The IDEA detector at the FCC-ee

Franco Bedeschi

Spanish network for future colliders October 7, 2020

<u>Sommario</u>

Status and timelines
Detector requirements
IDEA design
Current R&D
Final remarks

ESU approved by CERN council

«An electron-positron Higgs factory is the highest-priority next

<u>collider</u>..... a feasibility study of the colliders and related infrastructure should be completed on the timescale of the next Strategy update.»

ESU approved by CERN council

«An electron-positron Higgs factory is the highest-priority next

collider..... a feasibility study of the colliders and related infrastructure should be completed on the timescale of the next Strategy update.»

Implications on timing for detector R&D:

ESU approved by CERN council

Implications on timing for detector R&D:

- Experiment LoI's by EU strategy 2025/26
 - R&D completed CDR++
- FCCee detector TDR 2028
 - Detailed detector design

FCC project milestones for the next 20 years

Infrastructure and Machine

Physics, Experiments, Detectors

(exact dates to be discussed in the coming months)

Milestone / activity	Target date	Possible timeline
First e⁺e⁻ collisions in FCC-ee	2040	FCC-ee detector commissioning
Start machine installation	2037	Start FCC-ee detector installation
Tunnel completion	2035/36	
Start tunnel construction	2030	Start FCC-ee detector construction
Project approval	2028	FCC-ee Detector TDR's and approvals
Next ESPPU	2026/27	
Key prototypes (feasibility proof)	2025/26	FCC-ee Proto-collaborations and Lol's
CDR++/TDR (feasibility proof)	End 2025	CDR++ (Common work) Physics, Software, Technologies, R&D

Patric	k Ja	not

FCC Physics and Experiments General meeting

2

Physics at FCC-ee

Spanish network, October 2020

3

F. Bedeschi, INFN-Pisa

Physics at FCC-ee

◆ Higgs factory
> 10⁶ e+e- → HZ
◆ EW & Top factory
> 3x10¹² e+e- → Z
> 10⁸ e+e- → W+W- ;
> 10⁶ e+e- → tt
◆ Flavor factory

- > $5x10^{12} e^+e^- \rightarrow bb, cc$ > $10^{11} e^+e^- \rightarrow \tau^+\tau^-$
- ✤ Potential discovery of NP
 ▶ ALPs, RH v's, ...

Physics plan still under discussion – Order may change

Requirements for Higgs physics

Tracking:

- Momentum resolution for Z recoil (and $H \rightarrow \mu \mu$)
 - Comparatively low momenta involved \rightarrow transparency is important
- \blacktriangleright Vertex resolution/transparency to separate g, c, b, τ final states

Requirements for Higgs physics

Tracking:

- Momentum resolution for Z recoil (and $H \rightarrow \mu \mu$)
 - Comparatively low momenta involved \rightarrow transparency is important
- \blacktriangleright Vertex resolution/transparency to separate g, c, b, τ final states

Calorimetry:

- Jet-jet invariant mass resolution to separate W, Z, H in 2 jets
- → Good π^0 ID for τ and HF reconstruction

***** EWK:

Extreme definition of detector acceptance

- Extreme EM resolution (crystals) under study
 - Improved π^0 reconstruction
 - Physics with radiative return

***** EWK:

Extreme definition of detector acceptance

- Extreme EM resolution (crystals) under study
 - Improved π^0 reconstruction
 - Physics with radiative return

✤ HF:

PID to accurately classify final states and flavor tagging

***** EWK:

Extreme definition of detector acceptance

Extreme EM resolution (crystals) under study

Improved π^0 reconstruction

Physics with radiative return

***** HF:

PID to accurately classify final states and flavor tagging

Other requirements highly overlap with Higgs req.

Circular vs. Linear

Low field detector solenoid to maximize luminosity
 Optimized at 2 T

 \blacktriangleright Large tracking volume \rightarrow calorimeter outside \rightarrow very thin coil

Spanish network, October 2020

6

F. Bedeschi, INFN-Pisa

Circular vs. Linear

 \blacktriangleright Large tracking volume \rightarrow calorimeter outside \rightarrow very thin coil

Beam time structure:

- Short bunch spacing (~ 20-30 ns Z, ~ 1 μ s H)
- No large time gap
 - Cooling issues for PF calorimeter and vertex detector
 - TPC ion backflow

Spanish network, October 2020

F. Bedeschi, INFN-Pisa

Spanish network, October 2020

Spanish network, October 2020

F. Bedeschi, INFN-Pisa

Detectors & R&D

Spanish network, October 2020

8

F. Bedeschi, INFN-Pisa

Vertex detector

Transparency:

Low power (< 20 mW/cm²) to allow air cooling

Spanish network, October 2020

Vertex detector

Transparency:

Low power (< 20 mW/cm²) to allow air cooling

Resolution:

- \blacktriangleright 5 µm shown by ALICE ITS (30 µm pixels)
- Aim at ~20 μ m pixels for ~ 3 μ m point resolution

Vertex detector

I

Spanish network, October 2020

F. Bedeschi, INFN-Pisa

Silicon detector R&D

Two paths with some overlap:

DMAPS pixel detector (ARCADIA/LFoundry)

Test beam with staves by ~ 2023

INFN-CSN5 call – 2019-2021 (~ 1 M€)

Additional funds secured also beyond 2021

MoU in progress with industry and other international labs

Silicon detector R&D

- Large area silicon (Pixels and strips)
 - First demonstrators use AtlasPix3 \rightarrow modules for mini-staves
 - Full system test beam by 2022/23
 - New pixel development FCEPCPix1 in AMS
 - Passive CMOS micro-strips at Lfoundry
 - Large international collaboration:
 - China: Harbin, IHEP, NWPU, Shandong, SJTU, Tsingua, UTSTC; Germany: KIT; Italy: Milano, Pisa, Torino; UK: Bristol, Daresbury, Edinburgh, Lancaster, Liverpool, RAL, Sheffield, Warwick

F. Bedeschi, INFN-Pisa

Drift chamber

High transparency and fast (max drift ~ 400 nsec)

Drift chamber

High transparency and fast (max drift ~ 400 nsec)
 Cluster counting in DCH for good PID resolution
 Excellent K/π separation except 0.75<p<1.05 GeV (blue lines)

F. Bedeschi, INFN-Pisa

Drift chamber

High transparency and fast (max drift ~ 400 nsec)

- Cluster counting in DCH for good PID resolution
 - Excellent K/ π separation except 0.75<p<1.05 GeV (blue lines)

Could recover with timing layer

Synergic with MEG2/PSI and CMD3 & STC factory/BINP
 Good support from Cremlin+ (2020-2023)

Synergic with MEG2/PSI and CMD3 & STC factory/BINP
 Good support from Cremlin+ (2020-2023)
 Activities:

New wire development (eg. C-fiber)

Synergic with MEG2/PSI and CMD3 & STC factory/BINP Good support from Cremlin+ (2020-2023) **Activities:**

- - > New wire development (eg. C-fiber)
 - Low mass mechanics

Synergic with MEG2/PSI and CMD3 & STC factory/BINP
 Good support from Cremlin+ (2020-2023)

Activities:

- New wire development (eg. C-fiber)
- Low mass mechanics
- Cluster counting electronics

Synergic with MEG2/PSI and CMD3 & STC factory/BINP

Good support from Cremlin+ (2020-202

Activities:

- New wire development (eg. C-fiber)
- Low mass mechanics
- Cluster counting electronics
- Simulation and reconstruction SW

Dual Readout calorimeter

Event by event correction for EM-had fluctuations Principle demonstrated by DREAM/RD-52

Dual Readout calorimeter

Event by event correction for EM-had fluctuations
 Principle demonstrated by DREAM/RD-52
 EM and hadron calorimeter in a single package
 All electronics in back easy to cool and access
 NEW: mechanics, SiPM readout, readout electronics

Alternating scintillating and clear fibers in metal matrix

Dual Readout calorimeter R&D

Collaboration:

- INFN (Italy), RBI (Croatia), Sussex (UK), Korea (2 M\$/5 yr)
- Princeton, Maryland (USA) for potential crystal EM addition

Dual Readout calorimeter R&D

Scalable mechanics

Dual Readout calorimeter R&D UNFN

Collaboration:

INFN (Italy), RBI (Croatia), SPrinceton, Maryland (USA) f

Activities:

- Scalable mechanics
- Scalable SiPM readout

FERS: A5202

Spanish network, October 2020

60 mm

Dual Readout calorimeter R&D

EM 2021, HAD ~ 2024

Spanish network, October 2020

F. Bedeschi, INFN-Pisa

Dual Readout calorimeter R&D

Collaboration:

$$e^{+}e^{-} \rightarrow HZ \rightarrow \chi^{0} \chi^{0} j j \longrightarrow$$

$$e^{+}e^{-} \rightarrow WW \rightarrow \nu_{\mu} \mu j j \longrightarrow$$

$$e^{+}e^{-} \rightarrow HZ \rightarrow b b \nu \nu \longrightarrow$$

Scalable mechanics

Scalable SiPM readout

Performance demonstration with dedicated prototypes
 EM 2021, HAD ~ 2024

Simulation and reconstruaction SW

Synergy with LHCb upgrade

Partner companies ELTOS (Italy), TECHTRA (Poland)

- Synergy with LHCb upgrade
 - Partner companies ELTOS (Italy), TECHTRA (Poland)
- Activities:
 - \blacktriangleright Development and <u>industrialization</u> of μ Rwell chambers

Synergy with LHCb upgrade

Partner companies ELTOS (Italy), TECHTRA (Poland)

Activities:

- ► Development and <u>industrialization</u> of µRwell chambers
- Optimization in progress for IDEA
 - Resistivity and pitch

Synergy with LHCb upgrade

Partner companies ELTOS (Italy), TECHTRA (Poland)

Activities:

- \blacktriangleright Development and <u>industrialization</u> of μ Rwell chambers
- Optimization in progress for IDEA
 - Resistivity and pitch
- Simulation and reconstruction SW

Significant SW R&D and studies in progress

- Worldwide development of Key4HEP guided by CERN
 - DD4HEP, EDM4HEP, for the serious SW developer
- Lot of infrastructure for IDEA:
 - DELPHES card available
 - Full GEANT simulation in progress

FCCee physics groups restructured to tackle several "case studies"

- Physics Performance Coordinators recently appointed
 - P. Azzi (INFN), E. Perez (CERN)

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector

Much R&D work in progress supported by several funding sources

Summary of main features:

- High precision vertex detector
- High transparency and momentum resolution
 - Good integrated PID with cluster counting \rightarrow even better with timing layer
- \blacktriangleright Excellent calorimetry \rightarrow FANTASTIC with crystals
- Light solenoid and minimal yoke
- Tracking muon system
- Excellent performance at all energies: Z, WW, ZH, tt

Based on achievable technologies, but need R&D/SW simulation to finalize, optimize, reduce costs and engineer full detector

- Much R&D work in progress supported by several funding sources
- Collaboration on all these R&D's is growing internationally, but there is still ample space for additional contributions

I

Additional material

Special funding (1)

Programs active in 2021:

- > ARCADIA (CSN5)
- \blacktriangleright Cremlin + (EU)
- FEST (EU)

- Pixel DMAPS
 - Drift Chamber/cylindrical μ Rwell
 - CEPC: Software/Physics
 - FCC accelerator R&D

Special funding (1)

Programs active in 2021:

- ARCADIA (CSN5)
- \succ Cremlin + (EU)
- FEST (EU)
- ► <u>FCC-IS</u>

- Pixel DMAPS
 - Drift Chamber/cylindrical μ Rwell
 - CEPC: Software/Physics
 - FCC accelerator R&D

Programs seeking approval in 2021: HiDRa (CSN5) - Dual Readout calorimetry ITN SPIRAL-NET - e+e- collider performance studies

Special funding (2)

- Programs seeking approval in 2021
 - AIDAinnova (EU)
 - WP 5 Pixel MAPS tasks: 5.2.1/ 5.2.2
 - ARCADIA/Belle2
 - WP 7 Gas Detectors tasks: 7.3.2/ 7.4.1
 - #Rwell chambers/drift chamber readout
 - WP 8 Calorimetria tasks: 8.4.2
 - Dual readout calorimeter
 - WP 10 Cooling per VTX tasks: 10.2
 - Cooling substrates/microcooling
 - WP 11 Microelettronica tasks: 11.3
 - ASICS per µRwell
 - WP 12 Software tasks: 12.2.1 /12.4.2/ 12.5.2
 - Key4HEP/MPGD simulation/Particle flow for Dual readout cal.

FCC-IS Design Study – just approved by EU-H2O2CNEW!

- FCC-IS (Innovation Study) is a **design study** project: **3M€ for 4 years**
- Kick-off: 9-10 November 2020

Goal of the FCC-IS study: Carry out the technical design study for a <u>100 km long luminosity frontier</u> <u>circular collider</u> infrastructure at CERN that will extend Europe's leadership in the domain of fundamental physics research until the end of the 21st century.

The study <u>focuses on the high priority topics to prepare the ground for a construction project by</u> <u>2026.</u>

First priority: optimisation of the particle collider design.

t in the subotartic points of the second for the second for the second s

- MDI is included in the proposal as well as instabilities and impedance studies
- There is usually strong competition for Design Studies. Proposals come from every field of science, including social sciences and humanities. At the last call (November 2019) the success rate was only 18% (10 project approved out of 60 submitted, only 1 for physics selected: FCC-IS).
- Examples: at the moment, for accelerators 2 DS have just completed (EuPraxia for a compact plasma-based FEL and EuroCirCol for FCC), ESSnuSB for a neutrino superbeam at ESS is ongoing, FCC-IS, for FCC-ee, has been just approved.

M. Boscolo, CL preventivi, 7/7/20

Crystal option

 $1 \times 1 \times 5 \text{ cm}^3$

PbWO

◆ ~20 cm PbWO₄
◆ $3\%/\sqrt{E}$ ◆ DR w. filters
◆ Timing layer
> Lyso 20-30 ps

• ECAL layer:

- PbWO crystals
- front segment 5 cm ($\sim 5.4X_0$)
- rear segment for core shower
- $(15 \text{ cm} \sim 16.3 \text{X}_0)$
- 10x10x200 mm³ of crystal
- 5x5 mm² SiPMs (10-15 um)

 $\frac{1 \times 1 \times 15 \text{ cm}^3}{\text{PbWO}}$