Franco Bedeschi, INFN

Giornate sulla ESPP

Roma, September 21st, 2020

Detector R&D for a circular e+e- collider

ISTITUTO FISICO GUGLIELMO MARCONI

OUTLINE

Roma, September 2020

6

Physics/accelerator drivers
The IDEA detector
Design guidelines
Ongoing R&D
Concluding comments E. Bedeschi, INFN-Pisa

Setting the stage

ESU approved from CERN council in June 2020

- «An electron-positron Higgs factory is the highest-priority next
 - **<u>collider</u>**..... a feasibility study of the colliders and related infrastructure should be completed on the timescale of the next Strategy update.»

Setting the stage

ESU approved from CERN council in June 2020

An electron-positron Higgs factory is the highest-priority next collider...... a feasibility study of the colliders and related infrastructure should be completed on the timescale of the next Strategy update.»

Implications on time scales:

- Proto-collaborations by end of 2023
- Experiment LoI (~TDR) by EU strategy 2025/26
 - R&D and detector design largely completed

Luminosity is the key

Roma, September 2020

3

F. Bedeschi, INFN-Pisa

♦ Higgs factory > $10^6 \text{ e+e-} \rightarrow \text{HZ}$

Physics plan still under discussion – Order may change

★ Higgs factory
> 10⁶ e+e- → HZ
★ EW & Top factory
> $3x10^{12}$ e+e- → Z
> 10⁸ e+e- → W+W- ;
> 10⁶ e+e- → tt

Physics plan still under discussion – Order may change

Higgs factory $\rightarrow 10^6 \text{ e} + \text{e} - \rightarrow \text{HZ}$ **EW & Top factory** > 3x10¹² e+e- \rightarrow Z $\succ 10^8 \text{ e+e-} \rightarrow \text{W+W-};$ $> 10^6 \text{ e+e-} \rightarrow \text{tt}$ Flavor factory $> 5x10^{12} e^+e^- \rightarrow bb, cc$

 $\succ 10^{11} e^+e^- \rightarrow \tau^+\tau^-$

Physics plan still under discussion – Order may change

Higgs factory \blacktriangleright 10⁶ e+e- \rightarrow HZ **EW & Top factory** > 3x10¹² e+e- \rightarrow Z $\succ 10^8 \text{ e+e-} \rightarrow \text{W+W-};$ $> 10^6 \text{ e+e-} \rightarrow \text{tt}$ Flavor factory \rightarrow 5x10¹² e+e- \rightarrow bb, cc

 \succ 10¹¹ e+e- → τ+τ-

Potential discovery of NP

ALPs, RH v's, ...

Roma, September 2020

Physics plan still under discussion – Order may change

Higgs total width

Higgs recoil provides model independent measurement of coupling to Z

 $ightarrow \sigma(HZ) \propto g^2_{HZ}$

 $Z \rightarrow \mu \mu$ recoil

tituto Nazionale Fisica Nucleare

 $L = 5 ab^{-1}$

Higgs total width

Higgs recoil provides model independent measurement of coupling to Z

 $ightarrow \sigma(HZ) \propto g^2_{HZ}$

Critical:

- Beam energy spread: SR+BS
- Tracking/jet resolution

ituto Nazional Fisica Nuclear

 $L = 5 ab^{-1}$

Higgs total width

Higgs recoil provides model independent measurement of coupling to Z

 $ightarrow \sigma(HZ) \propto g^2_{HZ}$

Critical:

- Beam energy spread: SR+BS
 - Tracking/jet resolution

Total width combining with decays in specific channels

$$\sigma(ee \rightarrow ZH) \cdot BR(H \rightarrow ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$$

 $Z \rightarrow \mu \mu$ recoil

Roma, September 2020

5

F. Bedeschi, INFN-Pisa

 $L = 5 ab^{-1}$

Higgs coupling fits

Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀	$CEPC_{240}$	FCC-ee _{240\rightarrow365}	
Lumi (ab^{-1})	3	2	1	5.6	5+0.2+1.5	
Years		11.5^{5}	8	7	3+1+4	
$g_{\rm HZZ}$ (%)	1.5 / 3.6	$0.29 \ / \ 0.47$	$0.44 \ / \ 0.66$	$0.18 \ / \ 0.52$	0.17 / 0.26	
$g_{\rm HWW}$ (%)	1.7 / 3.2	$1.1 \ / \ 0.48$	$0.75 \ / \ 0.65$	$0.95 \ / \ 0.51$	0.41 / 0.27	
g_{Hbb} (%)	3.7 / 5.1	$1.2 \ / \ 0.83$	$1.2 \ / \ 1.0$	$0.92 \ / \ 0.67$	0.64 / 0.56	
$g_{ m Hcc}$ (%)	SM / SM	$2.0 \ / \ 1.8$	4.1 / 4.0	$2.0 \ / \ 1.9$	1.3 / 1.3	
g_{Hgg} (%)	$2.5 \ / \ 2.2$	$1.4 \ / \ 1.1$	$1.5 \ / \ 1.3$	$1.1 \ / \ 0.79$	0.89 / 0.82	
$g_{\mathrm{H}\tau\tau}$ (%)	$1.9 \ / \ 3.5$	$1.1 \ / \ 0.85$	$1.4 \ / \ 1.3$	1.0 / 0.70	0.66 / 0.57	
$g_{\mathrm{H}\mu\mu}$ (%)	$4.3 \ / \ 5.5$	$4.2 \ / \ 4.1$	4.4 / 4.3	3.9 / 3.8	3.9 / 3.8	
$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8 / 3.7	$1.3 \ / \ 1.3$	$1.5 \ / \ 1.4$	$1.2 \ / \ 1.2$	1.2 / 1.2	
$g_{\mathrm{HZ}\gamma}$ (%)	11. / 11.	11. / 10.	11. / 9.8	$6.3 \ / \ 6.3$	10. / 9.4	
$g_{ m Htt}$ (%)	$3.4 \ / \ 2.9$	2.7 / 2.6	2.7 / 2.7	$2.6 \ / \ 2.6$	2.6 / 2.6	
$g_{\rm HHH}$ (%)	50. / 52.	28. / 49.	45. / 50.	17. / 49.	19. / 34.	
$\Gamma_{\rm H}$ (%)	SM	2.4	2.6	1.9	1.2	
BR_{inv} (%)	1.9	0.26	0.63	0.27	0.19	
BR_{EXO} (%)	SM(0.0)	1.8	2.7	1.1	1.0	

IN

EFU

Istituto Nazionale di Fisica Nucleare

Requirements for Higgs physics

Tracking:

- Momentum resolution for Z recoil (and $H \rightarrow \mu \mu$)
- > Vertex resolution to separate g, c, b, τ final states

INFA

Requirements for Higgs physics

Tracking:

- Momentum resolution for Z recoil (and $H \rightarrow \mu \mu$)
- \blacktriangleright Vertex resolution to separate g, c, b, τ final states

Calorimetry:

Jet-jet invariant mass resolution to separate W, Z, H in 2 jets

Good π^0 ID for τ and HF tagging

7

EWK

Outstanding program of precision EWK measurements > O(10-100) better than LEP precision

Substantially reduce parametric uncertainties in theory

Observable	Present value \pm error	FCC-ee Stat.	FCC-ee Syst.	Comment and dominant exp. error	
m _Z (keV)	91,186,700 ± 2200	5	100	From Z line shape scan Beam energy calibration	1
Γ_Z (keV)	$2,495,200 \pm 2300$	8	100	From Z line shape scan Beam energy calibration	
R_{ℓ}^{Z} (×10 ³)	$20,767\pm25$	0.06	0.2-1.0	Ratio of hadrons to leptons acceptance for leptons	
$\alpha_{\rm s} \ ({\rm m_Z}) \ (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	From R_{ℓ}^{Z} above [43]	
R _b (×10 ⁶)	$216,290 \pm 660$	0.3	< 60	Ratio of bb to hadrons stat. extrapol. from SLD [44]	
$\sigma_{\rm had}^0$ (×10 ³) (nb)	$41,541 \pm 37$	0.1	4	Peak hadronic cross-section luminosity measurement	7 pole
N_{ν} (×10 ³)	2991 ± 7	0.005	1	Z peak cross sections Luminosity measurement	
$\sin^2 \theta_W^{\text{eff}}$ (×10 ⁶)	$231,480 \pm 160$	3	2-5	From $A_{FR}^{\mu\mu}$ at Z peak Beam energy calibration	
$1/\alpha_{QED}$ (m _Z) (×10 ³)	$128,952 \pm 14$	4	Small	From $A_{FB}^{\mu\mu}$ off peak [34]	
$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole from jet charge	
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	< 2	τ Polarisation and charge asymmetry τ decay physics	
m _W (MeV)	$80,350 \pm 15$	0.5	0.3	From WW threshold scan Beam energy calibration	i
Γ_W (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration	l ww
$\alpha_{\rm s} \ ({\rm m_W}) \ (\times 10^4)$	1170 ± 420	3	Small	From R_{ℓ}^{W} [45]	
N_{ν} (×10 ³)	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns	
m _{top} (MeV)	$172,740 \pm 500$	17	Small	From tt threshold scan QCD errors dominate	
Γ_{top} (MeV)	1410 ± 190	45	Small	From tt threshold scan QCD errors dominate	
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.1	Small	From tt threshold scan QCD errors dominate	
ttZ couplings	$\pm 30\%$	0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$	1

***** EWK:

- Extreme definition of detector acceptance
 - Tracking with silicon wrapper
 - Calorimetry with pre-shower
 - SiW luminometer with high mechanical accuracy

***** EWK:

Extreme definition of detector acceptance

Tracking with silicon wrapper

Calorimetry with pre-shower

- SiW luminometer with high mechanical accuracy
- Extreme EM resolution (crystals) under study
 - Improved π^0 reconstruction
 - Physics with radiative return

***** EWK:

Extreme definition of detector acceptance

Tracking with silicon wrapper

Calorimetry with pre-shower

- SiW luminometer with high mechanical accuracy
- Extreme EM resolution (crystals) under study
 - Improved π^0 reconstruction
 - Physics with radiative return

HF:

PID to accurately classify final states and flavor tagging

***** EWK:

Extreme definition of detector acceptance

Tracking with silicon wrapper

Calorimetry with pre-shower

- SiW luminometer with high mechanical accuracy
- Extreme EM resolution (crystals) under study
 - Improved π^0 reconstruction
 - Physics with radiative return

HF:

PID to accurately classify final states and flavor tagging

Other requirements highly overlap with Higgs req.

Roma, September 2020

Circular vs. Linear

Low field detector solenoid to maximize luminosity
 Optimized at 2 T

 \blacktriangleright Large tracking volume \rightarrow calorimeter outside \rightarrow very thin coil

Roma, September 2020

F. Bedeschi, INFN-Pisa

Circular vs. Linear

 \blacktriangleright Large tracking volume \rightarrow calorimeter outside \rightarrow very thin coil

Beam time structure:

- Short bunch spacing (~ 20-30 ns Z, ~ 1 μ s H)
- No large time gap
 - Cooling issues for PF calorimeter and vertex detector
 - TPC ion backflow

Innovative Detector for E+e- Accelerator

F. Bedeschi, INFN-Pisa

Roma, September 2020

F. Bedeschi, INFN-Pisa

Roma, September 2020

Roma, September 2020

F. Bedeschi, INFN-Pisa

Design guidelines: Momentum resolution

 \mathbf{P}_{t} Z or H decay muons in ZH events have rather small p_{t}

Roma, September 2020

Design guidelines: Momentum resolution

\mathbf{A} Z or H decay muons in ZH events have rather small \mathbf{p}_t

Transparency more relevant than asymptotic resolution

Transparency:

Low power (< 20 mW/cm²) to allow air cooling

Roma, September 2020

Transparency:

Low power (< 20 mW/cm²) to allow air cooling

Resolution:

5 μ m shown by ALICE ITS (30 μ m pixels) Aim at ~20 μ m pixels for ~ 3 μ m point resolution

Design guidelines: Vertex detector

Roma, September 2020

F. Bedeschi, INFN-Pisa

Design guidelines: PID

Cluster counting in DCH for good PID resolution Excellent K/π separation except 0.75<p<1.05 GeV (blue lines)

F. Bedeschi, INFN-Pisa

Roma, September 2020

Design guidelines: PID

Cluster counting in DCH for good PID resolution

Excellent K/ π separation except 0.75<p<1.05 GeV (blue lines)

Could recover with timing layer

Design guidelines: calorimeter

Cood, but not extreme EM resolution
~ 10%/√E sufficient for Higgs physics
Jet resolution ~ 30-40%/√E
Clearly identify W, Z, H in 2 jet decays
Transverse granularity < 1 cm for τ physics
All electronics in the back to simplify cooling and services

Design guidelines: calorimeter

Good, but not extreme EM resolution $\sim 10\%/\sqrt{E}$ sufficient for Higgs physics • Jet resolution ~ $30-40\%/\sqrt{E}$ Clearly identify W, Z, H in 2 jet decays * Transverse granularity < 1 cm for τ physics All electronics in the back to simplify cooling and services Dual Readout calorimeter satisfies all these requirements EM & Hadronic calorimeter in a single package See for instance: - "Dual-readout calorimetry", Sehwook Lee, Michele Livan, and Richard Wigmans

Rev. Mod. Phys. 90, 025002 – Published 26 April 2018

- L. Pezzotti, CHEF2019, Nov. 2019, Fukuoka, Japan

Calorimeter simulation

• 4π detector in GEANT4 tuned to RD52/DREAM test beam

Calorimeter simulation

4π detector in GEANT4 tuned to RD52/DREAM test beam data

\bullet Good EM resolution averaged over η and ϕ

Calorimeter simulation

4π detector in GEANT4 tuned to RD52/DREAM test beam data

• Good EM resolution averaged over η and ϕ

DR works well with jets

Calorimeter simulation

4π detector in GEANT4 tuned to RD52/DREAM test beam data

\bullet Good EM resolution averaged over η and ϕ

DR works well with jets

Adequate separation

$$e^+e^- \rightarrow HZ \rightarrow \chi^0 \chi^0 jj$$

 $e^+e^- \rightarrow WW \rightarrow \nu_\mu \mu jj$

 $e^+e^- \rightarrow HZ \rightarrow bb\nu\nu$

Crystal option

 $1 \times 1 \times 5 \text{ cm}^3$

PbWO

◆ ~20 cm PbWO₄
◆ $3\%/\sqrt{E}$ ◆ DR w. filters
◆ Timing layer
> Lyso 20-30 ps

• ECAL layer:

- PbWO crystals
- front segment 5 cm ($\sim 5.4X_0$)
- rear segment for core shower
- $(15 \text{ cm} \sim 16.3 \text{X}_0)$
- 10x10x200 mm³ of crystal
- 5x5 mm² SiPMs (10-15 um)

1x1x15cm³ PbWO

Current R&D

Silicon systems:

- VTX: Low power, high speed MAPS CMOS to limit costs
 - Time stamping ~ 10 ns, Stitching
- Outer Si: CMOS passive strips, long pixels, evolution from R&D at HL-LHC

Requirements	ARCADIA
Pixel pitch (um)	20 - 25
Thickness (um)	50 - 100
Scalability (cm)	Up to \sim 4 x 4
Hit rate (MHz/cm ²)	10 ightarrow 100
Cluster size (pixels)	2-4
Timing res. (ns)	10
Power (mW/cm ²)	< 20
Rad. Hard (Mrad)	1
Tiling	Side-buttable
Trigger	Triggerless

First Implementation

- Target hit rate: 100MHz/cm²
- Target efficiency: 99.9% (in every regard)
- ▶ Pixel size: 20µm × 20 µm
- Double column arrangement
- Support for 2048 pixels in column (4cm)

Roma, September 2020

Current R&D

Silicon systems:

- VTX: Low power, high speed MAPS CMOS to limit costs
 - Time stamping ~ 10 ns, Stitching
- Outer Si: CMOS passive strips, long pixels, evolution from R&D at HL-LHC

Drift chamber:

- Light mechanics and new wire technology (e.g. C-fiber)
 - Cluster counting electronics

Calorimeter:

Scalable mechanical options

Calorimeter:

- Scalable mechanical options
- SiPM readout architectures/chips Digital SiPM

Silicon gustome

Cluster counting electronics

Calorimeter:

- Scalable mechanical options
- SiPM readout architectures/chips Digital SiPM
- Crystals

DLC sputtering

Roma, September 2020

Software and DAQ

Significant SW R&D and studies in progress

- Worldwide development of Key4HEP guided by CERN
 DD4HEP, EDM4HEP, for the serious SW developer
- FCCee physics groups restructured to tackle several "case studies"
 Physics Performance Coordinators: P. Azzi, E. Perez
- Lot of infrastructure still under development for IDEA:
 - Porting to DD4HEP of calorimetry and tracking
 - Put all detectors in GEANT4 simultaneously
 - With digitization
 - Tune reconstruction algorithms/ Machine learning techniques
 - Tune DELPHES to GEANT simulation

Trigger/DAQ/On-detector/On-line computing

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt
- Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector
- Much R&D work in progress supported by several funding sources

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt
- Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector
- Much R&D work in progress supported by several funding sources
- Collaboration on all these R&D's is growing internationally, but there is still ample space for additional contributions

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector

Much R&D work in progress supported by several funding sources Collaboration on all these R&D's is growing internationally, but there is still ample space for additional contributions

Must strengthen Italian collaboration!
Roma, September 2020
21

Roma, September 2020

22

F. Bedeschi, INFN-Pisa

IDEA concept

Roma, September 2020

Roma, September 2020

Detector concept IDEA Si pixel vertex detector 5 MAPS layers R = 1.7 - 34 cm Drift chamber (112 layers) •

 $4m \log, r = 35 - 200 cm$

IDEA concept

tituto Nazionale di Fisica Nucleare

Si pixel vertex detector

- 5 MAPS layers
 - R = 1.7 34 cm
- Drift chamber (112 layers)
 - $4m \log, r = 35 200 cm$
- Si wrapper: strips

Si pixel vertex detector

5 MAPS layers

R = 1.7 - 34 cm

Drift chamber (112 layers)

 $4m \log, r = 35 - 200 cm$

Si wrapper: strips

Solenoid: 2 T - 5 m, r = 2.1-2.4 > 0.74 X₀, 0.16 λ @ 90°

Si pixel vertex detector

 > 5 MAPS layers

 R = 1.7 - 34 cm

 * Drift chamber (112 layers) 4m long, r = 35 - 200 cm
 * Si wrapper: strips Solenoid: 2 T - 5 m, r = 2.1-2.4
 > 0.74 X₀, 0.16 λ @ 90°
 Pre-shower: μRwell

Si pixel vertex detector

5 MAPS layers

R = 1.7 - 34 cm

Drift chamber (112 layers)

 $4m \log, r = 35 - 200 cm$

Si wrapper: strips
Solenoid: 2 T - 5 m, r = 2.1-2.4

0.74 X₀, 0.16 λ @ 90°

Pre-shower: µRwell

Dual Readout calorimetry
> 2m deep/8 λ

Si pixel vertex detector

5 MAPS layers

R = 1.7 - 34 cm

Drift chamber (112 layers)

 $4m \log, r = 35 - 200 cm$

Si wrapper: strips
Solenoid: 2 T - 5 m, r = 2.1-2.4
0.74 X₀, 0.16 λ @ 90°
Pre-shower: μRwell
Dual Readout calorimetry
2m deep/8 λ

Muon chambers

μRwell

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDI
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2}}$	$\overline{ heta}$
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{{ m jet}}_E/E=$ $3\sim4\%$ at 100 GeV	
$H \to \gamma \gamma$	${\rm BR}(H o \gamma \gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	Too tight?
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H o b \bar{b}/c \bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\rm jet}/E = 3 \sim 4\%$ at 100 GeV	
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} 6}$	Too tight ?
$H \to b\bar{b}/c\bar{c}/gg$	$BR(H \rightarrow b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	Not enough?
$H \to q\bar{q}, WW^*, ZZ^*$	$\mathrm{BR}(H\to q\bar{q},WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E =$ 3 ~ 4% at 100 GeV	
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker 2	$\Delta(1/p_T) = \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	Too tight?
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H \to b \bar{b} / c \bar{c} / g g)$	Vertex 5	$\sigma_{r\phi} = \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	Not enough?
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E =$ 3 ~ 4% at 100 GeV	Too tight?
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} = 0.01$	

Requirements:

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker 2	$\Delta(1/p_T) = \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV})\sin^{3/2}}$	Too tight?
$H \to b \bar{b}/c \bar{c}/gg$	${\rm BR}(H \to b \bar{b} / c \bar{c} / g g)$	Vertex 5	$\sigma_{r\phi} = \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu \text{m})$	Not enough?
$H \to q\bar{q}, WW^*, ZZ^*$	${\rm BR}(H\to q\bar{q},WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV	Too tight?
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	Not enough?

Requirements:

Constraints from physics (similar to LC more or less)

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker 2	$\Delta(1/p_T) = \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2}}$	\overline{P} Too tight?
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex 5	$\sigma_{r\phi} = \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	Not enough?
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV	Too tight?
$H\to\gamma\gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\Delta E/E =$ $\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01$	Not enough?

Additional constraints

- Excellent acceptance and luminosity control
- PID & π^0 ID for HF/ τ physics
- Low B field to avoid emittance blow up
- Power pulsing not allowed

Roma, September 2020

Not present at LC

24

F. Bedeschi, INFN-Pisa

Transparency

Roma, September 2020

26

F. Bedeschi, INFN-Pisa

dE/dx vs dN/dx

Steeper high energy rise of #clusters than ionization E

Calorimeter separation (γ)

Transverse granularity below 1 cm seems adequate

o Nazional

Calorimeter separation (γ)

F. Bedeschi, INFN-Pisa

Effect of material

Effect of 1 X0 Fe
Distance from calor.
30 cm barrel
10 cm endcap

F. Bedeschi, INFN-Pisa

Calorimeter resolution (γ)

Is 20%/sqrt(E) acceptable? Can we trigger on single γ?
What about radiative return analysis?

Eg. Nv, and $Z \rightarrow v_e v_e$

Calorimeter resolution (γ)

Is 20%/sqrt(E) acceptable? Can we trigger on single γ?
What about radiative return analysis?

Eg. Nv, and $Z \rightarrow v_e v_e$

d σ /dv [nb], e⁺e⁻ -> $v\overline{v}$ +N γ , γ 's taged

Need 5-10%/sqrt(E) for a good measurement $\sigma(g_{ve}): 18\% \rightarrow 1.4-2.4\%$ - Worse resolution make separation difficult

Calorimeter R&D

Direct coupling scheme

Calorimeter R&D

Direct coupling scheme

Roma, September 2020

31

F. Bedeschi, INFN-Pisa