the derivative with
respect to T as a derivative with respect to the temporal lattice spacing.

Let us now see what happens if we instead consider the derivative of logZ with respect to the
lattice spacing using the isotropic discretization:

− ∂

∂a
logZ = − ∂ logZ

∂β

∣∣∣∣
Vs

∂β

∂a
− ∂ logZ

∂Vs

∣∣∣∣
β

∂Vs
∂a

. (15.2.1)

In the first term we recognize the internal energy Eq. (15.1.1), while to rewrite the second term
we have to use the fact that logZ = −βF , where F is the free energy, and

dF = −SdT − PdVs , (15.2.2)

where S and P are the entropy and the pressure, respectively. We thus have

− ∂ logZ

∂Vs

∣∣∣∣
β

= −βP . (15.2.3)

Using these relations, together with β = aNt and Vs = aD−1ND−1
s , we get

− ∂

∂a
logZ = UNt − βP (D − 1)ND−1

s aD−2 =

= Nt

(
U − (D − 1)PVs

)
= NtVs

(
ε− (D − 1)P

)
,

(15.2.4)

where we introduced the internal energy density ε = U/Vs. The quantity ε− (D− 1)P is the trace
of the energy-momentum tensor and it is sometimes improperly called trace anomaly (it is really
the trace anomaly only in massless theories). Multiplying the last equation by the lattice spacing
we thus have (using aNt = β)

− T
Vs
a
∂

∂a
logZ = ε− (D − 1)P , (15.2.5)

and dividing by TD we get (using 1/(TD−1Vs) = (Nt/Ns)
D−1)

−a ∂
∂a

[(
Nt
Ns

)D−1
logZ

]
=
ε− (D − 1)P

TD
. (15.2.6)

As we will show in a moment the left hand side of this equation can be easily computed in lattice
simulations, since in the free case we can use a∂/∂a = m̂∂/∂m̂ (at constant m), however the right
hand side is typically not what one is interested in when studying thermodynamics.

To obtain a more standard thermodynamic observable it is convenient to rewrite the left hand
side of the previous equation in a different way:(

Nt
Ns

)D−1
logZ =

1

TD−1Vs
logZ = − 1

TDVs
F =

P

TD
, (15.2.7)
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indeed logZ = −βF , and introducing the (intensive, i. e. Vs independent) free energy density
f = F/Vs we have

P = − ∂F
∂Vs

= − ∂

∂Vs

(
f Vs

)
= −f . (15.2.8)

Thus

−a ∂
∂a

[(
Nt
Ns

)D−1
logZ

]
= −a ∂

∂a

(
P

TD

)
, (15.2.9)

and since P/TD is an intensive quantity we have (using T = 1/(Nta) hence ∂T/∂a = −T/a)

−a ∂
∂a

(
P

TD

)
= −a

(
∂T

∂a

∂

∂T

∣∣∣∣
Vs

+
∂Vs
∂a

∂

∂Vs

∣∣∣∣
T

)
P

TD
= T

∂

∂T

(
P

TD

)
. (15.2.10)

We thus finally get

−a ∂
∂a

[(
Nt
Ns

)D−1
logZ

]
= T

∂

∂T

(
P

TD

)
, (15.2.11)

which together with Eq. (15.2.6) gives as a byproduct the relation

T
∂

∂T

(
P

TD

)
=
ε− (D − 1)P

TD
. (15.2.12)

The relation in Eq. (15.2.12) can obviously be proved also without using the lattice discretization. We have
indeed

T
∂

∂T

(
P

TD

)
= −D

P

TD
+

1

TD−1

∂P

∂T
, (15.2.13)

moreover, see Eq. (15.2.2), P = − ∂F
∂Vs

and S = − ∂F
∂T

, hence

∂P

∂T
= −

∂

∂T

∂F

∂Vs
=

∂S

∂Vs
= s , (15.2.14)

where s = S/Vs is the entropy density. From F = U −TS we have f = ε−Ts and we saw above that f = −P , thus
s = (ε+ P )/T , and

∂P

∂T
=
ε+ P

T
. (15.2.15)

Using this relation in the first equation we finally have

T
∂

∂T

(
P

TD

)
= −D

P

TD
+

1

TD−1

ε+ P

T
=
ε− (D − 1)P

TD
. (15.2.16)

Let us now discuss how we can use these relations to compute thermodynamic observables on
the lattice. In the free case we can use, at fixed m, the relation a∂/∂a = m̂∂/∂m̂ to rewrite (using
the lattice action in Eq. (13.2.3))

− a ∂
∂a

[(
Nt
Ns

)D−1
logZ

]
= −

(
Nt
Ns

)D−1
m̂

∂

∂m̂
logZ =

=

(
Nt
Ns

)D−1
m̂

〈
m̂
∑
n

ϕ̂2n

〉
= ND

t

〈
m̂2

NtN
D−1
s

∑
n

ϕ̂2n

〉
,

(15.2.17)

which using the notation of the previous section is just ND
t ⟨O1⟩, see Eq. (15.1.9). Using this

relation we can compute (but for the divergences to be discussed in a moment) the quantity
(ε− (D− 1)P )/TD for several temperatures, using Eq. (15.2.6). We can then exploit Eq. (15.2.12)
to obtain the pressure by a numerical integration:

P (T )

TD
− P (T0)

TD0
=

∫ T

T0

dT 1

T
ε− (D − 1)P

T D . (15.2.18)
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Also using this strategy we have to subtract divergent additive contributions from the average
values of local operators, and it is convenient to use as reference temperature T ≈ 0 in the
subtractions. We thus define

ε− (D − 1)P

TD

∣∣∣∣
R

= ND
t (⟨O1⟩Nt

− ⟨O1⟩Nt
) , (15.2.19)

where N tm̂≫ 1, and ⟨ ⟩X denotes average values computed by using a lattice with X sites in the
temporal direction. We thus finally obtain

P (T )

TD

∣∣∣∣
R

=

∫ T

0

dT 1

T
ε− (D − 1)P

T D
∣∣∣∣
R

. (15.2.20)

The form of this equations should make self-evident the origin of the name thermodynamic in-
tegration. Since the physical mass m is always constant, this expression can be written in the
equivalent form

P (T )

TD

∣∣∣∣
R

=

∫ T/m

0

d(T /m)
m

T
ε− (D − 1)P

T D
∣∣∣∣
R

, (15.2.21)

which is particularly convenient from the numerical point of view in the free case, since T/m =
1/(Ntm̂) and m̂ is an external parameter. Once the quantities (ε− (D−1)P )/TD and P/TD have
been computed, it is then obviously possible to estimate ε/TD.

This method can be applied also to interacting theories [91], and the only difference is in the
point where we traded a ∂

∂a with m̂ ∂
∂m̂ . In an interacting theory m̂ is not a free parameter, so it

is convenient to use instead the bare coupling of the lattice theory (that we denote by γB) in the
chain rule:

a
∂

∂a
= a

∂γB
∂a

∂

∂γB
. (15.2.22)

To use this expression (and to rewrite dT in the integral determining the pressure) we need to
know the dependence of the lattice spacing on the bare coupling γB . This relation is needed also
for scale setting, see Sec. 14.2, and it is typically well studied, although it obviously depends on
the discretization details.

15.3 Continuum results for the free scalar case

We are now going to derive continuum results for thermodynamic quantities in the free scalar case,
which is the only case in which computations can be performed in almost closed form.

The starting point is the partition function, which we write as

Z = N
∫
ϕ(0,x)=ϕ(β,x)

[Dϕ] exp
(
−1

2

∫ β

0

dt

∫
dD−1xϕ(−∇2 +m2)ϕ

)
, (15.3.1)

where we explicitly show the proportionality factor N that in Sec. 13.1 was hidden in the definition
of the integration measure. Since Z is dimensionless and ϕ has dimension [ϕ] = D−2

2 , the pro-
portionality factor is dimenionfull, and this is the reason for exposing it in the present discussion.
In order to make the proportionality factor dimensionless, let us rescale the variables using the
inverse temperature β:

x̂ = x/β , m̂ = mβ , t̂ = t/β , ϕ̂ = ϕβ
D−2

2 . (15.3.2)

Using these dimensionless variables we have

Z = N̂
∫
ϕ̂(0,x̂)=ϕ̂(1,x̂)

[Dϕ̂] exp
(
−1

2

∫ 1

0

dt̂

∫
dD−1x̂ ϕ̂(−∇̂2

+ m̂2)ϕ̂

)
, (15.3.3)
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where N̂ is now dimensionless (and from Sec. 13.1 it follows that it is a function just of β/a = 1/Nt).

The eigenfunctions of the differential operator−∇̂2
+m̂2, with periodic b. c. along all directions,

are

exp
(
2πint̂

)
exp

(
i
2π

L̂
h · x̂

)
, L̂ = L/β , n, hj ∈ Z , (15.3.4)

and the corresponding eigenvalues are

(2πn)2 + (2π)2
h2

L̂2
+ m̂2 . (15.3.5)

We formally have

Z ∝
[
det
(
−∇̂2

+ m̂2
)]−1/2

, (15.3.6)

where the proportionality factor is dimensionless, hence (going back to dimensionfull quantities)

logZ = −1

2

∑
n

∑
h

log

{
(2πn)2 +

(
2π

L

)2

β2h2 + β2m2

}
+ const . (15.3.7)

The “+const” term will be neglected in the following since it is independent of β, hence it does
not change the internal energy U = − ∂

∂β logZ. If we introduce the notations

k =
2π

L
h , E(k) =

√
m2 + k2 , (15.3.8)

we can thus write

logZ = −1

2

∑
n

∑
k

log
{
(2πn)2 + β2E2(k)

}
. (15.3.9)

Following [92] §2.3, we now rewrite the previous expression using

log
[
(2πn)2 + β2E2

]
=

∫ β2E2

1

dθ2

θ2 + (2πn)2
+ log[1 + (2πn)2] , (15.3.10)

and the identity
+∞∑

n=−∞

1

n2 + (θ/2π)2
=

2π2

θ

(
1 +

2

eθ − 1

)
. (15.3.11)

To prove the previous identity we can use the Poisson summation formula (see Chap. 11)

+∞∑
n=−∞

f(n) =

+∞∑
k=−∞

e−2πikxf(x)dx (15.3.12)

with f(x) = 1/[x2 + (θ/2π)2]. If we define

Ik =

∫ +∞

−∞

1

x2 + (θ/2π)2
e−2πikxdx , (15.3.13)

for k ≥ 0 we can close the integration contour in the lower half-plane, and use the residue theorem with the pole in
−iθ/(2π), hence

Ik≥0 = −2πi
1

−2iθ/(2π)
e−θk =

2π

θ
e−θk . (15.3.14)

In an analogous way we obtain, for k < 0, the expression

Ik<0 =
2π

θ
eθk . (15.3.15)

We thus have

+∞∑
k=−∞

Ik =
2π2

θ
+

2π2

θ

∞∑
k=1

e−kθ +
2π2

θ

−1∑
k=−∞

ekθ =
4π2

θ

∞∑
k=0

e−kθ −
2π2

θ
=

=
4π2

θ

1

1− e−θ
−

2π2

θ
=

2π2

θ

(
2eθ

eθ − 1
− 1

)
=

2π2

θ

(
eθ + 1

eθ − 1

)
=

2π2

θ

(
1 +

2

eθ − 1

)
.

(15.3.16)
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The logarithm of the partition function can be written as

logZ
(1)
= −1

2

∑
n

∑
k

∫ β2E2(k)

1

dθ2

θ2 + (2πn)2
=

= −1

2

∑
k

(
1

2π

)2 ∫ β2E2(k)

1

∑
n

1

n2 + (θ/2π)2
dθ2 =

(2)
= −

∑
k

(
1

2π

)2 ∫ βE(k)

1

2π2

θ

(
2

eθ − 1
+ 1

)
θdθ =

= −
∑
k

∫ βE(k)

1

(
1

2
+

1

eθ − 1

)
dθ

(3)
= −

∑
k

{
1

2
βE(k) + log

(
1− e−βE(k)

)}
,

(15.3.17)

where in the step (1) we neglected a β-independent additive term, coming from the second term
in the right hand side of Eq. (15.3.10), in step (2) we used Eq. (15.3.11), and in step (3) we used
the fact that a primitive of 1/(eθ− 1) is log(1− e−θ) (and neglected further β-independent terms).
In the large spatial volume limit we have∑

k

→ Vs

∫
dD−1k

(2π)D−1
, (15.3.18)

hence

F (β) = Vs

∫
dD−1k

(2π)D−1

{
1

2
E(k) +

1

β
log
(
1− e−βE(k)

)}
, (15.3.19)

From logZ we can also compute the internal energy, obtaining

U(β) = Vs

∫
dD−1k

(2π)D−1

{
1

2
E(k) +

E(k)

eβE(k) − 1

}
. (15.3.20)

The first term of F clearly generates a divergence, so we have to introduce a renormalized free
energy, which is defined by subtracting the zero temperature divergent contribution:

FR(β) = F (β)− F (β =∞) = Vs

∫
dD−1k

(2π)D−1
1

β
log
(
1− e−βE(k)

)
. (15.3.21)

In the same way we obtain for the internal energy

UR(β) = U(β)− U(β =∞) = Vs

∫
dD−1k

(2π)D−1
E(k)

eβE(k) − 1
. (15.3.22)

From now on we will consider the particular case D = 2, and we have thus for the renormalized
free energy density

fR =
1

2πβ

∫ +∞

−∞
dk log

(
1− e−βE(k)

)
=

1

πβ

∫ +∞

0

dk log
(
1− e−βE(k)

)
, (15.3.23)

and for the renormalized internal energy density

εR =
1

π

∫ +∞

0

dk
E(k)

eβE(k) − 1
. (15.3.24)

Note that fR < 0, consistently with the relation P = −f (see Sec. 15.2). To evaluate numerically
these integrals, it is convenient to perform a change of variable in the integration, in order to
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factorize the dependence on β and leave in the integral the dependence on the dimensionless
quantity α = mβ. Using z = βk we have

fR(β) =
1

πβ2

∫ ∞
0

dz log
(
1− e−

√
z2+α2

)
εR(β) =

1

πβ2

∫ ∞
0

dz

√
z2 + α2

e
√
z2+α2 − 1

,

(15.3.25)

and for example for T = m we find

fR(T = m) ≃ −0.2194658931T 2 ,

εR(T = m) ≃ 0.40612349888T 2 .
(15.3.26)

In the high temperature limit α ≪ 1 these expressions can be simplified by approximating
α ≃ 0, hence

fR ≃
1

πβ2

∫ ∞
0

dk log(1− e−k) = − 1

πβ2

∞∑
n=1

1

n

∫ ∞
0

e−nkdk =

= − 1

πβ2

∞∑
n=1

1

n2
= −π

6
T 2 ,

(15.3.27)

where we used log(1− x) = −∑∞n=1 x
n/n and the fact that the sum in the second line is equal to

π2/6.

This can be proved by applying the Parseval identity to the Fourier series of x on (−π, π): since∫ π

−π
x sin(nx) = −2π

(−1)n

n
, (15.3.28)

we have

x =
∞∑
n=1

2(−1)n+1√π
n

sin(nx)
√
π

,

∫ π

−π
x2dx =

∞∑
n=1

∣∣∣∣2(−1)n+1√π
n

∣∣∣∣2 , (15.3.29)

from which the desired result imediately follows.

Analogously, for the internal energy in the high temperature limit we have (α ≃ 0)

εR ≃
1

πβ2

∫ ∞
0

z

ez − 1
dz =

1

πβ2
Γ(2)ζ(2) =

π

6
T 2 (15.3.30)

We have, following [38] §58, the relations∫ ∞
0

zx−1

ez − 1
dz =

∫ ∞
0

zx−1 e−z

1− e−z
dz =

∫ ∞
0

zx−1e−z
∞∑
n=0

e−nzdz =

∞∑
n=0

∫ ∞
0

zx−1e−(n+1)zdz =

=

∞∑
n=0

1

(n+ 1)x

∫ ∞
0

ξx−1e−ξdξ = Γ(x)

∞∑
n=0

1

(n+ 1)x
= Γ(x)

∞∑
n=1

1

nx
= Γ(x)ζ(x) ,

(15.3.31)

where we introduced the Euler Γ and the Riemann ζ functions

Γ(x) =

∫ ∞
0

ξx−1e−ξdξ , ζ(x) =

∞∑
n=1

1

nx
. (15.3.32)

It is immediate to prove by induction that if n ∈ N then Γ(n+ 1) = n!, moreover ζ(2) = π2/6, as shown before.

To find asymptotic expansions in the low temperature regime α = mβ ≫ 1 is significantly more complicated,
and it is convenient to rewrite fR and εR using known special functions. Let us start from fR: using log(1− x) =
−
∑∞
n=1 x

n/n we have

fR =
1

πβ2

∫ ∞
0

dz log

(
1− e−

√
z2+α2

)
= −

1

πβ2

∞∑
n=1

1

n

∫ ∞
0

e−n
√
z2+α2

dz , (15.3.33)

and using the change of variable z = α sinhx we get∫ ∞
0

e−n
√
z2+α2

dz = α

∫ ∞
0

cosh(x)e−αn cosh(x)dx = αK1(αn) , (15.3.34)
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where we used the following identity for the modified Bessel functions of second kind (see [12] §9.6.24)

Kν(z) =

∫ ∞
0

cosh(νt)e−z cosh tdt . (15.3.35)

We thus have

fR = −
m

πβ

∞∑
n=1

1

n
K1(αn) , (15.3.36)

and using the asymptotic expansion for large argument of the modified Bessel functions of second kind (see [12]
§9.7.2)

Kν(z) ≃
√

π

2z
e−z , (15.3.37)

we get in the low tempertature regime α = m/T ≫ 1

fR ≃ −
√
mT 3/2

√
2π

e−m/T . (15.3.38)

Using the asymptotic expansion for small argument of the modified Bessel functions of second kind (see [12] §9.6.8-9)

K0(z) ≃ − log z , Kν(z) ≃
1

2
Γ(ν)

( z
2

)−ν
, ν > 0 , (15.3.39)

it is also simple to find the high-temperature expansion.
To obtain the low temperature behavior of the renormalized energy density is only slightly more complicated:

εR =
1

πβ2

∫ ∞
0

dz

√
z2 + α2

e
√
z2+α2 − 1

=
1

πβ2

∫ ∞
0

dz

√
z2 + α2

e
√
z2+α2

(
1− e−

√
z2+α2

) =

=
1

πβ2

∫ ∞
0

dz

√
z2 + α2

e
√
z2+α2

∞∑
n=0

e−n
√
z2+α2

=
1

πβ2

∞∑
n=1

∫ ∞
0

dz
√
z2 + α2e−n

√
z2+α2

(15.3.40)

Using also in this case the change of variable z = α sinhx, and cosh2 x = 1
2
cosh(2x) + 1

2
, we have∫ ∞

0
dz
√
z2 + α2e−n

√
z2+α2

= α2

∫ ∞
0

dx cosh2(x)e−nα cosh x =

=
α2

2

∫ ∞
0

dx
(
1 + cosh(2x)

)
e−nα cosh x =

α2

2

(
K0(nα) +K2(nα)

)
.

(15.3.41)

We thus have

εR =
m2

2π

∞∑
n=1

(
K0(nα) +K2(nα)

)
, (15.3.42)

and in the low temperature regime α = m/T ≫ 1

εR ≃
√
T m3/2

√
2π

e−m/T . (15.3.43)

Also in this case, using the asymptotic behavior of the modified Bessel functions of second kind for α ≪ 1, it is

possible to obtain the high-temperature expansion of εR.

15.4 Numerical examples for the two dimensional free scalar
field

In this section we present some numerical results for the thermodynamic of the two dimensional
free scalar field, in order to show how the previously explained techniques work in practice.

In the case of the free scalar field with lattice action Eq. (13.2.3) we have 3 free parameters
to set before starting the simulations: m̂, Nt and Ns (in fact we will need also N t, the temporal
extent to be used to perform the zero temperature subtraction). Since m̂ = am, m is the physical
mass of the field, and physical correlators decay with typical length-scale 1/m (see Sec. 14.1), m̂
has to be “small”, in order for the lattice spacing to be much smaller than the typical length-scale
of the system. This is however not the only constraint: we also need 1/m to be “small” with
respect to the physical side of the lattice aNs, in order not to have large finite volume effects. We
thus need

1

Ns
≪ m̂≪ 1 . (15.4.1)
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Figure 15.1: Results obtained for ε/T 2 and (ε − P )/T 2 at T = m, using the lattice action
Eq. (13.2.3) and the numerical setup described in the main text. Data at fixed Ns/Nt have been
extrapolated to the continuum limit (Nt → ∞) by using a linear ansatz in 1/N2

t . The horizontal
dashed green line denotes the continuum values computed by using Eq. (15.3.26).

Note that this is strictly true only at zero temperature, since at finite temperature we have screen-
ing, and the typical length-scale is not 1/m, but something which scale as 1/T at high temperature
(see e. g. [92] §6). However, when performing the renormalization discussed in Secs. (15.1)-(15.2),
we also need zero temperature simulations, so the previous condition has anyway to be satisfied
(this is one drawback of the choice of the T ≈ 0 point to perform the subtractions). The value
of the temperature in units of the mass m depends on the two variables m̂ and Nt by (remember
that aNt = 1/T , see Sec. 13.1):

m

T
= m̂Nt . (15.4.2)

We can thus change the ratio m/T or by changing the value m̂ at fixed Nt (always paying attention
to Eq. (15.4.1)), or by changing the value of Nt at fixed m̂.

Let us consider for example the case of the temperature T = m. To impose this condition we
have to fix m̂ = 1/Nt, and to approach the continuum limit we have increase the value of Nt (so
that m̂ → 0 at fixed m/T ). For each value of Nt we have to chose a value of Ns large enough to
be close to the termodynamic limit; in fact we have to extrapolate the large Ns limit. We thus
consider

1

m̂
= Nt = 4, 5, 6, 7, 8, 10 , (15.4.3)

and for each of these values we performed simulations with

Ns/Nt = 4, 6, 8 , (15.4.4)

in such a way that m̂Ns = 4, 6, 8, see Eq. (15.4.1). To perform the “zero” temperature subtraction,
we use simulations adopting the same values 1/m̂ = 4, 5, 6, 7, 8, 10, m̂Ns = 4, 6, 8, and N t = Ns
(note that the convergence to the zero temperature limit is exponential in the ratio m/T = m̂N t,
see Sec. 15.3). For each of these cases we performed 5 × 107 updates (20% heatbath and 80%
microcanonical), measuring O1, O2 and O3 (see Eq. (15.1.9)) after every update. Execution times
for a single data point go from ≈ 2 minutes (for the 4×16 lattice) to ≈ 120 minutes (for the 80×80
lattice). Using the results of Sec. 15.1 we then computed ε/T 2, and using the results of Sec. 15.2
we computed (ε− P )/T 2.

Numerical results obtained using this setup are shown in Fig. (15.1). Linear fits in 1/N2
t ∝

a2 have been performed for data corresponding to fixed values of Ns/Nt: in this way we are
extrapolating to the continuum limit results obtained at fixed physical volume (fixed mL = Nsm̂),
which then have to be extrapolated to the infinite volume limit. It is clear that data are approaching
the continuum values computed in Eq. (15.3.26) (remember that P = −fR) when increasing the
value of Ns/Nt (the approach to the infinite volume limit is typically exponentially fast in Ns/Nt).

It is interesting to see what happens if we use, instead of the discretization obtained by using
the forward derivative Eq. (13.2.3), the one obtained by using the symmetric discretization of the
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Figure 15.2: Results obtained for ε/T 2 and (ε − P )/T 2 at T = m, using the lattice action
Eq. (13.2.22) and the numerical setup described in the main text. Data at fixed Ns/Nt have
been extrapolated to the continuum limit (Nt → ∞) by using a linear ansatz in 1/N2

t . The hori-
zontal dashed green line denotes four times the continuum values computed by using Eq. (15.3.26).

derivative, see Eq. (13.2.22), which was previously shown to describe 2D free scalar fields in the
continuum limit. The expressions deduced in Sec. 15.1 can be easily adapted to this case, obtaining
the final Eq. (15.1.8) but with

O1 =
1

NtN
D−1
s

∑
n

m̂2ϕ̂2n , O2 =
1

NtN
D−1
s

∑
n

∑
µ>0

1

4

(
ϕ̂n+µ̂ − ϕ̂n−µ̂

)2
,

O3 =
1

NtN
D−1
s

∑
n

1

4

(
ϕ̂n+0̂ − ϕ̂n−0̂

)2
.

(15.4.5)

Data obtained for ε/T 2 by using 1
m̂ = Nt = 4, 6, 8, 10, 12, 14 and Ns/Nt = 4, 6 are shown in

Fig. (15.2). It is clear that the values of ε/T 2 obtained in this case are much larger than the
corresponding ones we have seen when using the forward discretization (see Fig. (15.1)), and they
seem to converge to four times the continuum result for a single scalar field, consistently with
the analysis of Sec. 13.2. Notice also that, with respect to the forward discretization case, lattice
artifacts are significantly larger, and their linear behavior in 1/N2 sets in for larger values of
Nt. This is consistent with the analysis carried out in Sec. 13.2: the symmetric discretization is
equivalent, in each of the 4 independent sublattices, to the forward discretization with a lattice
spacing that is two times larger.

In order to study thermodynamical properties in an extended range of temperatures it is con-
venient to perform simulation at fixed Nt, changing the temperature by varying the parameter m̂,
alway keeping in mind Eq. (15.4.1). We now present data obtained using lattices with Ns/Nt = 5,
Nt = 4, 6, 8, 10 and 2

Ns
≲ m̂ ≲ 1, which taking into account m/T = m̂Nt means 2Nt

Ns
≲ m

T ≲ Nt,
i. e.

1

Nt
≲
T

m
≲

Ns
2Nt

= 2.5 . (15.4.6)

Note that to reach low temperatures we need large Nt values, while to reach large temperatures
we need large values of Ns/Nt. Also in this case subtractions have performed by using lattices
with Nt = Ns, and simulations with Nt = 10 and Ns/Nt = 10 have been used to check for finite
volume effects. In all the cases we gathered a statistics of 5 × 107 updates of the whole lattice
(20% heatbath and 80% microcanonical), with simulation times ranging from ≈ 2 minutes for the
4× 16 lattices to ≈ 190 minutes for the 100× 100 lattices.

Results obtained by using the anisotropic discretization method, i. e. Eq. (15.1.11), are dis-
played in Fig. (15.3): from the left panel we see that Nt = 10 is large enough to be close to the
continuum, while from the right panel we see that there is only a very mild dependence on the
volume size, which is more significant for larger values of T/m. Note the very slow convergence of
ε/T 2 to the asymptotic limit π/6 computed in Sec. 15.3. This does not come as a surprise, since
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from the exact formula for ε/T 2, written as a sum of modified Bessel functions of second kind, it
is simple to see that logarithmic corrections to the leading asymptotic behavior are present.

In Fig. (15.3) we report the trace of the energy momentum tensor normalized by T 2, computed
by using Eq. (15.2.19) (the systematic error induced by the choice of the numerical integration
method has been verified to be negligible starting from second order methods). Also in this case
the dependence on the lattice spacing is quite mild (left panel), but finite volume effects are much
more significant than for εR/T

2, as can be seen from the right panel of Fig. (15.3). The trace of
the energy momentum tensor has then been integrated using Eq. (15.2.21) to obtain P/T 2 and,
by addition, ε/T 2. A comparison of the results obtained by using the anisotropic discretization
and the thermodynamic integration methods is shown in Fig. (15.5): good agreement between the
results of the two methods is found for Ns/Nt = 10 data.
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Figure 15.3: Behavior of ε/T 2 as a function of T/m computed using Eq. (15.1.11). (Left) Results for
Ns/Nt = 5 and serveral values of Nt. The inset shows a zoom to better appreciate the convergence
of the results to the continuum limit. (Right) comparison of data obtained by using Ns/Nt = 5
and Ns/Nt = 10 for Nt = 10. The agreement between the two data sets is very good for T/m ≲ 1
(see also the inset), while deviations appear for larger values of the temperature.
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convergence of the results to the continuum limit. (Right) comparison of data obtained by using
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for T/m ≲ 1 (see also the inset), while deviations appear for larger values of the temperature.
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Figure 15.5: Behavior of ε/T 2 as a function of T/m. Comparison of the results obtained for
Ns/Nt = 5 and Ns/Nt = 10 using the thermodynamic integration method (see Eqs. (15.2.19)-
(15.2.21)), with the results obtained using Eq. (15.1.11) for Ns/Nt = 10. The two computation
methods nicely agree with each other for T/m ≲ 2 when Ns/Nt = 10.
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Chapter 16

The Hybryd Monte Carlo
algorithm

In this chapter we are going to introduce a new variant of the Monte Carlo method, the Hybrid
Monte Carlo (HMC) algorithm, which can be used whenever we have to sample continuous vari-
ables. Despite its generality, this algorithm is really useful only when it is computationally difficult
to perform local updates; in the case of lattice systems of physical interest this happens when the
action is non-local. We thus start by discussing fermionic field theories, in order to clarify how
non-local lattice actions can emerge, and then discuss the HMC algorithm in the simpler case of
scalar field theories.

16.1 Why we need HMC: the fermionic case

In the path-integral formulation fermionic fields are associated to Grassmann variables (see, e. g. [46,
86, 93]), i. e. anticommuting variables, and this prevent us from using standard techniques to sam-
ple the fermionic fields. Nevertheless several interesting fermionic actions are quadratic in the
fermionic fields, or can be rewritten as quadratic in the fermionic fields by introducing auxiliary
scalar fields. In these cases the path-integration on the fermionic fields can be exactly carried out
by using ∫

[DψDψ̄]eψ̄Mψ = detM . (16.1.1)

Note that, for the previous expression to be well defined, we are assuming to work in the context
of the lattice regularized theory. We are however neglecting all the difficulties related to the lattice
discretization of fermionic fields outlined in Sec. 13.2, since they are irrelevant for the problem we
want to discuss in this section.

If we consider as an example the case of Quantum Chromodynamics (QCD) with two degenerate
fermionic fields, the partition function is given by (up to irrelevant proportionality factor)

Z =

∫
[DAµ]

∏
i=u,d

[DψiDψ̄i] exp
{
−Sg[A]− ψ̄uD[A]ψu − ψ̄dD[A]ψd

}
=

=

∫
[DAµ]

(
detD[A]

)2
e−Sg[A] =

∫
[DAµ] exp

{
−Sg[A] + log

(
(detD[A])2

)}
,

(16.1.2)

where we denote by Aµ the gauge fields and by Sg[A] the gauge action, whose specific form we
do not need to known now. The important point to note is that, although Sg[A] is a simple local
functional of the gauge fields (as it will be shown Chap. 17), the integration of the fermion fields
generates a very nonlocal action for the gauge fields. This makes all the sampling techniques that
have been used so far extremely inefficient: even if we generate a trial configuration by changing
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the value of the gauge field just in a single lattice site, to evaluate the acceptance probability we
have to perform a computation which involves all the variables of the lattice. To generate a trial
configuration by randomly changing the values of the gauge field on all the lattice sites does not
help either, since the acceptance probability would typically be ridiculously small. This is the
prototypical case in which the HMC is useful, since the aim of this algorithm is to generate a new
trial configuration in which all variables change, but they do not change randomly: they change
in such a way as to keep the acceptance probability reasonably close to one.

The form of the action in Eq. (16.1.2) is however not the one that is normally used in nu-
merical simulations. It is customary to introduce the so-called pseudo-fermionic fields to rewrite
Eq. (16.1.2) in a different form. Using the fact that∫

[DϕDϕ∗]e−ϕ†Nϕ ∝ 1

detN
, (16.1.3)

where ϕ is a complex scalar field (the pseudo-fermionic field), we have indeed (assuming detD[A] ∈
R)

Z =

∫
[DAµ]

(
detD[A]

)2
e−Sg[A] =

=

∫
[DAµ][DϕDϕ∗] exp

{
−Sg[A]− ϕ†(D†[A]D[A])−1ϕ

}
.

(16.1.4)

The action is still non local, due to the term (D†D)−1, but this form is easier to sample: the field
ϕ can indeed be generated (for fixed Aµ) using an heat-bath algorithm. If we define R = (D†)−1ϕ
we have (using (D†D)−1 = D−1(D†)−1)

e−ϕ
†(D†D)−1ϕ[DϕDϕ∗]∫

e−ϕ†(D†D)−1ϕ[DϕDϕ∗] =
e−R

†R[DRDR∗]∫
e−R†R[DRDR∗] , (16.1.5)

hence we can sample R using the Box-Muller algorithm (see Sec. 2.3), and then reconstruct ϕ =
D†R.

We still have the problem of sampling Aµ at fixed ϕ. The idea of the HMC algorithm is to add
to the action a new term, written by using the conjugate momenta of Aµ, and to generate a trial
configuration by numerically integrating the Hamiltonian equations of motion. In the computation
of the force entering the equations of motion for the conjugate momenta we need to evaluate η =
(D†D)−1ϕ, i. e. to solve a very large sparse (and typically not so well conditioned) linear system.
This is typically done by using iterative Krylov solvers (see [94] §8.8 for a quick introduction, or
[95] for many more details), and this is the main bottleneck in performing simulations with fermion
fields, especially in the light mass limit. The algorithm we have just described is the so called Φ
algorithm [96], which is still, but for some minor changes, the standard algorithm used to simulate
QCD, see e. g. [94, 97] for more details.

When writing Eqs. (16.1.2)-(16.1.4) we have assumed detD[A] ∈ R, since otherwise it is not
possible to use a Monte Carlo approach at all, the weight not being positive definite (note that
when using an odd number of flavors we need the stronger requirement detD[A] > 0.). This
condition is however not satisfied at nonvanishing baryon density, see e. g. [98, 99], and this is the
reason why we know so little of the QCD phase diagram at finite density.

When performing simulations with fermionic fields also the computation of observables can present some prob-
lems: most observables can be written in the form

∂

∂α
logZ , (16.1.6)

where α is some control parameter entering the fermion matrix, like, e. g., the fermion mass. To write explicitly
these observables we can use the so called Jacobi’s formula for the derivative of the determinant (we denote the
derivative with respect to α by ′)

(detM)′ = detM tr(M ′M−1) , (16.1.7)

which can be proved for diagonalizable matrices and extended by continuity to the general case. We have indeed

(detM)′ = λ′1λ2 · · ·λN + λ1λ
′
2 · · ·λN + · · ·+ λ1λ2 · · ·λ′N = (detM)

(
λ′1
λ1

+ · · ·+
λ′N
λN

)
, (16.1.8)
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and if M = U−1DU , with D a diagonal matrix, we have

tr(M ′M−1) = tr
[(

(U−1)′DU + U−1D′U + U−1DU ′
)
U−1D−1U

]
=

= tr
[
(U−1)′U + U−1U ′

]
+ tr(D′D−1) = tr(D′D−1) ,

(16.1.9)

where in the last step we used tr[(U−1U)′] = tr(1′) = 0, moreover tr(D′D−1) =
∑
i λ
′
i/λi.

To estimate some observables we thus need to evaluate tr(M ′M−1), which is extremely demanding from the
computational point of view. We can however use the following trick: if ηi (where i = 1, . . . , N , and N is the size
of M) are independent random variables such that

[η∗i ηj ] = δij , (16.1.10)

where we denoted by [ ] the average with respect to the distribution of the ηi, then we can write

tr(M ′M−1) =
∑
i

(M ′M−1)ii =
∑
ijk

[η∗i (M
′)ijM

−1
jk ηk] . (16.1.11)

The average value can then be estimated by using the sample mean obtained by generating K random sets
{ηi}i=1,...,N , and we once again just need to solve (large sparse) linear systems. These estimators are known
as noisy estimators.

Since the sample average is an unbiased estimator of the true average, it is not necessary (although it can
sometimes be computationally convenient) to use very large values of K, however some care is needed to avoid

introducing biases in nonlinear observables: for example to estimate
(
tr(M ′M−1)

)2
we have to use(

tr(M ′M−1)
)2

=
∑
ijk

[η∗i (M
′)ijM

−1
jk ηk]

∑
ijk

[ζ∗i (M
′)ijM

−1
jk ζk] , (16.1.12)

where ηi and ζi are independent random variables. Moreover it is convenient to use random variables taking values

in ±1, since in this way the error is minimized, see, e. g., [100] App. B.

16.2 The HMC algorithm for a single bosonic variable

Let us now discuss the details of the Hybrid Monte Carlo algorithm [101] considering for the sake
of the simplicity the sampling of a single variable, since everything can be trivially generalized to
more complicated cases. Our aim is thus to sample the pdf

PS(q)dq ∝ e−S(q)dq . (16.2.1)

The main idea of the HMC algorithm is to introduce the additional variable p, which is in-
tepreted as the conjugate momentum of the variable q, thus building the “fake” Hamiltonian
H = 1

2p
2 + S(q). Note that this operation is legitimate as far as we are interested in computing

average values which depends just on q, since obviously

⟨f(q)⟩ =
∫
f(q)e−S(q)dq∫
e−S(q)dq

=

∫
f(q)e−Hdqdp∫
e−Hdqdp

. (16.2.2)

In this way our configuration consists now of a couple of variables, q and p, and the process to
generate a new configuration is the following:

1. generate the momentum with pdf PG(p) ∝ e−p
2/2

2. solve the Hamiltonian equations of motion with initial values (q, p) for a fixed time t, ob-
taining (q(t), p(t)), and use this as trial configuration. This corresponds to select the trial
configuration (q′, p′) with pdf

PC

(
(q, p)→ (q′, p′)

)
= δ
(
(q′, p′)− (q(t), p(t))

)
(16.2.3)

3. accept the trial configuration with probability

PA

(
(q, p)→ (q′, p′)

)
= min(1, e−δH) , δH = H(q′, p′)−H(q, p) . (16.2.4)
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The transition probability of going from q to q′ is thus

P (q → q′) =

∫
dpPG(p)PC

(
(q, p)→ (q′, p′)

)
PA

(
(q, p)→ (q′, p′)

)
, (16.2.5)

and the Makov chain generated by this transition probability is irreducible, due to point 1), when-
ever starting from q we can chose the momentum p in such a way as to reach any q′ at time t.
Aperiocity follows from the fact that we can select p in such a way that q′ = q (with the usual
caveat concerning continuous pdf, which should be investigated in a more precise way). We are
now going to show that this transition probability also satisfies the detailed balance

PS(q)P (q → q′)dq = PS(q
′)P (q′ → q)dq′ (16.2.6)

provided that

a. the evolution is reversible: in a fixed time t the configuration (q, p) evolves in (q′, p′) if and
only if the configuration (q′,−p′) evolves in (q,−p) in a time t

b. the evolution preserves the measure of the phase space: dq dp = dq′dp′ .

It is indeed simple to verify that

e−H(q,p) min(1, e−δH) = e−H(q′,p′) min(eδH , 1) , (16.2.7)

which can be rewritten as

PS(q)PG(p)PA

(
(q, p)→ (q′, p′)

)
= PS(q

′)PG(p
′)PA

(
(q′, p′)→ (q, p)

)
=

= PS(q
′)PG(−p′)PA

(
(q′,−p′)→ (q,−p)

)
,

(16.2.8)

where in the last step we just used the fact that p2 is even. From the invariance of the phase space
measure we have

PS(q)PG(p)PA

(
(q, p)→ (q′, p′)

)
dq dp =

= PS(q
′)PG(−p′)PA

(
(q′,−p′)→ (q,−p)

)
dq′dp′ ,

(16.2.9)

and using the reversibility of the evolution, PC

(
(q, p) → (q′, p′)

)
= PC

(
(q′,−p′) → (q,−p)

)
, we

thus have

PS(q)PG(p)PA

(
(q, p)→ (q′, p′)

)
PC

(
(q, p)→ (q′, p′)

)
dq dp =

= PS(q
′)PG(−p′)PA

(
(q′,−p′)→ (q,−p)

)
PC

(
(q′,−p′)→ (q,−p)

)
dq′dp′ ,

(16.2.10)

which becomes the detailed balance equation by integrating/marginalizing the momentum 1.
Conditions a) and b) are obviously satisfied by the exact solution of the equations of motion,

at least if S(ϕ) is sufficiently regular, as follows from the existence and uniqueness theorem for
ordinary differential equations, and the Liouville theorem of analytical mechanics. If we use nu-
merical integration schemes of the equations of motion which do not satisfy these requirements,
an extrapolation to vanishing integration time-step of the simulation results is required, as in
non-equilibrium molecular dynamics simulations. If instead we adopt integration schemes which
exactly (up to round-off errors, obviously) satisfies conditions a) and b), the HMC algorithm is
stochastically exact already for finite integration time-steps. If the integration step is too coarse,
the acceptance probability typically becomes very small, and the algorithm is stochastically exact
but inefficient.

1To be more precise, we need to know that for each q, q′ and p′ a value p exists (unique if S(q) is a sufficiently
regular function) such that (q, p) evolves at time t in (q′, p′).
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Let us see how to build integration schemes for the Hamiltonian flow of the Hamiltonian
H(q, p) = T (p) + S(q) which satisfy the conditions a) and b). If we denote by U(τ) the evo-
lution operator up to time τ in the phase space, defined by U(τ)f(q0, p0) = f(q(τ), p(τ)) with
q(0) = q0 and p(0) = p0, we can formally write (using the chain rule)

U(τ) = exp

(
τ
d

dt

)
= exp

(
τ q̇

∂

∂q
+ τ ṗ

∂

∂p

)
= exp

(
τT ′(p)

∂

∂q
− τS′(q) ∂

∂p

)
, (16.2.11)

where in the last step the Hamiltonian equations of motion

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
(16.2.12)

have been used. It is now convenient to introduce the differential operators

Q = T ′(p)
∂

∂q
, P = −S′(q) ∂

∂P
, (16.2.13)

in such a way that U(τ) = exp{τ(P +Q)}. These operators satisfy

exp(τQ)f(q, p) = f(q + τT ′(p), p) , exp(τP )f(q, p) = f(q, p− τS′(q)) , (16.2.14)

and it is immediate to show that exp(τQ) and exp(τP ) preserve the measure of the phase space:
we have for example ∣∣∣∣∣∂

(
eτQ(q, p)

)
∂(q, p)

∣∣∣∣∣ =
∣∣∣∣ 1 τT ′′(p)
0 1

∣∣∣∣ = 1 . (16.2.15)

By expanding U(τ) as a product of terms of the form eaQ and ebP we thus obtain integration
schemes which preserves the measure of the phase space, which are known as symplectic integrators
(for some interesting properties of these integration schemes see [102]).

The simplest symplectic integrator is (using the Baker-Campbell-Hausdorff formula)(
eδτ Qeδτ P

)τ/δτ
=
(
eδτ (Q+P )+O(δτ2)

)τ/δ
= eτ(Q+P )+O(δτ) = U(τ)

(
1 +O(δτ)

)
, (16.2.16)

which acts as

eδτ Qeδτ P (q0, p0) = eδτ Q
(
q0, p0 − δτS′(q0)︸ ︷︷ ︸

=p1

)
= (q0 + δτT ′(p1), p1) ≡ (q1, p1) , (16.2.17)

or, more explicitly, {
p(τ + δτ) = p(τ)− δτS′

(
q(τ)

)
,

q(τ + δτ) = q(τ) + δτT ′
(
p(τ + δτ)

)
.

(16.2.18)

This is just the symplectic version of the standard Euler integrator, which can be easily seen not
to be symplectic: from {

p(τ + δτ) = p(τ)− δτS′
(
q(τ)

)
,

q(τ + δτ) = q(τ) + δτT ′
(
p(τ)

)
,

(16.2.19)

it indeed follows that∣∣∣∣∣∣
∂
(
q(τ + δτ), p(τ + δ(τ))

)
∂
(
q(τ), p(τ)

)
∣∣∣∣∣∣ =

∣∣∣∣ 1 δτT ′′(p(τ))
−δτS′′(q(τ)) 1

∣∣∣∣ ̸= 1 . (16.2.20)

The symplectic Euler algorithm is however not reversible. To build a symmetric (i.e. reversible)
symplectic integrator we can start from

V (δτ) = e
1
2 δτ P eδτ Qe

1
2 δτ P , (16.2.21)
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indeed it is immediate to see that V (δτ)V (−δτ) = 1. Using again the Baker-Campbell-Hausdorff

formula log(etXetY ) = tX + tY + t2

2 [X,Y ] + t3

12 ([X, [X,Y ]]− [Y, [X,Y ]]) +O(t4) we have

V (δτ)τ/δτ =

(
exp

{
(P +Q)δτ − 1

24

(
[P, [P,Q]] + 2[Q, [P,Q]]

)
δτ3 +O(δτ5)

})τ/δτ
=

= exp
{
(P +Q)τ − τ

24

(
[P, [P,Q]] + 2[Q, [P,Q]]

)
δτ2 + · · ·

}
= U(τ) +O(δτ2) .

(16.2.22)
This integration scheme is known as PQP (a QPQ version also exists) leapfrog or Verlet algorithm
and it can be rewritten in the form

p(τ + δτ/2) = p(τ)− δτ
2 S
′(q(τ)) ,

q(τ + δτ) = q(τ) + δτ T ′
(
p(τ + δτ/2)

)
,

p(τ + δτ) = p(τ + δτ/2)− δτ
2 S
′(q(τ + δτ)

)
.

(16.2.23)

It is not difficult to recursively build higher-order symmetric symplectic integrators, i. e. symmetric symplectic

integrators with error O(δτn) with n > 2, see [103], however the use of these higher-order integration schemes is

typically not particularly convenient (at least in QCD simulations). Other methods to reduce the size of the integra-

tion errors (and hence increase the integration time-step and the computational efficiency of the HMC algorithm)

are discussed in [104], with focus on classical mechanics, and in [105, 102], with focus on QCD.

In several cases it is possible to write the potential term of the Hamiltonian as the sum of two terms, of which

one is computationally simple and the other is computationally difficult (the typical case being that of fermionic

simulations of gauge theories). In these cases it is convenient to use multi-step integrators, which perform a different

number of integration steps in the “simple” and in the “difficult” part of the Hamiltoninan, see, e. g. [106, 107]. A

general summary of the techniques adopted in the numerical simulation of fermionic systems can be found in [97].
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Chapter 17

Gauge field theories

17.1 Generalities on group representations

Before discussing gauge theories, it is convenient to recall some facts about group representations;
many more details can be found, e. g., in [108, 109, 110]. A unitary representation of rank n of a
group is a mapping (continuous if the group is a continuous group) from the group to the unitary
n× n complex matrices, g → G(g), characterized by the properties

G(g1)G(g2) = G(g1g2) , G(id) = 1 , (17.1.1)

where g1 and g2 are generic group elements and id is the identity of the group (hence, in particular,
G(g−1) = G(g)−1 = G(g)†). A representation is called reducible if a proper subspace of Cn exists
which is left invariant by the action of G(g) for all the elements of the group; if such a proper
subspace does not exist the representation is said to be irreducible. If a representation is reducible
we can chose a basis of Cn such that, in this basis, the matrix G(g) (for any g) has the following
block form

G(g) =

(
X Y
0 Z

)
, (17.1.2)

moreover unitary representations are in fact completely reducible: the matrix G(g) can be written
in diagonal block form by a proper choice of the basis1. Irreducible representations can thus
be considered as the building blocks of general unitary representations. Shur’s lemma describes a
peculiar and useful property of irreducible representations: if a n×nmatrixM satisfies [M,G(g)] =
0 for any g, then M is proportional to the identity. In particular, irreducible representations of
Abelian groups exist only for n = 1, since in the Abelian case G(g1) commutes with G(g2) for any
g1, g2.

If the group is continuous, and r real numbers are needed to identify one of its elements (r
is the dimensionality of the group), we can introduce a parametrization θa of the group, with
a = 1, . . . , r and θa = 0 corresponding to id, such that G(g) = exp(iθaTa), where the Ta matrices
are the generators of the given representation. For g ≃ id we have in particular |θa| ≪ 1 and
G(g) ≃ 1 + iθaTa. The generators Ta span the group algebra, which is the tangent space to the
group manifold at the identity of the group. Since G(g) is a unitary matrix, the generators Ta are
Hermitian, moreover, if detG(g) = 1, then TrTa = 0 (since for an Hermitian matrix M it is easily
seen that det eiM = eiTrM ). Since G([g1, g2]) = [G(g1), G(g2)], where g1 and g2 are generic group
elements, we have in particular, if g1 and g2 are close to the identity,

[1 + iθaTa, 1 + iψbTb] ≃ 1 + iξcTc . (17.1.3)

1This follows from the fact that if a subspace is invariant under the group action, then also its orthogonal
complement is invariant.
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From this equation it follows that the commutator of two generators, [Ta, Tb], can be written as a
linear combination of generators:

[Ta, Tb] = if cabTc . (17.1.4)

In fact also the expression of ξc as a function of θa and ψb follows, but we will not need its precise
form; note that ξc is of the second order, but we do not need to keep track of the second order
terms in θa or in ψb in Eq. (17.1.3), since they commute with the identity. The coefficients f cab are
the structure constants, which are real numbers (since [Ta, Tb]

† = −[Ta, Tb]), and obviously satisfy
f cab = −f cba. Note that, using the Campbell-Baker-Hausdorff formula (see, e. g., [111]) and the

structure constants, we can compute all the terms of the expansion of log(eiθ
aTaeiψ

bTb), hence the
structure constants completely characterize the group multiplication rule.

For compact and semisimple2 groups it is possible to choose the generators in such a way that
they satisfy the relation Tr (TaTb) = Cδab, where C > 0. Using this choice of generators (something
that will be always assumed in the following), it is immediate to see that the structure constants
can be written as

f cab = −i
1

C
Tr(Tc[Ta, Tb]) . (17.1.5)

Using the cyclicity of the trace it is then simple to show that f cab is completely antisymmetric in all
indices. Since the indices enter now on equal footing, it is more standard to write just fabc instead
of f cab.

A simple example which should be familiar from quantum mechanics is that of the continuous
group3 SU(2): elements of the group SU(2) can be parametrized by three angles, SU(2) irreducibile
representations are characterized by the spin s, a spin s representation acts on fields with n = 2s+1

complex components, and G(g) is the (2s+1)×(2s+1) Wigner rotation matrix D
(s)
i′i . The so-called

fundamental representation is the one directly related to the definition of the group as the 2 × 2
group of unitary matrices with unit determinant: using the standard relation

eiαn·σ/2 = cos(α/2) + in · σ sin(α/2) , (17.1.6)

with n2 = 1, it is simple to verify that any SU(2) matrix can be written in the form eiαn·σ/2

for some n and some α ∈ [0, 4π), either by direct computation or by using the infinitesimal form
and the connectivity of the group. This means that we can use as generators of the fundamental
representation the matrices Ta = σa/2, which satisfy Tr(TaTb) =

1
2δab and[σa

2
,
σb
2

]
= iϵabc

σc
2
, (17.1.7)

hence the structure constants of SU(2) are fabc = ϵabc. For SU(N) with N > 2 no simple
parametrization of the group elements exists, but it is simple to understand that the algebra
associated with the fundamental representation is that of the (N2−1)-dimensional space of N×N
traceless Hermitian matrices. Generators of the fundamental representation are typically normal-
ized according to Tr(TaTb) =

1
2δab just like in SU(2).

If we denote by Ta the generators of the fundamental representation of SU(N), the set {Ta, 1√
2N

I} costitutes

a basis for the (complex) vector space of N × N complex matrices, which is orthogonal with respect to the scalar
product ⟨M |N⟩ = ReTr(M†N). If we now consider the matrix M(ik), with matrix elements (M(ik))lm = δimδlk,
and expand it on this basis we get the so called Fiez identity

δimδlk =
1

N
δikδlm + 2(Ta)ik(Ta)lm , (17.1.8)

2A continuous group is (often) called semisimple if its algebra has no proper invariant Abelian subalgebras. Note
however that, despite the fact that the theory of continuous group of transformations dates back to the late 19th
century, the definition of “semisimple” continuous group (and even of “simple” continuous group) is not always the
same in the mathematical literature.

3To be precise, in quantum mechanics the group SO(3) is typically used, but half-integer spin cases do not
satisfy G(id) = I, hence they are not representations of SO(3) (this is the reason for ℓ ∈ N), and are often called
two-valued representations. From the mathematical point of view a better characterization of these representations
is the following: they correspond to prjoective representations (i. e. representations up to a phase) of SO(3), which
can be lifted to proper representation of the group SU(2). SU(2) is indeed the covering of SU(3), i. e. the simply
connected group with the same structure constants of SO(3).
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and contracting this identity with δkl we get

TaTa =
N2 − 1

2N
. (17.1.9)

The operator TaTa is the quadratic Casimir operator, and plays in SU(N) a role analogous to that of J2 in SU(2).

A case which is technically even simpler is that of the U(1) group: elements of the U(1) group
can be parametrized by a single angle φ ∈ [0, 2π), irreducible representations of the group U(1) are
unidimensional (due to Shur’s lemma), are characterized by an integer number q ∈ Z, and their
action is just the multiplication by the complex number G(g) = eiqφ.

From the Jacobi identity

[Ta, [Tb, Tc]] + [Tb, [Tc, Ta]] + [Tc, [Ta, Tb]] = 0 (17.1.10)

it imediately follow that
fadefbcd + fbdefcad + fcdefabd = 0 . (17.1.11)

If we introduce the matrices T
(adj)
a by

(T (adj)
a )bc = ifbac , (17.1.12)

it is simple to verify that the Jacobi identity for the structure constants can be rewritten (using
the antisymmetry of the structure constants) as

(T (adj)
a )bd(T

(adj)
c )de − (T (adj)

c )bd(T
(adj)
a )de = ifacd(T

(adj)
d )be , (17.1.13)

i. e.
[T (adj)
a , T

(adj)
b ] = ifabcT

(adj)
c . (17.1.14)

The matrices T
(adj)
a are the generators of the adjoint representation. Note that for SU(2) the gen-

erators T
(adj)
a are nothing but the generators of the spin 1 representation (which is the fundamental

representation of SO(3)).

The action of the adjoint representation can be visualized as follows: if Ta are r the generators of the fun-
damental representation of SU(N), and x is a N -dimensional complex vector, we can define the r real num-
bers ya by ya = x†Tax. Under the action of the group we have x → G(g)x, where G(g) = eiθ

aTa , hence
ya → (gy)a = x†G†(g)TaG(g)x, which can be written as the linear combination Vab(g)yb of the original variables,
with the real matrix elements Vab(g) defined by

G†(g)TaG(g) = Vab(g)Tb . (17.1.15)

Using the normalization of the generators of the fundamental representation we have explicitly

Vab(g) = 2Tr(G†(g)TaG(g)Tb) . (17.1.16)

From the fact that G(g) is a representation of the group, hence G(g1g2) = G(g1)G(g2), the equality Vab(g1)Vbc(g2) =
Vac(g1g2) easily follows, hence V (g) is also a representation. Moreover the transformation Ta → G†(g)TaG(g) is
unitary with respect to the scalar product obtained extending by linearity ⟨Ta|Tb⟩ = ReTr(TaTb), from which the
orthogonality of V (g) follows (a result that can also be obtained by using the explicit form of Vab(g) and the Fierz
identity). For g ≈ Id we have

G†(g)TaG(g) ≃ (1− iθcTc)Ta(1 + iθcTc) = Ta + iθc[Ta, Tc] = Ta + iθcifacbTb , (17.1.17)

hence Vab(g) ≃ δab + ifacbiθ
c = δab + iθc(T

(adj)
c )ab, and Vab is the adjoint representation matrix.

17.2 Continuum gauge theories

Let us assume ϕ(x) to be a field4 with several components, which transforms according to a
given irreducible representation of a continuous group of transformations which commutes with
the Poincarè group (a so called “internal” group):

ϕ(x)→ gϕ(x) = G(g)ϕ(x) . (17.2.1)

4We assume for the sake of the simplicity this field to be a scalar one, but the presence of Lorentz indices is
irrelevant for what follows.
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In this equation g denotes a constant (i. e. independent of x) element of the group of transforma-
tions, while G(g) is the matrix associated with g by the given representation (in the following we
will often write just G instead of G(g)). For concreteness, and since this is the most common case
in applications, we will assume ϕ(x) to be a complex field with n components, and G(g) to be a
unitary n× n matrix.

Since we assumed g to be independent of x in Eq. (17.2.1) (and G to be unitary), it is immediate
to verify that expressions like, e. g.,

ϕ†(x) · ϕ(x) , [∂µϕ(x)]
† · ∂µϕ(x) , (17.2.2)

are invariant under the transformation ϕ → G(g)ϕ. This is no more the case if we consider local
transformations, i. e. trasformations for which g depends on the point of application: under the
action of a local transformation ϕ†(x) · ϕ(x) is still invariant, but [∂µϕ(x)]† · ∂µϕ(x) is not. Let us
consider how ∂µϕ changes under a local transformation (the dependence of g, and thus of G(g),
on x is implied):

∂µϕ→ ∂µ
gϕ = ∂µ(Gϕ) = G(∂µϕ) + (∂µG)ϕ = G

(
∂µϕ+G†(∂µG)ϕ

)
. (17.2.3)

In order to remove the non-homogeneous term from the previous equation, and promote the
global symmetry to a local (gauge) symmetry, let us introduce the gauge field Aµ (represented by
a n× n complex matrix) and the covariant derivative

Dµ = ∂µ + ieAµ , (17.2.4)

where e is the coupling constant. Note that the coupling constant is typically denoted by g in the
non-Abelian case, but g could be confused with the group element. We obviously have

Dµϕ→ g(Dµϕ) = (∂µ + ie gAµ)Gϕ = G
(
∂µ +G†(∂µG) + ieG†gAµG

)
ϕ , (17.2.5)

and if we impose g(Dµϕ) = GDµϕ we obtain the relation

G†(∂µG) + ieG†gAµG = ieAµ (17.2.6)

and thus the transformation law of the gauge field

gAµ = GAµG
† +

i

e
(∂µG)G

† = GAµG
† − i

e
G(∂µG

†) , (17.2.7)

where in the last equality we used

0 = ∂µ1 = ∂µ(GG
†) = (∂µG)G

† +G∂µG
† . (17.2.8)

The derivative of the exponential of a non-constant matrix M(α) can be written as (see, e. g.,
[111])

d

dα
eM(α) =

∫ 1

0

e(1−t)M(α) dM(α)

dα
etM(α)dα , (17.2.9)

which can be intuitively understood by writing eM as eM/N · · · eM/N (where N terms are present),
using the fact that eM/N and 1

N
dM
dα commute to leading order in 1/N , and rewriting the N →∞

limit as an integral. By using this identity we can rewrite the non-homogeneous term i(∂µG)G
†

which appears in the transformation of Aµ, where G(g(x)) = eiθ
a(x)Ta , as

i(∂µG)G
† = i

∫ 1

0

e(1−t)iθ
bTbi(∂µθ

a)Tae
tiθbTbdtG† =

= −(∂µθa)
∫ 1

0

ei(1−t)θ
bTbTae

−i(1−t)θbTbdt .

(17.2.10)
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For any G(g) the matrix G†(g)TaG(g) is in the group algebra, since an element gϵ of the group
exists whose representation is eiϵTa and

G(g−1gϵg) = G†(g)G(gϵ)G(g) ≃ G†(g)(1 + iϵTa)G(g) = 1 + iϵG†(g)TaG(g) , (17.2.11)

hence i(∂µG)G
† is in the group algebra and, for the same reason, if Aµ is in the algebra the quantity

GAµG
† is also in the algebra. It is thus consistent to assume the matrix Aµ to live in the group

algebra: Aµ = AaµTa. Moreover, from the transformation rule of Aµ (see Eq. (17.2.7)), we see
that under global transformations (i. e., with constant g and thus constant G(g)) the matrix Aµ
transforms in the adjoint representation of the group.

Note that we used (and we will use in the following) the matrix notation Aµ = AaµTa to write
formulas in a compact form, but the true gauge fields are the components Aaµ (N2−1 components,
for SU(N)). This can be understood by considering a model in which two different matter fields are
present, transforming in two different representations, and interacting with the same gauge fields.

If we denote by T
(1)
a and T

(2)
a the generators of these representations, the covariant derivatives for

the two matter fields are
D(i)
µ = ∂µ + ieAaµT

(i)
a , (17.2.12)

where i = 1, 2 and the same fields Aaµ enter both the covariant derivatives.
The field strength Fµν is defined, in the non-Abelian case, by

Fµν = − i
e
[Dµ, Dν ] . (17.2.13)

To verify that this definition makes sense let us compute Fµνϕ:

− i

e
[Dµ, Dν ]ϕ = − i

e
{(∂µ + ieAµ)(∂ν + ieAν)ϕ− (∂ν + ieAν)(∂µ + ieAµ)ϕ} =

= − i
e

{
ieAµ∂νϕ+ ie∂µ(Aνϕ)− e2AµAνϕ− ieAν∂µϕ− ie∂ν(Aµϕ) + e2AνAµϕ

}
=

= − i
e

{
ie(∂µAν − ∂νAµ)ϕ− e2[Aµ, Aν ]ϕ

}
= (∂µAν − ∂νAµ + ie[Aµ, Aν ])ϕ ,

(17.2.14)

from which we see that Fµν is not a differential operator, and explicitly

Fµν = ∂µAν − ∂νAµ + ie[Aµ, Aν ] . (17.2.15)

Just like Aµ, also Fµν lives in the algebra of the group, and if we introduce its components using
Fµν = F cµνTc we get (from the definition of the structure constants fabc)

F cµν = ∂µA
c
ν − ∂νAcµ − efabcAaµAbν . (17.2.16)

Under a gauge transformation we have

Fµνϕ→ gFµν
gϕ = − i

e
[gDµ,

gDν ]
gϕ = − i

e
G[Dµ, Dν ]ϕ = − i

e
G[Dµ, Dν ]G

†gϕ , (17.2.17)

hence
gFµν = GFµνG

† , (17.2.18)

and Fµν transforms in the adjoint representation of the gauge group. Only in the Abelian case the
field strength Fµν is gauge invariant.

The Euclidean action of the SU(N) gauge theory (with generators normalized according to
Tr(TaTb) =

1
2δab) in D dimensions is

SE =
1

4

∫
F aµν(x)F

a
µν(x)d

Dx =
1

2

∫
Tr
[
Fµν(x)Fµν(x)

]
dDx , (17.2.19)
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which is the natural generalization of the U(1) Abelian case

SE =
1

4

∫
Fµν(x)Fµν(x)d

Dx . (17.2.20)

Note that in the non-Abelian case FµνFµν is not gauge invariant, but Tr
[
FµνFµν

]
is, as imediately

follows from Eq. (17.2.18). Since the Euclidean action is dimensionless (in natural units), the field
strength Fµν has mass dimension D/2, from which we obtain [Aµ] =

D
2 − 1 and

[e] =
D

2
− 2[Aµ] =

D

2
− 2

(
D

2
− 1

)
=

4−D
2

. (17.2.21)

The quantum field theory described by the action SE introduced above is typically called Yang-
Mills theory, or pure gauge theory, to distinguish it from QCD or QCD-like theories, in which
matter fields are coupled to the gauge fields. Note that, in the non-Abelian case, Yang-Mills
theories are not free theories, since the field strength Fµν also contains a term which is quadratic
in the gauge fields.

To formulate gauge theories on the lattice the concept of parallel transport along a curve will
turn out to be useful. We can define the parallel transport along the curve C from x to y as

UCy←x
= Pexp

(
−ie

∫ y

x

Aµ(z)dzµ

)
, (17.2.22)

where P exp denotes the path-ordered exponential (points closer to x along C stay on the right),
which is a simple extention of the usual time-ordered exponential encountered in time-dependent
perturbation theory. Let us note that, since Aµ is an element of the algebra of the group, the
parallel transport lives in the same representation of ϕ(x), moreover if C is a path from x to y and
C ′ is a path from y to z, we have

UC′z←y
UCy←x

= UC′′z←x
, (17.2.23)

where C ′′ is the path which goes from x to z obtained by joining the paths C and C ′.
If we parameterize the path from x to y by the function z(t), with z(0) = x and z(1) = y,

the parallel transport from x to y along C is the solution (computed at t = 1) of the differential
equation

d

dt
U(t) = −ieAµ(z(t))żµ(t)U(t) (17.2.24)

with initial condition U(0) = 1. This can be shown by rewriting this initial problem in the integral
form

U(t) = 1− ie
∫ t

0

Aµ(z(τ))żµ(τ)U(τ)dτ , (17.2.25)

and solving it by iteration:

U (0)(t) = 1 ,

U (1)(t) = 1− ie
∫ t

0

Aµ(z(τ))żµ(τ)dτ ,

U (2)(t) = 1− ie
∫ t

0

Aµ(z(τ))żµ(τ)U
(1)(τ)dτ = (17.2.26)

= 1− ie
∫ t

0

Aµ(z(τ))żµ(τ)dτ + (ie)2
∫ t

0

dτ

∫ τ

0

dξAµ(z(τ))żµ(τ)Aν(z(ξ))żν(ξ) =

= 1− ie
∫ t

0

Aµ(z(τ))żµ(τ)dτ +
(ie)2

2

∫ t

0

dτ

∫ t

0

dξP
[
Aµ(z(τ))Aν(z(ξ))

]
żµ(τ)żν(ξ) ,
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and so on, where the path-ordered product is defined by

P
[
Aµ(z(τ))Aν(z(ξ))

]
=

{
Aµ(z(τ))Aν(z(ξ)) if τ > ξ
Aµ(z(ξ))Aν(z(τ)) if ξ > τ

. (17.2.27)

The gauge transformed parallel transport gU can be obtained by using gAµ instead of Aµ in
the definitions Eq. (17.2.22) or Eq. (17.2.24), so

d

dt
gU(t) = −ie

[
G(z(t))Aµ(z(t))G

†(z(t)) +
i

e
∂µG(z(t))G

†(z(t))
]
żµ(t)

gU(t) , (17.2.28)

and it is simple to verify that exactly the same differential equation is satisfied by the quantity
V (t) = G(z(t))U(t)G†(z(0)). Using Eq. (17.2.24) we have indeed

d

dt
V (t) = ∂µG(z(t))żµ(t)U(t)G†(z(0)) +G(z(t))U̇(t)G†(z(0)) =

= −ie
(
i

e
∂µG(z(t))U(t)G†(z(0)) +G(z(t))Aµ(z(t))U(t)G†(z(0))

)
żµ(t) =

= −ie
(
i

e
∂µG(z(t))G

†(z(t)) +G(z(t))Aµ(z(t))G
†(z(t))

)
żµ(t)V (t) .

(17.2.29)

Moreover we have by definition gU(0) = 1 and V (0) = G(z(0))U(0)G†(z(0)) = 1. gU(t) and V (t)
thus satisfy the same differential equation with the same initial condition, hence they are equal
and

gU(t) = G(z(t))U(t)G†(z(0)) , (17.2.30)

and in particular, using t = 1, we have

gUCy←x
= G(y)UCy←x

G†(x) . (17.2.31)

A more elementary way of reaching the same conclusion is to consider the infinitesimal parallel
transport UCx+dx←x

≃ 1− ieAµ(x)dxµ and proceed as follows (no sum on µ is present):

gUCx+dx←x
≃ 1− iegAµ(x)dxµ = 1− ieG(x)Aµ(x)G†(x)dxµ + (∂µG(x))G

†(x)dxµ ≃

≃ 1− ieG(x+ dx)Aµ(x)G
†(x)dxµ +

G(x+ dx)−G(x)
dxµ

G†(x)dxµ ≃

= G(x+ dx)G†(x)− ieG(x+ dx)Aµ(x)G
†(x)dxµ =

= G(x+ dx) (1− ieAµ(x)dxµ)G†(x) ≃ G(x+ dx)UCx+dx←x
G†(x) .

(17.2.32)

Under global transformations, with G(x) independent of x, parallel transports thus transform
according to the adjoint representation of the group.

Note that using the parallel transport the covariant directional derivative along the direction
nν can be written as

nµDµϕ(x) = lim
δ→0

UCx←x+nδ
ϕ(x+ nδ)− ϕ(x)

δ
, (17.2.33)

and this definition is meaningful since the gauge transformation rule Eq. (17.3.3) ensures that both
the terms on the right hand side transform in the same way under local gauge transformations:

g
[
UCx←yϕ(y)

]
= gUCx←y

gϕ(y) = G(x)UCx←yG
†(y)G(y)ϕ(y) =

= G(x)UCx←y
ϕ(y) .

(17.2.34)
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17.3 Lattice gauge theories: basics

If we define, as usual, the lattice fields ϕn on the lattice sites, it is immediate to see that the
forward lattice derivative

∂(F )
µ ϕn =

1

a
(ϕn+µ̂ − ϕn) (17.3.1)

is not gauge covariant, just like its continuum counterpart ∂µϕ(x). To write a lattice covariant
derivative we can introduce the lattice gauge fields

Uµ(n) = Un+µ←n (17.3.2)

associated with the parallel transports along the positive directions of the links (i. e. µ ≥ 0). The
transformation rule Eq. (17.2.31) then gives

gUµ(n) = G(n+ µ̂)Uµ(n)G
†(n) , (17.3.3)

and it is immediate to verify that

1

a

(
U†µ(n)ϕn+µ̂ − ϕn

)
(17.3.4)

is gauge covariant.
If we assume to know Aµ(x) in the continuum, we have

Uµ(n) = P exp

(
−ie

∫ 1

0

Aµ(z(t))żµ(t)dt

)
. (17.3.5)

We can chose z(t) = n+ tµ̂ and develop Aµ(z(t)) in Taylor series around t = 1/2, to get

Uµ(n) = exp
(
−ieaAµ(n+ µ̂/2) +O(a3)

)
. (17.3.6)

Note however that in the lattice setup the fundamental variable is Uµ(n): unlike continuum gauge
fields, lattice gauge fields live in the group representation, and not in its algebra.

Using gauge and matter fields it is easy to write gauge invariant expressions: for example

ϕ†m

( ∏
m←n

Uµ(i)

)
ϕn , (17.3.7)

is gauge invariant, where the product stands for the lattice path-ordered product along a path
connecting n with m. If we consider just the path-ordered product of gauge variables along a path
we have

g

( ∏
m←n

Uµ(i)

)
= G(m)

( ∏
m←n

Uµ(i)

)
G†(n) , (17.3.8)

and to get a gauge invariant quantity from this expression we have to restrict to the case m = n
and take the trace:

Tr

( ∏
n←n

Uµ(i)

)
, (17.3.9)

where the path-ordered product extends on a closed path, is gauge invariant. The simplest closed
nontrivial path is that obtained by starting from n and then moving forward in direction µ, moving
forward in direction ν (with µ ̸= ν), moving backward in direction µ and finally moving backward
in direction ν. The gauge invariant quantity associated with this path is typically called the
plaquette:

Pµν(n) = ReTrΠµν(n) ,

Πµν(n) = Un←n+ν̂Un+ν̂←n+µ̂+ν̂Un+µ̂+ν̂←n+µ̂Un+µ̂←n =

= U†ν (n)U
†
µ(n+ ν̂)Uν(n+ µ̂)Uµ(n) .

(17.3.10)
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From [Tr(M)]∗ = Tr[M†] it is simple to show that Pµν(n) = Pνµ(n); note however that often
Pµν is defined with Tr instead of the ReTr used in Eq. (17.3.10), in which case one gets instead
Pµν(n)

∗ = Pνµ(n). Often the product of liks Πµν in Eq. (17.3.10) is also called plaquette.
By using Eq. (17.3.6) and the Campbell-Baker-Hausdorff formula to the first nontrivial order

(eMeN = eM+N+ 1
2 [M,N ]) it is not difficult to show that the plaquette (for fixed gauge fields and

a → 0, the so called naive continuum limit) is related to the fields strength. We have indeed (no
sum on repeated indices)

Uν(n+ µ̂)Uµ(n) = exp
(
− ieaAν(n+ µ̂+ ν̂/2)− ieaAµ(n+ µ̂/2)−

− e2a2

2
[Aν(n+ µ̂+ ν̂/2), Aµ(n+ µ̂/2)] +O(a3)

)
=

=exp

(
−iea {Aµ +Aν} − iea2

{
1

2
∂µAµ +

1

2
∂νAν + ∂µAν

}
− e2a2

2
[Aν , Aµ] +O(a3)

)
,

(17.3.11)
where in the final expression all quantities are computed in n. In the same way we get

U†ν (n)U
†
µ(n+ ν̂) = exp

(
iea {Aµ +Aν}+ iea2

{
∂νAµ +

1

2
∂µAµ +

1

2
∂νAν

}
−

−e
2a2

2
[Aν , Aµ] +O(a3)

)
,

(17.3.12)

and finally

Πµν(n) = exp
(
− iea2

{
∂µAν − ∂νAµ + ie[Aµ, Aν ]

}
+O(a3)

)
=

= exp
(
− iea2Fµν(n) +O(a3)

)
.

(17.3.13)

We are now ready to introduce the lattice action for gauge fields. In the U(1) case we have

Pµν(n) = cos
(
ea2Fµν(n) +O(a3)

)
, (17.3.14)

and in the naive a→ 0 limit,

1− Pµν ≃
1

2
e2a4F 2

µν . (17.3.15)

We can write the sum of all the plaquettes as∑
plaq

=
1

2

∑
n,µ̸=ν

, (17.3.16)

hence the quantity (note that Pµµ = 1 for each µ)

β
∑
plaq

(1− Pµν) ≃
β

2

∑
n,µν

1

2
e2a4F 2

µν = βe2a4−D
∑
n,µν

1

4
aDF 2

µν ≃

≃ βe2a4−D
∑
µν

∫
dDx

1

4
F 2
µν

(17.3.17)

reproduces the Euclidean continuum action if we use for the dimensionless parameter β the value5

β =
1

e2a4−D
. (17.3.18)

5Note that in performing the a → 0 limit we have neglected the fluctuations of the fields, and this computation
is equivalent to a tree-level perturbative computation (hence the name of naive continuum limit).
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In the non-Abelian case we have to remember that the SU(N) generators satisfy TrTa = 0 and
Tr(TaTb) =

1
2δab, hence

1− 1

N
Pµν = 1− 1

N
ReTr exp

(
− iea2Fµν(n) +O(a3)

)
≃

≃ e2a4

2N
ReTr(F 2

µν) =
e2a4

4N

∑
a

(F aµν)
2 .

(17.3.19)

In the naive continuum limit we thus have, proceeding as in the U(1) case, the relation

β
∑
plaq

(
1− 1

N
Pµν

)
≃ β e

2a4−D

2N

∑
µν

∫
dDx

1

4

∑
a

(F aµν)
2 , (17.3.20)

and this expression reproduces the Euclidean continuum action if the dimensionless β parameter
is equal to

β =
2N

e2a4−D
. (17.3.21)

The action

β
∑
plaq

(
1− 1

N
Pµν

)
(17.3.22)

is known as Wilson action [112]. In the following we will use exclusively the Wilson form of the
lattice action, however it is important to stress that the form of the lattice action is by no means
unique: to perform the continuum limit we have to approach a continuous phase transition, and for
two different lattice actions to describe the same continuum physics it is enough that they display
continuous transitions in the same universality class (for other lattice actions see, e. g., [82] §3.2.9,
[113] §9)

When scalar fields are coupled to the gauge fields, it is not difficult to show in a similar way
that the quantity (

U†µ(n)ϕn+µ − ϕn
)† · (U†µ(n)ϕn+µ − ϕn

)
=

= ϕ†n+µ · ϕ†n+µ − 2Re
(
ϕ†n+µUµ(n)ϕn

)
+ ϕ†n · ϕn

(17.3.23)

reduces in the naive continuum limit to |Dµϕ|2.
Important comment on notations: the “operator ordering” used above is probably the most natural one when

building the lattice theory from continuum parallel transports, however from the purely lattice point of view a
different convention can be (and often is) adopted. The definition of the plaquette

Pµν(n) = ReTr
(
Uµ(n)Uν(n+ µ̂)U†µ(n+ ν̂)U†ν (n)

)
(17.3.24)

is absolutely legitimate if we use the gauge transformation rule

Uµ(n) = G(n)Uµ(n)G†(n+ µ̂) (17.3.25)

instead of Eq. (17.3.3), corresponding to the definition Uµ(n) = Un←n+µ instead of Uµ(n) = Un+µ←n. Using

this convention the quantity ϕnUµ(n)ϕ†n+µ is gauge invariant, while using Eq. (17.3.3) it is ϕ†n+µUµ(n)ϕn that is

gauge invariant.

To close this section we still have to define the integration measure to be used for lattice gauge
variables. As noted above, the fundamental lattice variables are Uµ(n), which are element of the
(unitary representation of the) compact groups SU(N) or U(1), depending on the case considered
(see later for further comments on the U(1) case). For all compact groups a “special” measure
exists, the so called Haar measure, which is the only invariant measure of the group [108, 109, 110]:
this means that for any g0 we have

dg = d(g0g) = d(gg0) , (17.3.26)

and this measure is typically normalized in such a way that
∫
G
dg = 1. Some specific examples of

the Haar measure will be used when discussing the heat-bath algorithm, but for now it is enough
to note that the use of this integration measure presents two important advantages:
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• it is consistent with gauge invariance:∫ (∏
n,µ

dUµ(n)

)
e−S[U ]O[U ]

(1)
=

∫ (∏
n,µ

dgUµ(n)

)
e−S[

gU ]O[gU ]
(2)
=

=

∫ (∏
n,µ

d
(
G(n+ µ)Uµ(n)G

†(n)
))

e−S[U ]O[U ]
(3)
=

=

∫ (∏
n,µ

dUµ(n)

)
e−S[U ]O[U ] ,

(17.3.27)

where in step (1) we renamed U → gU , in step (2) we used the gauge invariance of the action
functional S[U ] and of the observable O, and in step (3) we used the left and right invariance
of the Haar measure.

• it allows the use of the Metropolis (and not Metropolis-Hastings) algorithm, since it is uniform
on the group as a consequence of left and right invariance.

Let us explicitly note that, when the variables Uµ(n) are elements of a compact group, on a finite
space time lattice all average values are well defined from the mathematical point of view, since
the integration manifold has finite measure. When using instead a non-compact group several
problems can arise:

• two different invariant measures can exist, one that is left invariant and one that is right
invariant (see [114] §2.2 for a simple explicit example)

• even in a finite space time lattice, not all average values of gauge invariant quantities are
well defined, unless peculiar boundary conditions are used (see, e. g., [87] for a non-compact
U(1) formulation in which fundamental variables live in R).

It is finally important to note that, since in the lattice formulation the fundamental variables
Uµ(n) are elements of the group and not of the algebra, it is possible to study on the lattice also
gauge theories with discrete gauge groups (like, e. g., the cyclic or the dihedral groups), which do
not have a direct continuum counterpart. For finite groups the equivalent of the Haar measure is
simply the sum on all the group elements (normalized by the order of the group, i. e., the number
of group elements). For finite gauge groups the Wilson action is typically written in the form

SE = β
∑
plaq

(
1− 1

n
Pµν(n)

)
, (17.3.28)

where n is the rank of the group representation, and Pµν was defined in Eq. (17.3.10).

17.4 Lattice gauge theories: general properties

As we noted before, when we consider lattice gauge theories with compact gauge group on a finite
space-time lattice all average values are mathematically well defined, and thus there is no need of
introducing a gauge fixing (unless you want to use lattice perturbation theory, see, e. g., [81, 82]).
We will however see that, in some cases, it is in fact useful to fix a gauge and reduce the number
of degrees of freedom, e. g. to analytically solve two dimensional gauge theories. On the lattice,
the most natural way of fixing a gauge is to use the gauge freedom

Uµ(n)→ G(n+ µ̂)Uµ(n)G
†(n) (17.4.1)

to set to the identity some lattice gauge variables, e. g., using G(n) = Uµ(n). In particular, it is
simple to understand that we can fix to the identity all the links of a lattice tree (i. e. a set of
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links in which no closed loops are present). It should instead be clear that we can not generically
fix to the identity all the links of a closed loop, since the quantity

Tr

∏
loop

Uµ(n)

 (17.4.2)

is gauge invariant. In this regard it is important to note that, on a finite space-time lattice with
periodic boundary conditions, we also have loops which wind around the lattice; it is thus not
possible, e. g., to fix U0(n) = 1 on all sites n.

It is simple to show that, if f [U ] is a functional which satisfies∫
dgf [gU ] = 0 , (17.4.3)

where g is a global (i. e. independent of n) gauge transformation, then ⟨f⟩ = 0. Indeed

⟨f⟩ =
∫
dg⟨f⟩ =

∫
dg

∫
(
∏

n,µ dUµ(n))f [U ]e−S[U]∫
(
∏

n,µ dUµ(n))e−S[U]

(1)
= (17.4.4)

=
∫
dg

∫
(
∏

n,µ dgUµ(n))f [gU ]e−S[gU]∫
(
∏

n,µ dUµ(n))e−S[U]

(2)
=

∫
dg

∫
(
∏

n,µ dUµ(n))e−S[U]
∫
dgf [gU ]∫

(
∏

n,µ dUµ(n))e−S[U]
= 0 ,

where in step (1) we changed Uµ(n) → gUµ(n), in step (2) we used the gauge invariance of the
action and the properties of the Haar measure, and in the last step we finally used the hypothesis
Eq. (17.4.3). Eq. (17.4.3) can appear difficult to verify, but it is sufficient that f [U ] transforms
according to an irreducible representation of the gauge group for Eq. (17.4.3) to be satisfied: if
f [gU ] = R(g)f [U ], then ∫

dgf [gU ] =

∫
dgR(g)f [U ] . (17.4.5)

Using the invariance of the Haar measure we have, for any g0,∫
dgR(g) =

∫
d(g0g)R(g0g) = R(g0)

∫
dgR(g) (17.4.6)

hence
∫
dgR(g) is proportional to the projector on an invariant subspace of the representation.

Since the representation is irreducible, this projector has to vanishes (the case
∫
dgR(g) = 1

corresponds to the trivial representation, R(g) = 1 for any g), hence we conclude that Eq. (17.4.3)
is satisfied. This fact shows, in practice, that the class of nontrivial local observables coincides
with the class of gauge invariant observables. In particular, since under a global transformation the
gauge variables Uµ(n) (as all parallel transports) transform according to the adjoint representation
of the group, it follows that ⟨Uµ(n)⟩ = 0 and ⟨[any products of Uµ(n)]⟩ = 0.

The previous result is the equivalent, in the present context, of the relation ⟨m⟩ = 0, valid
for the Ising model when h = 0 and periodic boundary conditions are used, which follows from
the global Z2 invariance, see Sec. 5.1. In gauge theories a much stronger result holds, known
as Elitzur theorem, which roughly states the impossibility of spontaneously breaking local gauge
symmetries. A more precise statement is the following: let f [U ] be a functional which depends
on a finite number (independent of the lattice size) of compact gauge variables, which under local
gauge transformations satisfies ∫

f [gU ]
∏
n

dg(n) = 0 . (17.4.7)

If we explicitly break the gauge symmetry by adding to the Euclidean action a term of the form
(hµ(n) is a sort of external magnetic field)∑

n,µ

ReTr
(
hµ(n)Uµ(n)

)
, (17.4.8)
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then we have
lim
h→0

lim
V→∞

⟨f⟩V,h = 0 . (17.4.9)

Note that the order of the limits is the same which, in the case of the Ising model, was used to
expose the spontaneous breaking of the global Z2 symmetry.

To prove Elitzur theorem we will follow the presentation in [45] §6.1.3. The starting point is
the definition of ⟨f⟩V,h:

⟨f⟩V,h =
1

ZV,h

∫
e−S[U ]−

∑
n,µ ReTr(hµ(n)Uµ(n))f [U ]

∏
n,µ

dUµ(n) , (17.4.10)

where

ZV,h =

∫
e−S[U ]−

∑
n,µ ReTr(hµ(n)Uµ(n))

∏
n,µ

dUµ(n) . (17.4.11)

To simplify the notation some indices will be implied in the following expressions, using the short-
hand

h · U =
∑
n,µ

ReTr
(
hµ(n)Uµ(n)

)
. (17.4.12)

Let us denote collectively by U ′ the gauge variables in the support of the functional f [U ], and
by U ′′ all the remaining ones (we analogously denote by h′ and h′′ the associated gauge breaking
fields). By renaming in the numerator of ⟨f⟩V,h the U ′ variables, using U ′ → gU ′, we get

⟨f⟩V,h =
1

ZV,h

∫
e−S[U ]−h′·gU ′−h′′·U ′′f [gU ′]

∏
n,µ

dUµ(n) , (17.4.13)

where we exploited the invariance of the action under local gauge transformation6 and the invari-
ance properties of the Haar measure. Averaging on g we get

⟨f⟩V,h =
1

ZV,h

∫
e−S[U ]−h′′·U ′′

∏
n,µ

dUµ(n)

∫
f [gU ′]e−h

′·gU ′
∏
n

dg(n) . (17.4.14)

We can now note that, if the h′ variables are small enough, we have∣∣∣e−h′·gU ′ − 1
∣∣∣ ≤ ϵ (17.4.15)

uniformly in V (the total number of lattice sites), where ϵ is an arbitrarily small positive number.
The previous relation holds true since the set of all U ′ is bounded, which is a consequence of
the fact that the gauge group is compact and the support of the functional f [U ] consists of a
finite (independent of V ) number of gauge variables. We thus have, using Eq. (17.4.7) and the
normalization of the Haar measure, the inequality

|⟨f⟩V,h| =
1

ZV,h

∣∣∣∣∣
∫
e−S[U ]−h′′·U ′′

∏
n,µ

dUµ(n)

∫
f [gU ′]

(
e−h

′·gU ′ − 1
)∏

n

dg(n)

∣∣∣∣∣ ≤
≤ ϵmax f

ZV,h

∫
e−S[U ]−h′′·U ′′

∏
n,µ

dUµ(n) ≡ ϵ
max f

ZV,h
ZV,h′=0,h′′ ,

(17.4.16)

where we denoted by ZV,h′=0,h′′ the partition function computed by fixing h′ = 0. Carrying out
analogous manipulations for the partition function we have

ZV,h =

∫
e−S[U ]−h′′·U ′′

∏
n,µ

dUµ(n)

∫
e−h

′·gU ′
∏
n

dg(n) =

= ZV,h′=0,h′′ +

∫
e−S[U ]−h′′·U ′′

∏
n,µ

dUµ(n)

∫ (
e−h

′·gU ′ − 1
)∏

n

dg(n) ,

(17.4.17)

6Note that this step can not be performed for global transformations.
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hence ∣∣∣ZV,h − ZV,h′=0,h′′

∣∣∣ ≤ ϵZV,h′=0,h′′ , (17.4.18)

Using this bound we find

|⟨f⟩V,h| ≤
ϵ

1− ϵ max f , (17.4.19)

with ϵ independent of V , and finally

lim
h→0

lim
V→∞

⟨f⟩V,h = 0 . (17.4.20)

Elitzur theorem can be extended, with practically no changes, to the case in which matter fields
are also present. It is important to stress that this result is not inconsistent with the existence of
the Higgs mechanism: Elitzur theorem states that the Higgs mechanism, in a nonperturbatively
regularized and gauge-invariant setting, can not be related to the existence of a nonvanishing
expectation value for local observables. Although this could seem at odds with the standard
presentations of the Higgs mechanism, in fact it is not: in the standard discussions of the Higgs
mechanism (see, e. g., [115] §21) a gauge-fixed theory is used, and local observables in a gauge-fixed
theory typically correspond to non-local observables in the gauge invariant theory (see, e. g., [116]
for the analogous case of charged gauge-invariant states in electrodynamics). The Higgs mechanism
affects the spectrum of the theory, and we have seen in Sec. 14.1 that the spectrum of a theory
can be determined by studying the large distance behavior of local observables correlations, not by
studying local observables themselves. For further discussions of the Higgs mechanism in (mainly
lattice) gauge theories see, e. g., [117, 118, 119], and [33] §C.II for a textbook presentation.

Elitzur theorem prevents the possibility of characterizing the phases of Yang-Mills theories
by means of a local order parameter: no symmetry breaking can be used to characterize the
phases, since no gauge symmetry breaking can happen and there are no other (internal) symmetries
available beyond the gauge ones. This is no more true if matter fields are present: for example, if a
N -component scalar field is coupled to a U(1) gauge field in such a way that the global symmetry
is SU(N), the local operator Qij = ϕ∗iϕj is gauge invariant and transforms according to the adjoint
representation of SU(N). We can thus characterize different phases by the way in which the SU(N)
symmetry is realized (see, e. g., [87], or [120] for the non-Abelian gauge case).

In Yang-Mills theories, i. e. gauge field theories without matter fields, different phases can
nevertheless exist, characterized by the different behaviors of non-local observables. The simplest
non-local observable is the Wilson loop, which is a generalization of the plaquette: a Wilson loop
of size wt × ws is defined by

W (wt, ws) = ⟨Tr
(∏

C

Uµ(n)

)
⟩ , (17.4.21)

where the path-ordered product of gauge variables
∏
C Uµ(n) is carried out along a rectangular

contour C of sides wt and ws. The importance of the Wilson loop lies in its relation with the
so-called static potential: it can be shown (see, e. g., [81] §7 or [121]) that the static potential
between two infinitely massive color7 sources, at distance ws from each other, is given by

V (ws) = − lim
wt→∞

1

wt
logW (wt, ws) . (17.4.22)

The different behaviors of the Wilson loop for large values of wt and ws can thus be related to
different large distance behaviors of the static potential.

In some cases it happens that, for wtws ≫ 1, the Wilson loop behaves as

W (wt, ws) ∝ e−σwtws , (17.4.23)

7The “color” terminology is typical of quantum chromodynamics. In the more general context of generic gauge
theories color just refers to the degrees of freedom on which the gauge group acts.
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Figure 17.1: Static potential in three dimensional SU(2) gauge models (in lattice units): “no string
breaking” points refer to the Yang-Mills theory, while “string breaking” points refer to a model in
which scalar matter fields are coupled to the Yang-Mills theory. Adapted from [122].

a relation which is known as area-law. If this happens, the large distance behavior of the static
potential is

lim
r→∞

V (r) ≃ σr , (17.4.24)

and the theory is said to be confining: an infinite amount of energy is needed to separate two static
color sources. It may instead happen that the leading large distance behavior of the Wilson loop
is described by the so-called perimeter-law

W (wt, ws) ∝ e−α(wt+ws) , (17.4.25)

in which case limr→∞ V (r) = α <∞, and the theory is not confining. It can be rigorously shown
(see [123, 124]) that large Wilson loops can neither approach zero faster then Eq. (17.4.23) nor
slower than Eq. (17.4.25). The parameter σ entering the area-law is called string tension, and it is
a (non-local) order parameter for the confinement/deconfinement transition.

Note that in theories with matter fields transforming in the fundamental representation of
the gauge group Wilson loops never obey the area-law: when the distance between the two color
sources is increased beyond a critical value, a “two meson” state becomes energetically favorable
with respect to the two separated unscreened color sources. At that point the linear grow of the
static potential abruptly stops, a phenomenon know as string breaking, see Fig. (17.1).

It can be shown (see [45] §6.3) that any Yang-Mills theory (hence without matter fields) with
compact gauge group and nontrivial center8 confines for sufficiently small β values. Confinement
is however not necessarily present for generic values of β, the most famous case being probably
that of the three dimensional Z2 lattice gauge theory. It can be shown that this theory is dual to
the three dimensional Ising model (see [125, 40], and also [45] §6.1), it displays a continuous phase
transition at

βc = −
1

2
ln tanhβIsing

c ≃ 0.761413 . . . (17.4.26)

(see [68] for βIsing
c ), which is of the 3D Ising universality class9. This model is confining for β < βc

(consistently with the fact that Z2 is a compact group with nontrivial center) and not confining
for β > βc [125]. A similar but less popular case is that of 4D (compact) U(1) Yang-Mills theory:
this model is confining for small β values, however for large values of β this is no more true [126],
and a (discontinuous) deconfinement phase transition happens for β ≈ 1.011 (see, e. g., [127]). In

8We remind the reader that the center of the group is the set of elements (in fact the subgroup) that commute
with every element of the group. The center is said to be trivial when it coincides with the identity element.

9To say that the transition is of the 3D Ising universality class is not completely appropriate, since in the Z2

gauge model all the magnetic/Z2-odd sector is missing. A more precise statement is that the singularity of the free
energy is of the same form as that of the three dimensional Ising model without magnetic field.
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several cases (e. g. in 3D and 4D SU(N) Yang-Mills theories) confinement is numerically observed
for any β > 0, but a rigorous proof of this fact is still lacking.

In confining gauge theories, the string tension or, more generally, other properties of the static
potential (e. g., the Sommer parameter, see [128] for the 4D SU(3) case), are commonly used to
set the physical scale of lattice simulations, see the discussion in Sec. 14.2.
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Chapter 18

Numerical simulation of lattice
gauge theories

Let us remind that the Wilson action is

SE = β
∑
plaq

(
1− 1

N
ReTrΠµν(n)

)
, (18.0.1)

where
Πµν(n) = U†ν (n)U

†
µ(n+ ν̂)Uν(n+ µ̂)Uµ(n) . (18.0.2)

Note that, written in this way, SE takes the same form for the SU(N) gauge theory, for the U(1)
gauge theory (N = 1 has to be used), and for the finite group cases (N is just the dimension of
the representation). If our aim is to update the gauge variable Uµ(n), it is convenient to note that
this variable enters only 2(D − 1) plaquettes (in D space-time dimensions), and we can write

SE = − β
N

∑
ν ̸=µ

ReTrΠµν(n)−
β

N

∑
ν ̸=µ

ReTrΠµν(n− ν̂) + independent of Uµ(n) =

= − β
N

ReTr
[
Sµ(n)Uµ(n)

]
+ independent of Uµ(n) ,

(18.0.3)

where we used ReTrΠµν = ReTrΠνµ and introduced

Sµ(n) =
∑
ν ̸=µ

(
U†ν (n)U

†
µ(n+ ν̂)Uν(n+ µ̂) + Uν(n− ν̂)U†µ(n− ν̂)U†ν (n− ν̂ + µ̂)

)
, (18.0.4)

which is known as the sum of the “staples”, for obvious geometrical reasons, see Fig. (18.1).

Uµ(n)

n ν

µ

n+ ν̂

n+ µ̂

n− ν̂

n− ν̂ + µ̂

Figure 18.1: Graphical representation of the sum Sµ(n) of the staples associated with the gauge
variable Uµ(n).
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18.1 Metropolis update

A possible update scheme for lattice gauge theories consists in sweeping through the lattice (or
randomly selecting sites and directions) and proposing the trial update

Uµ(n)→ random matrix of the group , (18.1.1)

which is then accepted or rejected using a Metropolis test. The difference of Euclidean action ∆SE
associated with the trial update, needed in the Metropolist step, can obviously be computed using
Eq. (18.0.3).

This update scheme presents however two important drawbacks. The first (less important) one
is that the acceptance probability could be very small. The most important drawback is that,
for the previous update scheme to be stochastically exact, the selection probability of the random
matrices has to be uniform on the group, since otherwise the selection probability would not be
symmetric and the Hastings correction would be needed, see Sec. 3.3.1. It is however generally
nontrivial to generate matrices distributed uniformly on a group. This is typically possible only
for finite groups (in which case it is sufficient select a random element of the group) or groups
with very simple algebraic characterizations (like SU(2)). A simple way of of forcing the selection
symmetry in the general case is the following:

1. generate a random matrix R of the group (not necessarily with uniform distribution)
2. generate the random number r in [0, 1) with uniform pdf
3. use the trial update

Uµ(n)→
{
RUµ(n) if r < 1/2
R†Uµ(n) if r ≥ 1/2

. (18.1.2)

Point (3) ensures that the trial selections Uµ(n) → Vµ(n) and Vµ(n) → Uµ(n) have the same
probability, obviously assuming that the algorithm used to generate the random matrices does not
change during the update.

It is important to note that gauge variables, after some update sweeps, have to be projected
back on the group, in order to avoid the accumulation of rounding errors, analogously to the case
of O(N) vector models discussed in Sec. 6.3. In the U(1) case it is sufficient to use

Uµ(n)→
Uµ(n)

|Uµ(n)|
, (18.1.3)

while for SU(N) matrices we have two possible alternatives. The Grahm-Schmidt algorithm is
numerically quite unstable (see, e. g., [129] §5.2) but it is typically sufficient to correct rounding
errors for small matrices. A more stable possibility is to find (e. g. using a pseudo-heat-bath
update with β =∞, see Sec. 18.3) the matrix Vµ(n) ∈ SU(N) which minimize

−ReTr
(
Vµ(n)U

†
µ(n)

)
, (18.1.4)

and then substitute Vµ(n)→ Uµ(n).
It is now convenient to analyze separately the cases of some gauge groups which are particularly

useful in applications, for which specific techniques can be adopted to increase the efficiency of the
update algorithm.

U(1) case

In this case we can generate R using R = eiθ, where θ is a random number with uniform pdf in
(−ϵ, ϵ). Note that, since the distribution of θ is symmetric with respect to zero, R and R−1 have
the same probability of being chosen, and we do not have to force the symmetry using the steps (2)
and (3) of the general algorithm described above. The parameter ϵ can be chosen at the beginning
of the simulation in such a way to have a reasonable acceptance probability.
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Since the complex exponential function is typically quite slow, on some hardware it can be more
efficient to use instead the stereographic projection of R on the half-circumference to generate the
random complex number R:

R =
1 + iθ√
1 + θ2

. (18.1.5)

This distribution is not uniform on the group, but it is still symmetric, and it is immediate to
verify that R(−θ) = R−1(θ), which is enough for the selection probability to be symmetric if θ is
selected with uniform pdf on a symmetric interval.

SU(2) case

It is convenient to use the parametrization of the SU(2) group

R = r0 + iσ · r , (18.1.6)

where rµ ∈ R for µ = 0, . . . , 3, and
∑
µ r

2
µ = 1. We indeed have (using {σj , σk} = 0 and σ2

j = 1)

R†R = (r0 − iσjrj)(r0 + iσkrk) = r20 + rjrkσjσk =
∑
µ

r2µ , (18.1.7)

moreover from the explicit expression

R =

(
r0 + ir3 r2 + ir1
−r2 + ir1 r0 − ir3

)
(18.1.8)

it is immediate to verify that detR =
∑
µ r

2
µ. Using this parametrization we thus see that the

group SU(2) can be parametrized by the four dimensional sphere of unit radius S3. To generate
matrices uniformly distributed on SU(2) we can thus use the parametrization in Eq. (18.1.6) and
Alg. (11) or Alg. (12) (see Sec. 6.3). If instead we are interested in generating a random matrix
close to the identity, we can generate three real numbers ai with uniform pdf in (0, 1), then compute
bi = 1− 2ai (which are uniformly distributed in (−1, 1)), and if

∑
i b

2
i is nonvanishing1 use

r0 =
√
1− ϵ , ri =

√
ϵ bi√∑3
i=1 b

2
i

. (18.1.9)

As in the U(1) case it is indeed simple to verify that R(−b) = R†(b), which ensures the symmetry
of the selection probability.

SU(N) case

In this case it is possible to obtain a random SU(N) matrix close to the identity by multiplying
SU(N) immersions of SU(2) random matrices, using a strategy analogous to the one put forward
in [130] for the heat-bath. Let us consider for the sake of the simplicity the SU(3) case. Three
“natural” ways exist to immerse a SU(2) matrix M in SU(3):

R(1) =

 1 0 0
0 M11 M12

0 M21 M22

 , R(2) =

 M11 0 M12

0 1 0
M21 0 M22

 ,

R(3) =

 M11 M12 0
M21 M22 0
0 0 1

 ,

(18.1.10)

1More precisely: if it is larger than a fixed target accuracy.
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and it is simple to understand that using these three SU(2) subgroups we can cover the whole
SU(3). The generalization to SU(N) just need more SU(2)s, with N(N − 1)/2 natural possibilities
for the immersion.

If M is a SU(2) matrix that is generated in such a way that M and M† are equiprobable,
we can for example use R = R(i), where i is a random number in {1, 2, 3} with uniform pdf, or
R = Ri1Ri2Ri3 , where i1, i2, i3 is a random permutation of {1, 2, 3}. These choices ensure the
symmetry of the selection probability. If instead we use R = R(1)R(2)R(3), we need to chose R
or R† with equal probability to have a symmetric selection probability. A different possibility is
to use sequentially R(1), R(2), and R(3), performing a Metropolis test after each multiplication; in
this case detailed balance is not satisfied but balance is, see the discussion in Sec. 3.3.3.

18.2 Microcanonical update

If we want to update the gauge variable Uµ(n), and we are able to generate a new gauge variable
U ′ in such a way that

• the Euclidean actions of the original and of the updated configurations are the same,
• the selection probability of the process Uµ(n) → U ′ is the same of the selection probability
of the process U ′ → Uµ(n),

the update Uµ(n) → U ′ is a legitimate Metropolis step, which is always accepted (see Sec. 6.3).
A practical way of ensuring the symmetry of the selection probability is to use a deterministic
procedure to generate U ′ starting from Uµ(n) which produces Uµ(n) if we start from U ′.

U(1) case

If the absolute value of the sum of the staples Sµ(n) is nonvanishing, it is sufficient to use

U ′ = U∗µ(n)

(
S∗µ(n)

|Sµ(n)|

)2

. (18.2.1)

We have indeed

S′E = −βRe
(
U ′Sµ(n)

)
+ ind. of U ′ = −βRe

(
U∗µ(n)S

∗
µ(n)

)
+ ind. of Uµ(n) = SE , (18.2.2)

and

(U ′)∗
(
S∗µ(n)

|Sµ(n)|

)2

= Uµ(n)

(
Sµ(n)

|Sµ(n)|

)2( S∗µ(n)

|Sµ(n)|

)2

= Uµ(n) . (18.2.3)

SU(2) case

A peculiarity of the SU(2) group is that the sum of SU(2) matrices is proportional to a SU(2)
matrix, with a real and positive proportionality factor. This fact follows immediately from the
parametrization in Eq. (18.1.6): a sum of SU(2) matrices can indeed be written as

a0 + iσ · a =
√
a20 + a2

a0 + iσ · a√
a20 + a2

, (18.2.4)

where
√
a20 + a2 ∈ R+ and the remaining matrix is in SU(2). In particular we can write Sµ(n) =

αV , with α ∈ R and V ∈ SU(2), and we can easily verify that

U ′ = V †U†µ(n)V
† (18.2.5)

is a legitimate microcanonical update [131]. We have indeed

ReTr
(
U ′Sµ(n)

)
= ReTr

(
V †U†µ(n)V

†αV
)
= αReTr

(
V †U†µ(n)

)
=

= αReTr
(
Uµ(n)V

)
= ReTr

(
Uµ(n)Sµ(n)

)
,

(18.2.6)

and
V †(U ′)†V † = V †V Uµ(n)V V

† = Uµ(n) . (18.2.7)
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SU(N) case

We can also in this case work on SU(2) subgropus [130]. Let us consider for the sake of the
simplicity just the case in which we consider the SU(2) subgroup corresponding to the first two
rows and columns, since the same strategy can be applied also in all the other cases. Following
the discussion in [13], we start by writing in a block-form the matrix Uµ(n)Sµ(n):

Uµ(n)Sµ(n) =

(
w a
c b

)
, (18.2.8)

where w is a complex (in general not unitary) 2 × 2 matrix, and we are interested in performing
the update Uµ(n)→ RUµ(n), where

R =

(
h 0
0 1

)
, (18.2.9)

and h ∈ SU(2) is a matrix to be determined. The Euclidean action of the initial configuration is
(neglecting terms independent of Uµ(n)),

SE = − β
N

ReTr
(
Uµ(n)Sµ(n)

)
= − β

N
ReTr(w)− β

N
ReTr(b) , (18.2.10)

while the Euclidean action after the update Uµ(n)→ RUµ(n) is

S′E = − β
N

ReTr
(
RUµ(n)Sµ(n)

)
= − β

N
ReTr(hw)− β

N
ReTr(b) . (18.2.11)

The matrix w can be written in the form w = w0 + iσ ·w, where the coefficient wµ are in general
complex numbers, while for h we have h = h0 + iσ ·h with hµ ∈ R and

∑
µ h

2
µ = 1. We thus have

(using σjσk = iϵjklσl + δjk, Trσj = 0, and hµ ∈ R)

ReTr(hw) = ReTr
(
(h0 + iσjhj)(w0 + iσkwk)

)
=

= ReTr
(
h0w0 − h ·w

)
= ReTr

(
h0Re(w0)− h · Re(w)

)
.

(18.2.12)

If we introduce the notation
u = Re(w0) + iσ · Re(w) , (18.2.13)

it is clear that we can write u = αV , where V ∈ SU(2) and α ∈ R, hence

S′E = −αβ
N

ReTr(hV )− β

N
ReTr(b) . (18.2.14)

We are now ready to show that the choice

h = (V †)2 (18.2.15)

is the correct choice to be used in a microcanonical update. We have indeed

αReTr(hV ) = αReTr(V †) = αReTr(V ) = ReTr(u) = ReTr(w) , (18.2.16)

hence S′E = SE . To verify the reversibility we have to note that h = 1
α2 (u

†)2, hence (using
Re(w)× Re(w) = 0)

h =
1∑

µ(Rewµ)
2
(Rew0 − iσ · Rew)(Rew0 − iσ · Rew) =

=
1∑

µ(Rewµ)
2

(
(Rew0)

2 − (Rew)2 − 2i(Rew0)σ · Rew
)
.

(18.2.17)
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If we denote by w′ the equivalent of w after the update, w′ = hw, a tedious but straightforward
computation gives

w′ =
1∑

µ(Rewµ)
2

{
w0

[
(Rew0)

2 − (Rew)2
]
+ 2Re(w0)w · Rew+

+ i
[
(Rew0)

2 − (Rew)2
]
σ ·w − 2iw0Re(w0)σ · Re(w)− 2iσ ·

(
Re(w0)w × Rew

)}
,

(18.2.18)

and for the equivalent u′ of u after the update we get u′ = u′0 + iσ · u′, with u′0 = Rew′0 and
u′ = −Rew′. Explicitly

u′ = Rew0 − iσ · Rew = u† , (18.2.19)

and hence V ′ = V †. We thus have h′ = [(V ′)†]2 = V 2 and h′h = 1. This update is thus reversible,
and this ensures that the selection probability is symmetric.

18.3 Heat-bath update

In the heat-bath update scheme, see Sec. 3.3.2, we update a gauge variable by sampling the
conditional probability of Uµ(n) when all other gauge variables are kept fixed. In particular, also
the sum of the staples Sµ(n) (see Eq. (18.0.4)) is to be considered as fixed.

U(1) case

The conditional probability of the gauge variable Uµ(n) when all the rest of the lattice is kept
fixed is

P (U)dU ∝ exp
{
βRe

(
USµ(n)

)}
dU , (18.3.1)

where dU is the Haar measure on U(1). If we introduce V ∈ U(1) by the relation V = Sµ(n)/|Sµ(n)|
we have thus

P (U)dU ∝ exp
{
β|Sµ(n)|Re

(
UV

)}
dU , (18.3.2)

and if we define u = UV and α = β|Sµ(n)| we get, using the invariance of the Haar measure,

P (u)du ∝ exp
(
αReu

)
du . (18.3.3)

If we finally parametrize the U(1) variable u by u = eiθ, we can write the Haar measure on U(1)
as du = 1

2πdθ, where dθ is the usual Lebesgue measure on θ ∈ [−π, π). We thus have to sample
the probability distribution

P (θ)dθ ∝ eα cos θdθ . (18.3.4)

An algorithm to sample this distribution, which uses a change of variable as a first step and von
Neumann accept/reject step to correct the result, is described in Ref. [132].

If β ≳ 1 it is also possible to use a special Metropolis-Hastings algorithm, whose results are in
practice impossible to distinguish from those obtained by using the heat-bath algorithm. Since for
α≫ 1 we have approximately

exp(α cos θ) ≃ exp

[
α

(
1− 1

2
θ2
)]

, (18.3.5)

to update Uµ(n) = V ∗eiθold we can start by generating θnew ∈ [−π, π) with pdf proportional to
exp(−α2 θ2new). This can be done by using the Box-Muller, in the “original” version on (−∞,∞)
(see Sec. 2.3) rejecting draws with |θ| > π, or modifying it to directly sample Gaussian variables in
(−π, π). Once θnew is generated, we have to accept or reject the update Uµ(n) → U ′ = V ∗eiθnew

with probability (see Sec. 3.3.1)

AθoldP (U
′)

AθnewP (Uµ(n))
= exp

{
−α
2
(θ2old − θ2new) + α

(
cos θnew − cos θold

)}
, (18.3.6)
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which for large α is very close to 1. With respect to the general case discussed in Sec. 3.3.1, in the
present case the selection probability for θnew is independent of its previous value, hence we used
the shorthand Ab for the probability of selecting b, instead of Aba, which denoted the probability
of selecting b starting from a in Sec. 3.3.1.

SU(2) case

To write a heat-bath update for SU(2) Yang-Mills theory is once again convenient to use the
parametrization in Eq. (18.1.6) of a SU(2) matrix: U = u0 + iu · σ, with uµ ∈ R and

∑
µ u

2
µ = 1.

The fact that group elements are associated with points of the unit sphere in four dimension
suggests the invariant measure of the group to be proportional to

δ

(∑
µ

u2µ − 1

)∏
µ

duµ . (18.3.7)

This fact can be explicitly verified by considering another SU(2) matrix M = m0 + im · σ, with
mµ ∈ R and

∑
µm

2
µ = 1. Using σjσk = δjk + iϵjklσl we have indeed

U ′ =MU = (m0 + im ·σ)(u0 + iu ·σ) = m0u0−m ·u+ i(u0ml +m0ul − ϵiklmjuk)σl , (18.3.8)

hence U ′ = u′0 + iu′ · σ, with

u′0 = m0u0 −m · u , u′ = u0m+m0u−m× u . (18.3.9)

Using these relations it is immediate to see that

∂u′

∂u
=


m0 −m1 −m2 −m3

m1 m0 m3 −m2

m2 −m3 m0 m1

m3 m2 −m1 m0

 , det

(
∂u′

∂u

)
= (m2

0 +m2
1 +m2

2 +m2
3)

2 = 1 , (18.3.10)

hence

δ

(∑
µ

u2µ − 1

)∏
µ

duµ = δ

(∑
µ

u′
2
µ − 1

)∏
µ

du′µ . (18.3.11)

The conditional probability of the gauge variable Uµ(n) when all the rest of the lattice is kept
fixed is

P (U)dU ∝ exp

{
β

2
ReTr

(
USµ(n)

)}
(18.3.12)

As already noted, in SU(2) the sum of the staples is proportional to a SU(2) matrix, and the propor-
tionality constant is a real and positive number: Sµ(n) = αV , V ∈ SU(2), α =

√
detSµ(n) ∈ R.

We thus have

P (U)dU ∝ exp

{
αβ

2
ReTr

(
UV

)}
, (18.3.13)

and if we define u = UV we get, using the invariance of the Haar measure,

P (u)du ∝ eαβu0δ

(∑
µ

u2µ − 1

)∏
µ

duµ . (18.3.14)

If we now separate in the integral the 0-th component from the other three components, introduce
polar coordinates in the three dimensional integration, and use the transformation properties of
the δ distribution to write δ(|u|2 + u20 − 1) as a function of |u|, we find

P (u)du ∝ eαβu0

δ
(
|u| −

√
1− u20

)
2
√
1− u20

|u|2d|u|du0dΩ2 , (18.3.15)
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and by integrating on |u| we get

P (u)du ∝ eαβu0

√
1− u20 du0dΩ2 , (18.3.16)

where u0 ∈ [−1, 1] and dΩ2 is the infinitesimal solid angle in three dimensions. We thus have to
identify a random direction on the sphere, which can be easily done using Alg. (11) (see Sec. 6.3),
and generate u0 ∈ [−1, 1] with pdf

p(u0)du0 ∝ eαβu0

√
1− u20 du0 . (18.3.17)

An algorithm to sample this probability distribution has been introduced in [11], and has already
been discussed in Sec. 2.4. A more efficient algorithm to sample p(u0)du0 when αβ ≫ 1 is discussed
in [13].

Note that from Eq. (18.3.13) it easily follows that in the β → ∞ limit (in which the update
corresponds to a minimization of the Euclidean action) U = V † is the only possible outcome.

SU(N) case

A heat-bath for the SU(3) Yang-Mills theory exists (see [133]), however this algorithm is quite
complex, and its generalization to SU(N) models with N > 3 is still more complex. In these
cases it is convenient to use the so called pseudo-heat-bath algorithm introduced in [130]. The
fundamental idea of this algorithm is to select an immersion of SU(2) in SU(N), and use the
immersion of a SU(2) matrix, that will be denoted by R (see Eq. (18.1.10) for the SU(3) case),
to perform the update Uµ(n) → U ′ = RUµ(n); the SU(2)-like matrix R is drawn in such a way
that U ′ is sampled from the conditional probability of the gauge variable Uµ(n) when all the rest
of the lattice is kept fixed. Since the Haar measure of SU(N), with N > 2, is obviously invariant
under SU(2) transformations, in this way we are effectively sampling the links accorting to a heat-
bath algorithm restricted to a specific subgroup of the gauge group. This can be done by using
Eq. (18.2.14) and the SU(2) heat-bath algorith. By using enough different immersions of SU(2) in
SU(N), see Sec. 18.1, we can then sample the whole SU(N) group.

The pseudo-heat-bath update can also be used to project-back on SU(N) gauge variables, in
order to prevent the accumulation of rounding errors. Let us assume that we have to project on
SU(N) the matrix M . A possible projection strategy is to find the matrix P ∈ SU(N) which
maximizes ReTr(P †M). If we define U = P †, to find U (and thus P ) is equivalent to perform
an heath-bath update at β = ∞ of the link U , which is initially equal to 1, with sum of staples
M . We thus have to iterate deterministic β = ∞ SU(2) heat-bath on several SU(2) subgroups of
SU(N), until a terminating condition like ∥U(n+1) − U(n)∥ < ϵ is met, where U(n) is the result of
the n-th iteration.

18.4 Hybrid Monte Carlo update

The HMC algorithm discussed in Sec. 16.2 can obviously be adopted only for continuous gauge
groups, and it is convenient to start discussing the U(1) case, which is simpler than the SU(N) case.
For what concerns the HMC, the SU(2) case is not particularly simpler than the general SU(N) case,
the only simplification being that some matrix functions can be immediately written in a compact
way by using the Pauli matrices. Note that for Yang-Mills theories, in which Metropolis, heat-bath
and microcanonical updates are available, it is typically not convenient to use the HMC algorithm,
unless very peculiar representations are used. As previously discussed, the HMC algorithm is
instead a forced choice when fermions are present.
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U(1) case

If we write the gauge variables as Uµ(n) = eiθµ(n), we can associate the conjugate momentum
pµ(n) with the variable θµ(n), and write the Hamiltonian

H =
1

2

∑
n,µ

p2µ(n)− β
∑

n,µ>ν

Re
(
Πµν(n)

)
. (18.4.1)

The first equation of motion is

θ̇µ(n) =
∂H

∂pµ(n)
= pµ(n) , (18.4.2)

from which we get the elementary gauge variable evolution eipµ(n)dτUµ(n). The other equation is
(no sum on µ)

ṗµ(n) = −
∂H

∂θµ(n)
= β

∂

∂θµ(n)
Re
(
Uµ(n)Sµ(n)

)
= βRe

(
iUµ(n)Sµ(n)

)
, (18.4.3)

which using the notation V = Uµ(n)Sµ(b) can be written as

ṗµ(n) = βRe(iV ) = −βImV = −β V − V
∗

2i
, (18.4.4)

and finally

iṗµ(n) = −β
Uµ(n)Sµ(n)− U∗µ(n)S∗µ(n)

2
. (18.4.5)

The elementary integration steps of Uµ(n) and pµ(n) have obviously to be combined using a
symmetric symplectic integrator, as discussed in Sec. 16.2.

SU(N) case

In the SU(N) case we have to understand how to define momenta, and the simplest possibility is
to decide that the momenta are the generator of the left-evolution of gauge variables, hence the
elementary evolution of Uµ(n) is

Uµ(n)→ exp
(
ipaµ(n)Tadτ

)
Uµ(n) , (18.4.6)

and the Hermitian matrix associated with the momenta is Pµ(n) = paµ(n)Ta, where Ta are the
SU(N) generators. Following the same logic it is convenient to introduce the left derivative in
position n, µ of a functional of the gauge fields:

∂n,µ,af [U ] =
d

dϵ
f
[
Uµ(n)→ eiϵT

a

Uµ(n)
]∣∣∣∣
ϵ=0

. (18.4.7)

This derivative has to be used in the equations of motions associated with the Hamiltonian

H =
1

2

∑
n,µ,a

(paµ)
2 − β

N

∑
n,µ>ν

ReTrΠµν(n) . (18.4.8)

For a precise discussion of these definitions, which requires some differential geometry, see [134].
The exponential of the momenta can be easily computed in SU(2), using the properties of the

Pauli matrices, while for N > 2 one simple possibility is to use the Taylor series of the exponential,
truncated to a given order and then projected on SU(N). This procedure can be carried out
since the integration time step dτ is small, and a small number of terms in the Taylor expansion
will likely be sufficient. Note however that this computation has to be performed with good
accuracy, since otherwise the reversibility of the integration algorithm would be compromised. A
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different possibility is to use the Cayley-Hamilton theorem to resum the Taylor series of the matrix
exponential, see [135] for the SU(3) case.

The equation of motion of the momentum paµ(n) is

ṗaµ(n) = −∂n,µ,aH =
β

N
∂n,µ,aReTr

(
Uµ(n)Sµ(n)

)
=

β

N
ReTr

(
iTaUµ(n)Sµ(n)

)
. (18.4.9)

For any matrix M we have, using (TrA)∗ = Tr(A†) and Ta = T †a , the identity

ReTr(TaM) = ReTr

(
Ta
M +M†

2

)
. (18.4.10)

If we now introduce the notation V = (M +M†)/2, the matrix V is obviously Hermitian, hence
we can write it in the form V0 +

∑
a VaTa, with vµ ∈ R and µ = 0, . . . , N2 − 1. Using TrTa = 0

and Tr(TaTb) =
1
2δab we thus have∑

a

TaReTr(TaM) =
∑
a

TaReTr(TaV ) =
∑
a

1

2
VaTa =

1

2

(
V − 1

N
TrV

)
. (18.4.11)

Using M = iUµ(n)Sµ(n), and the notation

[W ]TA =
W −W †

2
− 1

N
Tr

(
W −W †

2

)
(18.4.12)

for the traceless anti-Hermitian part of W , the equation of motion of the matrix Pµ(n) can finally
be written in the form

Ṗµ(n) =
∑
a

ṗaµ(n)Ta = i
β

2N
[Uµ(n)Sµ(n)]TA , (18.4.13)

in complete analogy with the U(1) case.

18.5 Error reduction techniques

We have seen in Sec. 17.4 that Wilson loops are important observables in gauge theories, since their
large size behavior is related to the potential energy of two static sources, and in particular to the
confining properties of the theory. To study large Wilson loops is however a challenging numerical
task, especially in confined phases: the average values of Wilson loops quickly approach zero as
the size of the loops is increased, and it becomes increasingly difficult to obtain a result that is not
compatible with zero within statistical errors. It is thus important to use error reduction techniques,
and in particular improved observables. An improved observable Aimp is an observable which has
the same expectation value of A but a smaller variance; as a consequence it is convenient to look
at Aimp instead of A in numerical simulations. A simple and general way of building improved
observables for Wilson loops is the multihit method introduced in [136]. The basic idea of the
method is to use local averages of links to reduce the noise of the Wilson loop.

Before discussing Wilson loops in lattice gauge theory, let us study a simple example to under-
stand why this strategy is effective. Let us imagine to be interested in estimating by Monte Carlo
methods the expectation value of the product of L independent random variables xi, which for the
sake of the simplicity we assume to be identically distributed and with zero average. Clearly the
expectation value ⟨x1 · · ·xL⟩ vanishes, but we want to find the most effective way of estimating
numerically this expectation value, i. e., the procedure which minimize the statistical error for fixed
computation time. If we denote by σ2 the variance of xi, it is immediate to see that the variance
of x1 · · ·xL is σ2L, hence if we draw N ≫ 1 samples from x1, . . . , xL, the statistical error of

x1 · · ·xL =
1

N

N∑
i=1

x
(i)
1 · · ·x

(i)
L , (18.5.1)
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where i = 1, . . . N labels the draw, is

σA =
σL√
N

. (18.5.2)

We now want to verify that x1 · · ·xL is an improved estimator for the same quantity, where

xk =
1

N

∑
i

x
(i)
k . (18.5.3)

The quantities xk have zero average and variance σ2/N , hence the statistical error of x1 · · ·xL,
using the same number of draws used before, is

σB =

(
σ√
N

)L
=

σA
N (L−1)/2 = σA exp

(
−L− 1

2
log(N)

)
. (18.5.4)

We thus see that the error obtained by using the second method (the one with the “local averages”)
is smaller than the naive one by a quantity which is exponential in L. Moreover, at fixed L, also
the scaling with N is much more favorable. What makes this example trivial is the fact that all
the variables are independent from each other, but in numerical simulation gauge fields associated
with different points and directions are not independent from each other, hence more care is
required. The locality of the Wilson action will be the fundamental ingredient to generalize the
local averaging procedure to lattice gauge theories.

Let us write a Wilson loop in the form

W (wt, ws) = ⟨Tr
(∏

C

Uν(m)

)
⟩ = ⟨Tr

(
Uµ(n)R[Ǔ ]

)
⟩ , (18.5.5)

where R[Ǔ ] is the path-ordered product of all the links of the Wilson loop different from Uµ(n),
and we collectively denote by Ǔ all the lattice gauge variables different from Uµ(n). We can now
exploit the locality of the Wilson action to write

SE [U ] = − β
N

ReTr
[
Sµ(n)Uµ(n)

]
+ ŠE [Ǔ ] , (18.5.6)

where ŜE is the part of the Euclidean action independent of Uµ(n). Note that also the sum of the
staples Sµ(n) depends on Ǔ . Putting everything together we have

⟨Tr
(
Uµ(n)R[Ǔ ]

)
⟩ =

∫
dUµ(n)dǓ Tr

(
Uµ(n)R[Ǔ ]

)
exp

(
β
NReTr

[
Sµ(n)Uµ(n)

]
− ŠE [Ǔ ]

)
∫ (∏

m,ν dUν(m)
)
exp (SE [U ])

,

If we now define

Uµ(n) =

∫
dUµ(n)Uµ(n) exp

(
β
NReTr

[
Sµ(n)Uµ(n)

])
∫
dUµ(n) exp

(
β
NReTr

[
Sµ(n)Uµ(n)

]) (18.5.7)

it is immediate to see that (since Uµ(n) does not depend on Uµ(n))∫
dUµ(n)dǓ Tr

(
Uµ(n)R[Ǔ ]

)
exp

(
β

N
ReTr

[
Sµ(n)Uµ(n)

]
− ŠE [Ǔ ]

)
=

=

∫
dǓ Tr

(
Uµ(n)R[Ǔ ]

)
exp

(
−ŠE [Ǔ ]

) ∫
dUµ(n) exp

(
β

N
ReTr

[
Sµ(n)Uµ(n)

])
=

=

∫
dUµ(n)dǓ Tr

(
Uµ(n)R[Ǔ ]

)
exp

(
β

N
ReTr

[
Sµ(n)Uµ(n)

]
− ŠE [Ǔ ]

)
,

(18.5.8)
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Figure 18.2: Possible choices of gauge variables which can be simultaneously averaged (thick lines)
while computing a 3× 3 Wilson loop.

hence
⟨Tr
(
Uµ(n)R[Ǔ ]

)
⟩ = ⟨Tr

(
Uµ(n)R[Ǔ ]

)
⟩ . (18.5.9)

This shows that by using the local average of a single gauge variable we obtain an estimator which
has the same expectation value of the original one. That this estimator is indeed an improved
estimator should be intuitively clear given the example with independent variables discussed before.

This local averaging procedure can be applied to different gauge variables as far as all local
averages can be performed independently, i. e., as far as one of the two variables does not enter
the sum of the staples of the other variable. The choice of which gauge variables to average is
generally not unique, and in Fig. (18.2) two different possibilities are shown for the case of a 3× 3
Wilson loop. Explicit expressions for the local averages exists [137], however it is typically more
convenient to estimate them by using Metropolis, heat-bath or microcanonical updates:

Uµ(n) =
1

M

M∑
i=1

U (i)
µ (n) , (18.5.10)

where U
(i)
µ (n) is the result of the i-th update at fixed sum of staples. This procedure can be used

since the sample average is an unbiased estimator of the true average.
In the multihit technique only single gauge variables are locally averaged, but it is also possible

to use local averages of the product of gauge links, like Uν(n+ µ̂)Uµ(n), and different averages
can be recursively nested in order to increase the effectiveness of the error reduction, using e. g.

Uµ(n+ µ̂) Uµ(n) , (18.5.11)

where different neighbor variables have to be kept fixed when averaging the single links or a product
of links. This general point of view is discussed in [138], where the so-called multilevel algorithms
have been introduced.
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Chapter 19

Two dimensional U(1) gauge
theory

19.1 θ-dependence

Two dimensional gauge theories are peculiar gauge theories, in which several computations can be
carried out analytically or almost analytically. It is in particular possible to have complete control
on several nonperturbative phenomena, like, e. g., confinement. In two dimensional U(N) theories
θ-dependence is also present, which is the QFT analogue of the phenomenon discussed for QM in
Chap. 11. Note that, while a nontrivial topology of the configuration space was fundamental for
the existence of this phenomenon in QM, what really matters in QFT is the topology of the gauge
group.

In this section we present a simple semiclassical argument for the existence of θ-dependence in
two (space-time) dimensional U(1) gauge theory, that will be confirmed by the analytical solution
of the lattice model in the next section. A canonical quantization approach to this system can be
found, e. g., in [139, 140], which has the advantage of directly showing the analogy with the case
of the QM particle on a circumference. The standard semiclassical approach to θ-dependence in
four dimensional SU(N) theories is discussed in [141] §7, [115] §23, [46] §41, while the canonical
approach has been introduced and developed in [142, 143], see [83] §4-5 for a textbook presentation.

The semiclassical approach starts from identifying the configurations with finite Euclidean
action. For the Euclidean action to be finite, we have to require Fµν(x) → 0 for |x| → ∞. This
means that, for |x| → ∞, the gauge field Aµ(x) reduces to a trivial gauge field (Aµ(x) = 0) up to
gauge transformations. Using Eq. (17.2.7) in the Abelian case, with G(g(x)) = eiΛ(x), we have

gAµ = Aµ +
i

e
(∂µG)G

† = Aµ −
1

e
∂µΛ , (19.1.1)

hence finite action configurations correspond to

lim
|x|→∞

Aµ(x)→
1

e
∂µΛ . (19.1.2)

If we now require the gauge transformation G(g(x)) = eiΛ(x) to be globally well defined, we obtain

Q =
e

2π

∮
|x|→∞

Aµdx
µ =

1

2π

∮
|x|→∞

∂µΛdx
µ =

1

2π

(
Λ(2π)− Λ(0)

)
= n ∈ Z . (19.1.3)

Q is the topological charge of the configuration, which can take nontrivial values since U(1) ∼ S1

and π1(S
1) = Z. Using the Stokes theorem we can rewrite Q as follows

Q =
e

2π

∮
|x|→∞

Aµdx
µ =

e

2π

∫
d2xϵµν∂µAν =

e

4π

∫
d2xϵµνFµν =

e

2π

∫
d2xF01 , (19.1.4)
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Figure 19.1: Complete axial gauge fixing: links that can be fixed to 1 in an infinite two dimensional
lattice are depicted by thick lines.

and the quantity

q(x) =
e

2π
F01(x) (19.1.5)

is the topological charge density.
It is simple to see that adding −θq(x) to the real time action does not change the equations of

motion (since ∂µ
∂q

∂∂µAν
= 0 and ∂q/∂Aν = 0), however this change corresponds in the Euclidean

formulation to adding iθQ to the statistical weight of configurations, which generates nontrivial
changes in the free energy density.

Since in the U(1) lattice gauge theory the plaquette is related (in the naive continuum limit)
to the field strength by (see Sec. 17.3)

Πµν(n) = exp
(
−iea2Fµν(n) +O(a3)

)
(19.1.6)

we have argΠµν ≈ −ea2Fµν , and it is thus meaningful to define on the lattice

Q = − 1

2π

∑
n

argΠ01(n) . (19.1.7)

Note that we could have also used ImΠµν ≈ −ea2Fµν to define Q, but the definition in Eq. (19.1.7)
has the important property of being integer valued already at finite lattice spacing, as follows from∏

n

Π01(n) = 1 (19.1.8)

by taking the logarithm. The previous equation holds true in Abelian theories when using periodic
boundary conditions, since each link enters (in two space-time dimensions) in just two neighboring
plaquettes, once with a complex conjugation. Definitions of the topological charge which are
integer already at finite lattice spacing are usually called geometric definitions, as opposed to the
so-called field-theoretic definitions. Geometric definitions of the topological charge in 4d SU(N)
gauge theories exist but are far less trivial than in two dimensional cases, see e.g. [144], and not
commonly used.

19.2 Analytical solution

We now discuss the analytical solution (and θ-dependence) of the two dimensional lattice U(1)
gauge theory.

To solve the U(1) LGT with Wilson action it is convenient to use the lattice analogue of the
axial gauge fixing, and we will consider the simplest case of an infinite lattice (more properly: a
lattice large enough that we can neglect the effect of boundary conditions), beginning with the
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θ = 0 case. As discussed in Sec. 17.4 it is possible to fix to 1 all the links of a maximal tree, and
it is easy to understand that a maximal tree for the two dimensional infinite square lattice is the
one depicted in Fig. (19.1). We can thus fix to 1 all links in the temporal direction (which in our
conventions corresponds to µ = 0), and all the links in direction 1 of a single timeslice, that we
conventionally choose as the one corresponding to t = 0:

U0(n) = 1 , U1(0, n1) = 1 . (19.2.1)

Using this gauge fixing the partition function factorizes as the product of the “vertical stripes”
partition functions (note that we are using the simplified form −β∑Pµν(n) of the Wilson action,
neglecting an irrelevant additive constant):

Z(β) =

∫ (∏
n,µ

dUµ(n)

)
eβ

∑
n P01(n) =

=

(∫ (∏
t

dU1(t)

)
eβ

∑
t Re[U1(t)U

†
1 (t−1)]

)Ns

,

(19.2.2)

where Ns is the lattice extent in the µ = 1 direction, assumed to be large enough to neglect
bounday effects. We can now use the invariant properties of the Haar measure (and the remaining
constraint U1(t = 0) = 1) to further simplify this expression: if we introduce the U(1) variables

V1 = U1(t = 1) , Vj = U1(t = j)U†1 (t = j − 1) for j > 2 , (19.2.3)

and analogous definitions for j < 0, we have∫ (∏
t

dU1(t)

)
eβ

∑
t Re[U1(t)U

†
1 (t−1)] =

∫ (∏
t

dVt

)
eβ

∑
t Re[Vt] =

(∫
dV eβRe[V ]

)Nt

. (19.2.4)

We have thus found a single plaquette model, and reduced the evaluation of the partition function
to a single link Haar integration:

Z(β) =

(∫
dV eβRe[V ]

)NtNs

. (19.2.5)

Note that, so far, we have not used any specific property of U(1), so this expression of the partition
function is valid for generic groups, both continuous and discrete, Abelian and nonAbelian.

In the specific case of the U(1) group we can use the parametrization V = eiϕ and the Haar
measure dV = 1

2πdϕ to get ∫
dV eβRe[V ] =

1

2π

∫ π

−π
eβ cosϕdϕ = I0(β) , (19.2.6)

where we used (see [12] Eq. 9.6.19)

1

2π

∫ π

−π
einϕeβ cosϕdϕ =

1

2π

∫ π

−π
cos(nϕ)eβ cosϕdϕ = In(β) , (19.2.7)

with In the modified Bessel function of first kind of integer order, n ∈ Z. The derivatives of this
function can be computed by using the simple relation (see [12] Eq. 9.6.28)

∂

∂β
In(β) =

1

2π

∂

∂β

∫ π

−π
einϕeβ cosϕdϕ =

=
1

2π

∫ π

−π

ei(n+1)ϕ + ei(n−1)ϕ

2
eβ cosϕdϕ =

1

2

(
In+1(β) + In−1(β)

)
.

(19.2.8)
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Using this formula we can for example compute the average value of the plaquette for generic
values of β:

⟨cosϕ⟩ = 1

NsNt

∂

∂β
logZ =

∂βI0(β)

I0(β)
=
I1(β)

I0(β)
, (19.2.9)

where we used I1(β) = I−1(β). Similar computations can be carried out also in the U(N) case,
in which, instead of Bessel functions, N × N determinants of Bessel functions appear, see, e. g.,
[145, 146].

The computation of the average plaquette shows that we have a good analytic control of this
model, but is not particularly useful from the physical point of view. We now switch to the
computation of the string tension, which follows basically the same strategy. Since the gauge
group is Abelian, a Wilson loop operator of size wt × ws can be written as a product of wt × ws
plaquettes, and using the same steps used before we get

W (wt, ws) =

(
1∫ π

−π e
β cosϕdϕ

∫ π

−π
cos(ϕ)eβ cosϕdϕ

)wtws

=

=

(
I1(β)

I0(β)

)wtws

= exp
(
− wtws log[I0(β)/I1(β)]

)
,

(19.2.10)

from which we get the string tension in lattice units as a function of the coupling β (note that
I0(β)/I1(β) > 1)

σ̂(β) = log[I0(β)/I1(β)] . (19.2.11)

We have thus shown that the two dimensional lattice U(1) gauge theory is confining for all the
values of the coupling β, and in fact we explicitly computed the dimensionless string tension. An
analogous computation can also be carried out in two dimensional U(N) models, and in particular
in the N →∞ limit, see [147].

Since σ̂ = a2σ, the critical value βc that we have to approach to extract the continuum limit can
be identified by requiring that limβ→βc

σ̂(β) = 0, as discussed in Sec. 14.2. Using the asymptotic
expansion of the modified Bessel functions of first kind (see, e. g., [12] Eq. 9.7.1) it is simple to see
that βc =∞, indeed for β ≫ 1 we have

σ̂(β) =
1

2β
+

1

4β2
+

11

48β3
+O(β−4) . (19.2.12)

This fact could have been guessed in a more elementary way by remembering that in the naive
continuum limit the lattice coupling β is related to the continuous coupling by (see Sec. 17.3)

β =
1

e2a4−D
, (19.2.13)

hence in D = 2 the limit a→ 0 with fixed e2 corresponds to β →∞.
Let us now discuss θ-dependence: the Wilson action in the presence of a θ term is given by (see

Eq. (19.1.7))

Sθ = −β
∑
n

P01(n) + iθQ = −β
∑
n

ReΠ01(n)− i
θ

2π

∑
n

argΠ01(n) , (19.2.14)

and the evaluation of the partition function when θ ̸= 0 follows exactly the same steps of the θ = 0
case, obtaining

Z(β, θ) =
(
I θ

2π
(β)
)NtNs

, (19.2.15)

where we defined

Iν(β) =
1

2π

∫ π

−π
eiνϕeβ cosϕdϕ . (19.2.16)
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Note that Iν(β) is not a modified Bessel function of first kind of non-integer order, as can be seen
by comparing with [12] Eq. 9.6.20. Using similar manipulations we can compute the expectation
value of Wilson loops at nonvanishing θ

W (wt, ws) =

(
1∫ π

−π e
β cosϕdϕ+i θ

2πϕ

∫ π

−π
cos(ϕ)eβ cosϕ+i θ

2πϕdϕ

)wtws

=

=

(
I θ

2π+1(β) + I θ
2π−1

(β)

2I θ
2π
(β)

)wtws
(19.2.17)

and the string tension

σ̂(β, θ) = − log

(
I θ

2π+1(β) + I θ
2π−1

(β)

2I θ
2π
(β)

)
. (19.2.18)

It is not difficult to verify that limβ→∞
σ̂(β,θ)
σ̂(β) = 1, hence there is no dependence of the string

tension on θ in the continuum limit. This is true also for two dimensional U(N) theories, but not
for four dimensional SU(N) theories, see [148].

Using the definition of the topological susceptibility (compare with Chap. 11)

χ(β) =
∂2

∂θ2
f(β, θ)

∣∣∣∣
θ=0

= − 1

V βT

∂2

∂θ2
logZ(β, θ)

∣∣∣∣
θ=0

, (19.2.19)

(with βT = 1/T ) we obtain for the topological susceptibility in lattice units the expression

χ̂(β) = a2χ(β) = − 1

I0(β)

∂2

∂θ2
I θ

2π
(β)

∣∣∣∣
θ=0

=
1

(2π)3I0(β)

∫ π

−π
ϕ2eβ cosϕdϕ , (19.2.20)

where we used
∂

∂θ
I θ

2π
(β)

∣∣∣∣
θ=0

=
1

2π

∫ π

−π

iϕ

2π
eβ cosϕdϕ = 0 ,

∂2

∂θ2
I θ

2π
(β)

∣∣∣∣
θ=0

= − 1

2π

∫ π

−π

(
ϕ

2π

)2

eβ cosϕdϕ .

(19.2.21)

As already noted for the partition function and the string tension, using conceptually similar but
technically more involved manipulations it is possible to obtain the topological susceptibility of
two dimensional U(N) gauge theories, see [149]. Using the Laplace method, see, e. g., [84] §2.4 or
[85] §6.4, it is simple to estimate in the large β limit (i. e. approaching the continuum limit) the
integral in the expression of χ̂(β), obtaining∫ π

π

ϕ2eβ cosϕdϕ ≃
∫ ∞
−∞

ϕ2eβ(1−ϕ
2/2)dϕ =

√
2π

β3/2
eβ , (19.2.22)

Together with I0(β) ≃ eβ/
√
2πβ, see, e. g. [12] Eq. 7.7.1, this expression gives

χ̂(β) ≃ 1

4π2β
. (19.2.23)

It is straightforward but a little tedious to find also the subleading corrections:

χ̂(β) ≃ 1

4π2β

(
1 +

1

2β
+

13

24β2
+O(β−3)

)
. (19.2.24)

Combining Eq. (19.2.11) and Eq. (19.2.24) we get

χ̂(β)

σ̂(β)
=

1

2π2

(
1 +

1

12β2
+O(β−3)

)
(19.2.25)
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Figure 19.2: Complete axial gauge fixing: links that can be fixed to 1 in a two dimensional lattice
with periodic boundary conditions are depicted by thick lines.

and hence the continuum result (note that χ and σ has the same mass dimension in two dimensional
models)

χ

σ
= lim
β→∞

χ̂(β)

σ̂(β)
=

1

2π2
. (19.2.26)

The same continuum result can be obtained also by using the non-integer “field-theoretic”
definition of the topological charge

QFT = − 1

2π

∑
n

ImΠ01(n) , (19.2.27)

since in this case one gets

χ̂FT (β) =
1

(2π)3I0(β)

∫ π

−π
sin2 ϕeβ cosϕdϕ , (19.2.28)

which using Eq. (19.2.7) can be rewritten as

χ̂FT (β) =
1

(2π)2I0(β)

I0(β)− I2(β)
2

. (19.2.29)

Using [12] Eq. 7.7.1 it is then possible to obtain

χ̂FT (β) =
1

4π2β

(
1− 1

2β
− 1

8β2
+O(β−3)

)
, (19.2.30)

whose leading term in the large-β limit (i. e. approaching the continuum limit) coincides with the
one found before using the geometric definition. Note that the coincidence of the results obtained
using the two discretizations is by no means trivial, and it is in fact false for more complex theories,
for which the field-theoretic definition requires nontrivial renormalizations, see, e. g., [144]. It is
also useful to explicitly note that despite the fact that for the two dimensional U(1) model

lim
β→∞

χ̂(β)

σ̂(β)
= lim
β→∞

χ̂FT (β)

σ̂(β)
=

1

2π2
, (19.2.31)

scaling corrections are different in χ̂ and χ̂FT : using the geometric definition of the topological
charge χ̂(β)/σ̂(β) has corrections O(β−2) ∼ O(a4) (see above), while using the field-theoretic
definition χ̂FT (β)/σ̂(β) corrections O(β−1) ∼ O(a2) are present.

Let us now consider the finite lattice case. A maximal tree that can be used to fix the temporal gauge on
a finite two dimensional lattice with periodic boundary conditions is shown in Fig. (19.2): we can fix to one
(Nt − 1)Ns + Ns − 1 = NtNs − 1 links, thus NtNs + 1 link integrals remain after gauge fixing. In an Abelian
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theory it is simple to see that the product W of all the plaquettes is equal to one (see Eq. (19.1.8) above), hence
only NtNs − 1 plaquettes are independent of each other. By performing a change of variable in the Haar integrals,
introducing plaquette variables, we end up with an integral on all the plaquettes, with the constraint δ(W, 1), and
on two remaining links. In the Abelian cases the two remaining link integrals are totally irrelevant, while they
are fundamental in the nonAbelian case. Indeed, in the nonAbelian case it can be shown that the product W of

all the plaquettes (carried out in a specific order) is equal to T1T2T
†
1T
†
2 , where T1 and T2 are the links defined in

Fig. (19.2), see [150] for details.
Let us consider for the sake of the simplicity just the Abelian U(1) case. Whenever the action can be written

as S =
∑

n S(Π01(n)) we have

Z =

∫
δ(W, 1)

∏
n

(
e−S(Π01(n))dΠ01(n)

)
. (19.2.32)

If we consider the parametrization eiϕ of U(1), the Haar measure is just dϕ
2π

. From the Fourier series expansion of
periodic functions on [−π, π] (i. e. functions defined on U(1)) we have

f(ψ) =
∑
k

ake
ikψ , ak =

1

2π

∫ π

−π
f(ψ)e−ikψdψ (19.2.33)

and thus1 (for a formal proof using generalized functions see, e. g., [151] II.7)

δG(ψ = φmod 2π) =
∑
k

eik(ψ−φ) , (19.2.34)

where δG is the δ function on the group, defined with respect to the Haar measure. Using this identity we can
finally write the partition function as

Z =
∑
k

∫ π

−π

∏
n

(
e−S(ϕ(n))+ikϕ dϕ(n)

2π

)
=
∑
k

(∫ π

−π
e−S(ϕ)+ikϕ

dϕ

2π

)NsNt

. (19.2.35)

If we now use the Wilson action with the geometric discretization of the topological charge we have (see
Eq. (19.2.16)) ∫ π

−π
e−S(ϕ)+ikϕ

dϕ

2π
=

∫ π

−π
eβ cosϕ+i θ

2π
ϕ+ikϕ dϕ

2π
= I

k+ θ
2π

(β) (19.2.36)

and thus

Z(β, θ) =
∑
k

(
I
k+ θ

2π
(β)
)NsNt

. (19.2.37)

For θ = 0, using Eq. (19.2.8), it is now immediate to see that the average plaquette is given by

⟨cosϕ⟩ =
∑
k Ik(β)

NtNs−1
(
Ik+1(β) + Ik−1(β)

)
2
∑
k Ik(β)

NtNs
. (19.2.38)

Since In(β) = I−n(β), and |In(β)/I0(β)| < 1 for β > 0 and n > 0, in the thermodynamic limit NtNs ≫ 1 we
recover Eq. (19.2.9). For the topological susceptibility in lattice units one gets analogously the expression(∑

k

Ik(β)
NtNs

)
χ̂(β) =

1

(2π)3

∑
k

Ik(β)
NtNs−1

∫ +π

−π
ϕ2 cos(kϕ)eβ cosϕdϕ−

−
NtNs − 1

(2π)4

∑
k

Ik(β)
NtNs−2

[∫ +π

−π
ϕ sin(kϕ)eβ cosϕdϕ

]2
.

(19.2.39)

When NtNs ≫ 1, the I0 terms dominate, moreover the second term in the right hand side vanishes for n = 0, and

we recover the expression found before in the thermodynamic limit.

19.3 Numerical results

Let us now discuss some numerical results obtained by simulating the two dimensional U(1) model.
The first observable studied is the static potential, see Sec. 17.4, which is computed by using

V (ws) = − lim
wt→∞

1

wt
logW (wt, ws) . (19.3.1)

We have seen in the previous section that W (wt, ws) = e−σ̂wswt , hence Wilson loops exactly obey
the area-law. With this we mean that the area-law does not just describe the large area behavior

1From a group-theoretic point of view this formula represents the character expansion for the case of U(1).

Character expansion has to be used also in the nonAbelian cases to rewrite δ(W,T1T2T
†
1T
†
2 ), see [150] (see, e. g.,

[146] for background material).
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Figure 19.3: Static potential (in lattice units) in two dimensional U(1) gauge theory. (left) Results
obtained by using β = 1 on a 162 lattice, for different values of the temporal extents of the
Wilson loop. The inset shows a zoom of r = 2a data, slightly shifted horizontally to increase their
readability. (right) Results obtained by using β = 2 on 222 and 442 lattices, measuring Wilson
loops with temporal extent wt = 1.

of the Wilson loops (as in any confining gauge theory), but exactly parametrizesW (wt, ws) for any
value of wt and ws. From this it follows that we could compute σ̂ just from the average plaquette,
and that V (r) = σr, without any correction to the linear behavior (at least as far as no finite
volume effects are present).

As a first step we explicitly check that the static potential V (ws) computed by using Wilson
loops of size ws × wt does not in fact depends on wt. In Fig. (19.3) (left) we report the results
obtained for the static potential by using β = 1 on a 162 lattice, measuring Wilson loopsW (wt, ws)
with 1 ≤ wt, ws ≤ 4. We collected a statistic of about 106 total lattice updates (20% Metropolis
updates, 80% microcanonical updates), performing Wilson loop measures every 50 lattice updates
and using (whenever possible) the multihit algorithm described in Sec. 18.5; link averages in
multihit are estimated using 10 Metropolis updates and 10 microcanonical updates, and the total
simulation time was ≈ 3 minutes. The same update scheme was used also for the other simulations
that will be discussed below. Results presented in Fig. (19.3) (left) show that the theoretical
expectations are perfectly reproduced by numerical data, both regarding the independence of the
results from wt (see in particular the inset) and regarding the absence of corrections to the linear
behavior of the static potential.

To carry out a complete investigation of the static potential we then need to check for the
presence of finite volume effects. For this reason we carried out simulations for β = 1 on two
lattices of different extent: 162 and 322. The results obtained show that there is only a very small
dependence on the lattice size. The final step is the continuum limit: to perform the continuum
limit we have to consider β →∞, however it is important to note that, when changing the value of
β, also the lattice extent has to be varied, in order to keep the lattice size approximately constant
in physical units. Since a ∝ 1/

√
β, we have approximately 16a(β = 1) ≃ 22a(β = 2) ≃ 32a(β = 4).

In Fig. (19.3) (right) we report the results of simulations carried out for β = 2 using the lattices
242 and 442: finite size systematic effects can be seen also in this case (see inset), of approximately
the same size of the statistical uncertainties.

For each value of β it is possible to fit the string tension, and to compare the fit results with the
theoretical values. This is however not completely trivial, since the values of the static potential at
different distances are generically correlated with each other, as they are estimated using Wilson
loops evaluated on the same configurations. We thus have to perform a correlated fit, or use
independent simulations to compute the static potential at different distances. Once the string
tension (or any other dimensionfull quantity) has been measured, we can use it to set the scale, i. e.
convert other quantities in physical units, in order to investigate the approach to the continuum
limit.

To investigate the continuum limit of the static potential we can plot V (r)/
√
σ = aV/

√
σ̂(β)

164



0 2 4 6 8

r√σ
_0

2

4

6

8

V
/√

σ_

L=32, β=1

L=44, β=2

L=32, β=4

Figure 19.4: Approach to the continuum limit of the static potential in two dimensional U(1) gauge
theory.

as a function of r
√
σ = ws

√
σ̂(β): in the absence of scaling corrections all points obtained using

simulations at different values of the lattice spacing should collapse on the same curve. For the case
of the two dimensional U(1) theory this curve is in fact a straight line, since the static potential is
exactly linear, as can be seen in Fig. (19.4).

For comparison, we now discuss some results obtained in the three dimensional U(1) model
at β = 1.7, using a 423 lattice. The same update scheme adopted for the two dimensional model
was used also in this case, collecting 105 lattice updates. The time required for the simulation
(measuring Wilson loops with 1 ≤ wt, ws ≤ 10 every 50 updates), has been of ≈ 5 days. The
results obtained are presented in Fig. (19.5), from which it is clear that in this case an extrapolation
is required to estimate the static potential, a consequence of the fact that Wilson loops cannot
be parametrized by the simple expression e−σ̂wtws . We thus performed, for each value of ws, an
extrapolation using the ansatz

− 1

wt
logW (wt, ws) ≃ a+ b/wt , (19.3.2)

neglecting correlations between data as a first approximation. The results of these extrapolations
are shown in the right panel of Fig. (19.5): the theory is clearly confining, but the static potential
is not exactly linear as was in the two dimensional case. A functional form which describes the
static potential fairly well is the so called Cornell potential

V (r) = σr +
α

r
+ c , (19.3.3)
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introduced in [152] to describe charmonium bound states. From the large distance behavior of
the static potential we estimate σ̂ ≈ 0.123(2) (the reason for ≈ is that we neglected correlations
when performing the fits needed for the extrapolations, so the final error is likely underestimated).
Using a simulation algorithm specifically designed for the three dimensional U(1) gauge model, the
string tension at β = 1.7 was estimated to be σ̂ = 0.122764(2) in [153], a value which is consistent
with the value we found (and obviously more accurate).

Let us finally discuss the topological susceptibility of the two dimensional U(1) model. For
this purpose we performed several simulations at different values of the lattice spacing (i. e. of
the lattice coupling β) at fixed physical volume, for two different values of the physical volume.
Since a ∝ 1/

√
β, to approach the continuum limit at constant physical volume we can perform

simulations for different values of the lattice extent Ns (with Nt = Ns), choosing β in such a way
that

a(β)Ns ∝
Ns√
β

(19.3.4)

is constant. We used β = (Ns/20)
2 for Ns ∈ [20, 52], and to check for the presence of finite

volume corrections we also used β = (Ns/30)
2 for Ns ∈ [30, 75]. In both the cases 106 updates

(20% Metropolis updates, 80% microcanonical updates) have been collected for most of the lattice
sizes. Exactly as in the QM model discussed in Chap. 11, also in this model an exponential critical
slowing down is present, and for this reason 107 updates have been used for the four largest lattice
sizes.

In Fig. (19.6)(left) we report the results obtained for 4π2βχ̂, which nicely agree with the
analytical results, and in particular approach 1 for β →∞. In Fig. (19.6)(right) we instead report
results obtained for the dimensionless ratio 2π2χ/σ = 2π2χ̂/σ̂ (using for σ̂ the analytical result in
Eq. (19.2.11)). Note that the vertical scale is different in the two panel, and that lattice artifacts
for the quantity 4π2βχ̂ are larger than those of the quantity 2π2χ̂/σ̂, consistently with the fact
that 4π2βχ̂ has O(1/β) ∝ a2 corrections, see Eq. (19.2.24), while 2π2χ̂/σ̂ only has O(1/β2) ∝ a4

corrections, see Eq. (19.2.25).

For the two dimensional U(1) (in fact also for U(N) models with N > 1) model it is not difficult to implement
an algorithm which completely remove the critical slowing down related to topological modes [154]. The basic idea
is the following: since the topological carge is odd under complex conjugation of the links, if we select a portion of
the lattice (e. g. the region inside a square) and apply the transformation Uµ(n) → Uµ(n)∗ to all the links inside
this region, such a transformation will likely change the value of the topological charge, at least if the region has
a linear size which is comparable with the correlation length. It is however unlikely for such a transformation to
be accepted by a Metropolis step, since the change of action will typically be large. Note that only links on the
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boundary of the region to be updated contributes to the difference of action ∆S, which can be written in the form

∆S = −β
∑

boundary
links

Re
[(
U∗µ(n)− Uµ(n)

)(
S
(i)
µ

∗
(n) + S

(o)
µ (n)

)]
, (19.3.5)

where we denoted by S
(i)
µ (n) the components of the sum of the staples which lay inside the region to be updated,

and by S
(e)
µ (n) the components of the sum of the staples which lay outside the same region. In the particular case

of two dimensional models, it is however possible to set to the identity all the links on the boundary, up to a single

link, before proposing the update. In this way U∗µ(n) − Uµ(n) = 0 but for a single boundary link, and the values

of ∆S corresponding to this nonlocal update are analogous to those associated to a single link update.
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Chapter 20

Appendices to Part IV

20.A Benchmark for the two dimensional free scalar theory

The lattice action obtained by using the forward discretization of the derivative is (see Eq. (13.2.3)
with D = 2)

SL =
1

2

∑
mbfn

{
(m̂2 + 4)ϕ̂2n − 2

1∑
µ=0

ϕ̂nϕ̂n+µ̂

}
=

1

2

∑
n,j

ϕ̂nKnj ϕ̂j ,

Knj = (m̂2 + 4)δn,k −
1∑

µ=0

(δn+µ̂,j + δn−µ̂,j) .

(20.A.1)

If we use periodic b. c. and the ordering (0, 0), (0, 1), (1, 0), (1, 1) for the sites of a 2× 2 lattice, the
matrix K becomes

K =


m̂2 + 4 −2 −2 0
−2 m̂2 + 4 0 −2
−2 0 m̂2 + 4 −2
0 −2 −2 m̂2 + 4

 , (20.A.2)

and

Z(m̂) =

∫ (∏
n

dϕ̂n

)
e−SL =

(2π)2√
detK

=
4π2

√
m̂8 + 16m̂6 + 80m̂4 + 128m̂2

. (20.A.3)

As a consequence

X =
1

4

〈∑
n

m̂2ϕ̂2n

〉
= −1

4
m̂

∂

∂m̂
logZ(m̂) =

m̂4 + 8m̂2 + 8

m̂4 + 12m̂2 + 32
. (20.A.4)

Note that (since NtN
D−1
s = 4) X is just the average value of O1 defined in Eq. (15.1.9).

m̂ X X (MC result)
0.5 0.286987 . . . 0.28731(35)
1 0.377777 . . . 0.37756(34)
1.5 0.484878 . . . 0.48467(36)

Table 20.1: Values computed on the lattice 22 with periodic boundary conditions using 4 × 107

single site updates, 20% heatbath and 80% overrelaxation (execution time ≈ 10s for each case).

168



20.B Benchmark for the two dimensional U(1) LGT

Using the Wilson action

S = −β
∑
n

P01(n) , (20.B.1)

where P01(n) = ReΠ01(n) and Π01(n) is the plaquette operator in position n, the average plaquette
on a Nt×Ns lattice with periodic boundary conditions is given by (In is the modied Bessel function
of first kind of order n)

⟨P01⟩ =
∑+∞
n=−∞ In(β)

NtNs−1(In+1(β) + In−1(β))

2
∑+∞
n=−∞ In(β)NtNs

, (20.B.2)

which in the thermodynamic limit reduces to

⟨P01⟩(t.l.) =
I1(β)

I0(β)
. (20.B.3)

The topological susceptibility in lattice units χ̂(β) = ⟨Q2⟩/(NtNs) (where Q is defined in
Eq. (19.1.7)) is given by(

+∞∑
n=−∞

In(β)
NtNs

)
χ̂(β) =

1

(2π)3

+∞∑
n=−∞

In(β)
NtNs−1

∫ +π

−π
ϕ2 cos(nϕ)eβ cosϕdϕ−

−NtNs − 1

(2π)4

+∞∑
n=−∞

In(β)
NtNs−2

[∫ +π

−π
ϕ sin(nϕ)eβ cosϕdϕ

]2
,

(20.B.4)

which in the termodynamic limit reduces to

χ̂(t.l.)(β) =
1

(2π)3
1

I0(β)

∫ +π

−π
ϕ2eβ cosϕdϕ . (20.B.5)

Nt ×Ns β ⟨P01⟩ ⟨P01⟩ (MC) ⟨P01⟩(t.l.) χ̂ χ̂ (MC) χ̂(t.l)

2× 2 1.0 0.505197 0.50558(63) 0.44639 0.0212675 0.02125(10) 0.0406362
2× 2 2.0 0.779561 0.77941(29) 0.69777 0.00132364 0.001337(28) 0.019364
5× 5 1.0 0.44639 0.44626(21) 0.44639 0.0406362 0.040596(81) 0.0406362

Table 20.2: Values computed using 107 update of the whole lattice, 20% heatbath and 80% over-
relaxation (execution time ≈ 15s, ≈ 15s and ≈ 60s, respectively).
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