Toward a second detector for CepC \mathcal{C}

Franco Bedeschi

IAS-HEP conference, Hong Kong, January 2017

OUTLINE

Basic requirements
Potential «new» concept
Conclusions

e+e- operation modes

• Wide range of running conditions FCC ~ CepC \neq ILC

HEP conference, HK, January 2017

F. Bedeschi, INFN-Pisa

e+e- operation modes

• Wide range of running conditions FCC ~ CepC \neq ILC

$e+e- \rightarrow HZ$ physics constraints (

INFN Istituto Nazionale di Fisica Nucleare

Vertex detector:

≻ c/τ besides b≻ Light and small pixels

e+e- \rightarrow HZ physics constraints

INFN Istituto Nazionale di Fisica Nucleare

$m_{\rm recoil}^2 = \left(\sqrt{s} - E_Z\right)^2 - \left|\vec{p}_Z\right|^2$

Vertex detector:

≻ c/τ besides b≻ Light and small pixels

Tracker:

- Fit M_{recoil} from $Z \rightarrow \mu\mu$
- \rightarrow H \rightarrow µµ mass resolution (*)
- Light and excellent resolution

e+e- \rightarrow HZ physics constraints

$$m_{\rm recoil}^2 = \left(\sqrt{s} - E_Z\right)^2 - \left|\vec{p}_Z\right|^2$$

Vertex detector:

≻ c/τ besides b≻ Light and small pixels

Tracker:

- Fit M_{recoil} from $Z \rightarrow \mu \mu$
- \rightarrow H \rightarrow µµ mass resolution (*)
- Light and excellent resolution

Calorimeters:

- $H \rightarrow \gamma \gamma \rightarrow ECAL resolution (*)$
- \rightarrow H \rightarrow qq, VV \rightarrow ECAL+HCAL resolution

e+e- \rightarrow HZ physics constraints

$$m_{\rm recoil}^2 = \left(\sqrt{s} - E_Z\right)^2 - \left|\vec{p}_Z\right|^2$$

Vertex detector:

≻ c/τ besides b≻ Light and small pixels

Tracker:

- Fit M_{recoil} from $Z \rightarrow \mu \mu$
- → $H \rightarrow \mu \mu$ mass resolution (*)
- Light and excellent resolution

Calorimeters:

- $\blacktriangleright H \rightarrow \gamma \gamma \rightarrow ECAL resolution (*)$
- \rightarrow H \rightarrow qq, VV \rightarrow ECAL+HCAL resolution

(*) LHC may observe these channels with similar of better precision before CepC

CSN1, Roma, Maggio 2016

CSN1, Roma, Maggio 2016

$e_{+e_{-}} \rightarrow Z/WW$ physics constraints

Additional EW physics drivers:

Figh precision acceptance determination Good $e/\gamma/\pi^0$ discrimination

Accelerator constraints

Final focus
QD0 forw. Acceptance
Coverage up to ~10°
Beam pipe R ~ 2 cm
B_{max} < 2 T (FF optics)
From FCC-ee MDI

Accelerator constraints

Istituto Nazionale di Fisica Nucleare

Final focus

QD0 forw. Acceptance
 Coverage up to ~10°
 Beam pipe R ~ 2 cm
 B_{max} < 2 T (FF optics)
 From FCC-ee MDI

Backgrounds:

Radiative Bhabha, SR

- R = 1.6 cm
 - NIEL: <10¹²neq/cm²/yr
 TID: <300 krad/yr

CSN1, Roma, Maggio 2016

Can use ILC detectors as starting point

- ILD (baseline): Pixels, TPC, particle flow calorimeter
- SiD: Pixels, Si microstrips, particle flow calorimeter
 - ► 4° concept: Pixels, DCH, DR calorimeter, Dual Solenoid

Any of these works well for HZ (....at ILC)
Additional requirements may be needed for Z operation
Eg. Preshower, particle ID, ...
Some requirements may be looser after HL-LHC
E.g. H→γγ, H→μμ

ILD: current CepC baseline

Large solenoid with calorimeter/tracker inside

ILD: current CepC baseline

Large solenoid with calorimeter/tracker inside

ILD: current CepC baseline

Large solenoid with calorimeter/tracker inside

A second detector concept

Usual elements:

- Vertex detector
- Tracker
- (Preshower)
- Calorimeter
- Solenoid
- Muon system

Build on ALICE ITS technology

> 30x30 µm MAPS
 > %X0

 ■ 0.3-1.0% (in-out)

 > Power:

 ■ 41-27 mW/cm2 (in-out)

 > Radiation hard

 > 100 kHz readout

Optimize # layers

11

Impressive recent test beam results

HEP conference, HK, January 2017

F. Bedeschi, INFN-Pisa

Impressive recent test beam results

Impressive recent test beam results

Tracker Listituto Nazionale di Fisica Nucleare

Minimal performance established (MEG-II prototype)

Tracker Minimal performance established (MEG-II prototype) Technical solutions engineered (MEG-II)

2T solenoid

Two options:

- \blacktriangleright Large bore (R=3.7 m) calorimeter inside
 - Smaller bore (R=2.2 m) calorimeter outside
 - Preferred: simpler/ Extreme EM resolution not needed
 - Thick calorimeter

Thin (30 cm): total = 0.74 X₀ (0.16 λ) at θ = 90°

Property	Value
Magnetic field in center [T]	2
Free bore diameter [m]	4
Stored energy [MJ]	170
Cold mass [t]	8
Cold mass inner radius [m]	2.2
Cold mass thickness [m]	0.03
Cold mass length [m]	6

Calorimeter Particle flow calorimeters are extremely expensive! Similar (or better) performances with dual readout EM and HAD in same calorimeter High transverse granularity

Copper dual readout calorimeter

Cu

Copper dual readout calorimeter Demonstrated EM resolution

HEP conference, HK, January 2017

F. Bedeschi, INFN-Pisa

Potential resolution in jets

~ 30-40%/√E
 (see 4° concept LOI)
 Natural μ/π/e separation
 Can improve with timing and lateral shape cuts
 ε_{el} > 99%, <0.2% π mis-ID

Potential resolution in jets $\sim 30-40\%/\sqrt{E}$ (see 4° concept LOI) * Natural $\mu/\pi/e$ separation Can improve with timing and lateral shape cuts $\epsilon_{\rm el} > 99\%$, <0.2% π mis-ID • Preshower (~ $2 X_0$) Acceptance determination $e/\gamma/\pi^0$ separation

Momentum measurement

Momentum measurement

➢ Vertex+DCH: ~ 0.5% @ 100 GeV

Better muon ID (?):

- More filter behind calorimeter (?)
 - Iron yoke or partial yoke

Muons

Momentum measurement

➢ Vertex+DCH: ~ 0.5% @ 100 GeV

Better muon ID (?):

- More filter behind calorimeter (?)
 - Iron yoke or partial yoke

Followed by additional chambers

µ-RWELL low-cost technology already proven for low rate applications (CMS/SHiP)

Muons

Momentum measurement

➢ Vertex+DCH: ~ 0.5% @ 100 GeV

Better muon ID (?):

- More filter behind calorimeter (?)
 Iron yoke or partial yoke
- ► Followed by additional chambers
 - µ-RWELL low-cost technology already proven for low rate applications (CMS/SHiP)
- Potential outer solenoid
 - Flux return \rightarrow reduced yoke
 - Muon tracking

Beam pipe (R~2 cm)

HEP conference, HK, January 2017

F. Bedeschi, INFN-Pisa

INFN Summarizing Istituto Nazionale di Fisica Nucleare Beam pipe (R~2 cm) **VTX:** 4-7 MAPS layers

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm
2 T, R~2 m SC Coil

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm
2 T, R~2 m SC Coil
Preshower (1-2 X₀)

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm
2 T, R~2 m SC Coil
Preshower (1-2 X₀)
DR calorimeter (2 m/8 λ_{int})

Beam pipe (R~2 cm)
VTX: 4-7 MAPS layers
DCH: 4 m long, R 40-200 cm
2 T, R~2 m SC Coil
Preshower (1-2 X₀)
DR calorimeter (2 m/8 λ_{int})
(yoke) muon chambers

Beam pipe (R~2 cm) **VTX: 4-7 MAPS layers *** DCH: 4 m long, R 40-200 cm **◆**2 T, R~2 m SC Coil • Preshower $(1-2 X_0)$ • DR calorimeter (2 m/8 λ_{int}) (yoke) muon chambers (Dual solenoid ?)

Conclusions

Proposed detector is:

- ▶ Feasible with existing technology
 More R&D can only improve
 ▶ Performant in full range of energy and luminosity
 Fast detector, can resolve beam crossing
 ▶ Very low mass ~3-4% X₀ before solenoid
 ▶ Low cost relative to ILD-like solutions
 ♦ Several optimizations needed → future simulation work
 - Pixel layers, preshower, calorimeter and muon system configuration
 <u>Need for more</u> PID beyond DCH and Calorimeter?
- Major overlap with current FCC-ee baseline detector

Parameter for CEPC Partial Double Ring (wangdou20161109-61km)

	Pre-CDR	H-high lumi.	H-low power	W	Z	Z-5cell
Energy (GeV)	120	120	120	80	45.5	45.5
Circumference (km)	54	61	61	61	61	61
SR loss/turn (GeV)	3.1	2.96	2.96	0.58	0.061	0.061
N_e /bunch (10 ¹¹)	3.79	2.0	1.98	0.85	0.6	0.6
Bunch number	50	107	70	400	1100	700
SR power /beam (MW)	51.7	50	32.5	15.7	3.2	2.0
$\beta_{IP} x/y (m)$	0.8/0.0012	0.272/0.0013	0.275 /0.0013	0.16/0.001	0.12/0.001	0.12/0.001
Emittance x/y (nm)	6.12/0.018	2.05/0.0062	2.05 /0.0062	0.93/0.003	0.87/0.004 6	0.87/0.0046
ξ_x/IP	0.118	0.041	0.042	0.0145	0.0098	0.0098
ξ_y/IP	0.083	0.11	0.11	0.084	0.073	0.073
$V_{RF}(\text{GV})$	6.87	3.48	3.51	0.7	0.12	0.12
f_{RF} (MHz)	650	650	650	650	650	650
Nature σ_z (mm)	2.14	2.7	2.7	3.23	3.9	3.9
Total σ_{z} (mm)	2.65	2.95	2.9	3.35	4.0	4.0
HOM power/cavity (kw)	3.6	0.74	0.48	0.47	0.59	0.93
Energy acceptance (%)	2	2	2			
Energy acceptance by RF (%)	6	2.3	2.4	1.3	1.1	1.1
Life time due to	47	37	37			
beamstrahlung_cal (minute)						
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	3.1	2.01	3.5	3.44	2.2

R. Manqui: FCC physics workshop, Jan. 14, 2017

23

Riunione CSN1, Roma, Gennaio 2012

INFN

Istituto Nazionale di Fisica Nucleare

Parameters for CEPC Fully Partial Double Ring (wangdou20161219-100km_1mmβy)

	Pre- CDR	H-high Iumi.	H-low power	W	2	Z
Energy (GeV)	120	120	120	80	45.5	45.5
Circumference (km)	54	100	100	100	100	100
SR loss/turn (GeV)	3.1	1.67	1.67	0.33	0.034	0.034
N _e /bunch (10 ¹¹)	3.79	1.12	1.12	1.05	0.46	0.46
Bunch number	50	555	333	1000	16666	65716
SR power /beam (MW)	51.7	50	30	16.7	12.7	50
$\beta_{IP} x/y (m)$	0.8/0.0012	0.3/0.001	0.3/0.001	0.1 /0.001	0.12/0.001	0.12/0.001
Emittance x/y (nm)	6.12/0.018	1.01/0.0031	1.01/0.0031	2.68/0.008	0.93/0.0049	0.93/0.0049
<i>ξ</i> _x / <i>ξ</i> _y /IP	0.118/0.083	0.029	0.029	0.0082/0.055	0.0075/0.054	0.0075/0.054
RF Phase (degree)	153.0	0.083	0.083	149	160.8	160.8
$V_{RF}(GV)$	6.87	2.0	2.0	0.63	0.11	0.11
f_{RF} (MHz) (harmonic)	650	650	650	650 (217800)	650 (217800)	
Nature σ_z (mm)	2.14	2.72	2.72	3.8	3.93	3.93
Total σ_z (mm)	2.65	2.9	2.9	3.9	4.0	4.0
HOM power/cavity (kw)	3.6 (5cell)	0.75(2cell)	0.45(2cell)	1.0 (2cell)	1.6(1cell)	6.25(1cell)
Energy acceptance (%)	2	1.5	1.5			
Energy acceptance by RF (%)	6	1.8	1.8	1.5	1.1	1.1
Life time due to beamstrahlung_cal (minute)	47	52	52			
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	5.42	3.25	4.08	18.0	70.97

J. Gao: IAS Conference, HK, Jan. 23, 201

24

Riunione CSN1, Roma, Gennaio 2012

F. Bedeschi, INFN-Pisa

INF

Istituto Nazionale di Fisica Nucleare