"New ideas" session summary

F. Bedeschi <u>11th FCC-ee workshop</u> <u>CERN</u>, January 11, 2019

Detector requirements
Evolution of proposed detectors
PID ideas
Conclusions

Detector Requirements

Detector requirements (Z, WW)

Extreme statistics (Z: 150 ab⁻¹, WW: 10 ab⁻¹)

- Results ultimately dominated by systematics
- Before the detector comes the beam!
 - Continuous resonant depolarization at Z and WW important to get $\Delta E \sim 100 \text{ keV}$
 - Monitor beam width with $\mu^+\mu^-$ Distribution of longitudinal boost Need $\sigma(\theta) < 0.1$ mrad (easy!)
 - Can recalibrate every few minutes

oberto Tenchini

Detector requirements (Z, WW)

Then luminometer for all x-sections!

- Tight requirements on acceptance push mechanical accuracy to the micron level
- ✤ Many measurements (eg. $R_i = \Gamma_i / \Gamma_{had}$) require control of acceptance ~ 5 times better than LEP
- Tau polarization
 - $\succ \text{Cleanest channel is } \tau^+ \rightarrow \rho^+ \nu_{\tau} \rightarrow \pi^+ \pi^0 \nu_{\tau}$
 - \succ Good π^0 ID and direction
- Good b/c-tagging better than LHC
 Possibly with little p dependence

Detector requirements (Z, WW)

Istituto Nazionale di Fisica Nucleare

Additional comments:

- $\rightarrow \Delta p_t/p_t^2 \sim 10^{-4} \text{ (GeV}^{-1} \text{) sufficient}$
- Keep tracker as light as possible
- Keep efficiency down to low momentum
- Hadron calorimeter should allow particle flow

Istituto Nazionale di Fisica Nucleare

✤ H from Z recoil

Krisztian Peters

- Beam energy spread is important
- → ILD with $Z \rightarrow \mu \mu$:
 - $\Delta p_t / p_t^2 \sim 2x 10^{-5} (GeV^{-1})$ But MS?
- ightarrow CMS ~ 10 x ILD

• Can afford to do a little worse than ILD

• Separation of WW/ZZ \rightarrow 4 jet final states

▶ Need ~ $30\%/\sqrt{E}$ for jets

FCC-ee workshop, CERN, Jan. 2019

At sqrt(s) = 365 GeV

VBF requires separation from ZH
 Missing Energy
 Calorimeter resolution
 Hermeticity

In general:

All detector performance aspects important

In particular tracking and b-tagging!

• Eg. Cross contamination $H \rightarrow bb, H \rightarrow cc, H \rightarrow gg$

Comparison CLD vs. CMS show ~ 20% improvements with CLD over many Higgs observables

Detector requirements (HF)

Vertexing:

Direction of secondary requires extreme resolution
 With ILD can resolve
 ■ B⁰ → K^{*0} τ⁺τ⁻

Momentum resolution

► cLFV

Stephane Monteil

- p resolution at the level of the beam energy spread
 - $\Delta p_t/p_t^2 \sim 2x10^{-5} (GeV^{-1})$

Detector requirements (HF)

Hadronic PID

 ➢ Example Bs→Ds K for CP violation studies
 ➢ Plot is after LHCb PID
 ➢ Many other applications

Calorimetry

High granularity
PID in jets
As good as possible!

Requirement summary

We want a detector as good as it can get!

In particular:

- Demands on tracker similar to ILC/CLIC with accent on low momentum and transparency
- Calorimeter resolution, hermeticity and PID in jets
- Acceptance control critical to limit systematics in Z, WW
- PID up to 10's of GeV would be very useful

However:

- Often unclear how soft requirements are
- Need to become much more quantitative
 - CMS is surprisingly good on many Higgs channels wrt ILD

Improving performance has a price and sometimes risks
FCC-ee workshop, CERN, Jan. 2019
12
F. Bedeschi, INFN-Pisa

Evolution of proposed detectors

FCC-ee workshop, CERN, Jan. 2019

13

Pixel detectors

Core of all vertex detectors

◆ 25 µm pixels do the job > Careful about material > Cooling is also material

aniela Bortoletto

Pixel detetors

Enormous activity ongoing

MAPS most likely candidate for FCC-ee

Owing to the industrial development of CMOS imaging sensors and the intensive R&D work (IPHC, RAL, CERN)

... several HI experiments have selected CMOS pixel sensors for their inner trackers

STAR HFT 0.16 m² - 356 M pixels

CBM MVD 0.08 m² - 146 M pixel

ALICE ITS Upgrade (and MFT) 10 m² – 12 G pixel

sPHENIX 0.2 m² - 251 M pixel

FCC-ee workshop, CERN, Jan. 2019

Pixel detectors

ARCADIA: System-grade Demonstrator

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

INFN CSNV Call Project: budget 1MEur

- Active sensor thickness in the range 50 μ m to 500 μ m or more
- Operation in full depletion with fast charge collection by drift
- Small charge collecting electrode for optimal signal to noise ratio
- Scalable readout architecture with ultralow power capability (O(10mW/cm²)
- Easy compatibility with standard CMOS processes.
- Deliverable: full-size system-ready demonstrator of a low-power High-density pixel matrix CMOS monolithic sensor

Pixel detector

R&D

A realistic dream!

x/Xo~ o.3% per layer

Present limit

x/Xo< 0.1% per layer

New lepton collider requirements

beam pipe

sensor

 Eliminate liquid cooling possible for power <20mW/cm2

Eliminate electrical substrate

possible if the sensor covers the full stave length: Stitching

Minimize mechanical support

exploit flexible nature of the silicon (<50µm): Bending

17

Lessons from ILC/SiD

Things change with time – be flexible: Silicon strips \rightarrow all pixels Evolution of pixel technology digital RPC had calorimeter \rightarrow scintillator/SiPM Evolution of SiPM technology Warnings for FCC-ee operation Lack of power pulsing could have large effect on material

Drift chamber most widely used in e+e-

TPC not optimal for FCC-ee

 \blacktriangleright Large complexity \rightarrow many criticalities

	past		rec	cent pa	ast		future			
SPEAR	MARK2	Drift Chamber	LEP	ALEPH	TPC	ILC - CLIC	ШD	TPC		
	MARK3	Drift Chamber								
DORIS	PLUTO	MWPC		DELPHI	TPC		SiD	Si		
	ARGUS	Drift Chamber		13						
CERS	CLEO1,2	Drift Chamber			GIVIEG		CLIC	Si		
	CELLO	MWPC + Drift Chamber		OPAL	Drift Chamber					
	JADE	Drift Chamber		MARKO	Diff Obershee		CLD		Si	
PETRA	PLUTO	MWPC	SLC	MARK2	Drift Chamber	FCC-ee			Si Drift Chamber	
	MARK-J	TEC + Drift Chambers	OLO	SLD	Drift Chamber		IDEA	Drift Chamber		
	TASSO	MWPC + Drift Chamber								
	MARK2	Drift Chamber	DAPHNE	KLOE	Drift Chamber		Baseline	TPC Si		
	PEP-4	TPC	VEPP2000	CMD-2	Drift Chamber	CEPC				
PEP	MAC	Drift Chamber					IDEA	Drift Chamber		
	HRS	Drift Chamber	PEP2	BaBar	Drift Chamber		Belle2 Drift C			
	DELCO	MWPC + Drift Chamber	VEVD	Pollo	Drift Chamber	KEKB			hamber	
	AMY	Drift Chamber	NEND	Delle	Drift Champer					
TRISTAN	VENUS	Drift Chamber	CESR	CLEO3	Drift Chamber	SCTF	BINP	Drift C	Drift Chamber	
	TOPAZ	TPC				STOP	Hofoi	Drift C	hambor	
BEPC	BES1,2	Drift Chamber	BEPC2	BES3	Drift Chamber	SICF	neiei	Drift Chamber		

FCC-ee workshop, CERN, Jan. 2019

C

<u>jrancaenol</u>

anco

F. Bedeschi, INFN-Pisa

$\stackrel{\bullet}{\bullet} \text{KLOE} \xrightarrow{} \text{MEG2} \xrightarrow{} \text{FCC-ee}$

perfectly "square" cells: $w_i = h_i$ at any z: $w_i(z=L/2) = h_i(z=L/2) = 1.035 w_i(z=0) = 1.035 h_i(z=0)$ no β angle dependence no Φ angle dependence in principle, one single t-to-d scalable for all layers

Configuration used for MEG2 chamber

Configuration requires more field w. per sense w. (5:1, as opposed to 3:1 in KLOE) allowing for thinner field wires, therefore less m.s. contribution and less mechanical tension on end plates.

Requires automatized feed-through-less wiring procedure, already used for the MEG2 chamber

FCC-ee workshop, CERN, Jan. 2019

20

Cluster counting promises excellent dE/dx resolution

4 m long wires require R&D for stability condition Carbon wires light and strong could be solution

FCC-ee workshop, CERN, Jan. 2019

Detailed studies on choice of absorber

Developed new ML base calibration method (w/ L.
 Pezzotti)

 Better adronic resolution less sensitive to material

	stochastic	constant
iron	20 %	2 %
brass	22 %	2 %
lead	22 %	1 %
tungsten	23 %	1 %
platinum	23 %	1 %
23	F. B	edeschi. INFN-P

coberto Ferrari

Iron forw calorimeter helps a lot the magnetic field

Lead absorber

 \rightarrow forward with Iron

FCC-ee workshop, CERN, Jan. 2019

SiPM issues:

Scintillator signal linearity under control with filters with 25 µm
 Reduce filtering with 5-10 µm
 Can reduce granularity by grouping

Particle flow?

Can split EM/HAD part
double the readout/more mechanical complexity
Special geometries
Staggered fibers
Waveform readout
Needs study with simulation

Dual Readout tiles

A tile based DR calorimeter could be simpler and solve some fiber related issues

However:

- \blacktriangleright Practical dimensions have to be possible for a 4π design
- Sampling fluctuations must not destroy the EM resolution
- More studies needed

Asar Onel

I

Particle ID

PID

Basic time of flight requires very good timing

> Plot is for N σ π -K separation with different resolutions @ 2m

TOP and TORCH expand separation with same resolution

TOP

Riunione CSN1, Roma, Gennaio 2012

Roberto Mussa

F. Bedeschi, INFN-Pisa

TOP

Riunione CSN1, Roma, Gennaio 2012

TOP

TOP optics

Quartz bars: 1250x450x20 mm³

Mirrors: 100x450x20 mm³

Prisms: 100x456x20 mm³ at bar face, expanding to 456x50 mm² at PMT

Material: Corning 7980

Cherenkov ring imaging with precision time measurement (better than 100ps)

Installation completed! 2016, May 11

Quartz Property	Requirement		
Flatness	<6.3µm		
Perpendicularity	<20 arcsec		
Parallelism	<4 arcsec		
Roughness	< 0.5nm (RMS)		
Bulk transmittance	> 98%/m		
Surface reflectance	>99.9%/reflection		

Riunione CSN1, Roma, Gennaio 2012

Fit photon pattern in time vs position plot

Good to few GeV with current 120 ps resolution

FCC-ee workshop, CERN, Jan. 2019

F. Bedeschi, INFN-Pisa

- DIRC-like detector, with a ~1 cm thick quartz radiator plate Cherenkov light produced in the plate propagates to the edge by TIR focused via a cylindrical lens onto fast photon detectors
- Reconstruction of the Cherenkov angle at emission allows the propagation time in the radiator plate to be corrected for dispersion i.e. it combines RICH + TOF aspects
- Requires precise angular information (~ 1 mrad) to achieve timing resolution ۲ of ~ 70 ps/photon \rightarrow **10-15 ps/track** by combining ~ 30 detected p.e./track

Roger Forty

TORCH

Working example

FCC-ee workshop, CERN, Jan. 2019

F. Bedeschi, INFN-Pisa

TORCH

Expected performance
 Potential for good K-π separation up to about 10 GeV

▶ With 70 ps/photon

LHCb simulation: efficiency vs. p

Conclusion

Detector requirements:

- We know more or less what to do ...
- Must become more quantitative to perform optimizations

Evolution of proposed detectors

- Optimistic that we can do them and possibly improve them
- Much R&D still needed though

New PID ideas

- TOP or TORCH boost effectiveness of timing measurement
- Could be an interesting addition
 - Simpler than a RICH More complex than pure timing
- Lots of discussion and interest!