

"You can see a lot by looking." - Y. Berra

Rocky Kolb La Thuile 2006

How We "Know" There Is Dark Energy

- Assume model cosmology:
 - Friedmann equation ($G_{00} = 8\pi G T_{00}$): $H^2 + k/a^2 = 8\pi G \rho / 3$
 - Energy (and pressure) content: $\rho = \rho_M + \rho_R + \rho_\Lambda + \dots$
 - Input or integrate over cosmological parameters: H_0 , etc.
- Calculate observables $d_L(z)$, $d_A(z)$, ...
- Compare to observations
- Model cosmology fits with ρ_{Λ} , but not without ρ_{Λ}
- All evidence for dark energy is <u>indirect</u>: observed H(z) is <u>not</u> described by H(z) calculated from the Einstein-de Sitter model (Friedmann-Lemaître-Robertson-Walker model with k = 0; $\rho = \rho_M$)

Evolution of H(z) Is a Key Quantity

Robertson–Walker metric

- Many observables based on the comoving distance r(z)
- Physical distance
- Luminosity distance Flux = Luminosity / $4\pi d_L^2$
- Angular diameter distance Angular diameter = Physical size / d_A
- Number counts in a volume *dV*(*z*)
- Age of the universe

$$ds^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

$$\int_{0}^{r(z)} \frac{dr'}{\sqrt{1-kr'^2}} = \int_{0}^{t} \frac{dt'}{a(t')} = \int_{0}^{z} \frac{dz'}{H(z')}$$
$$D(z) \propto r(z)$$

$$d_L(z) \propto r(z)(1+z)$$

$$d_A(z) \propto r(z)/(1+z)$$

$$dV(z) \propto \left[\frac{r^{2}(z)}{H(z)} \right] dz d\Omega$$
$$t(z) \propto \int_{0}^{z} \frac{dz'}{(1+z')H(z')}$$

Growth of structure in FLRW:

$$\ddot{\delta}_i + 2H\delta_i = 4\pi G\rho_0 \sum_j \frac{\rho_j}{\rho_0} \delta_j + ? \checkmark$$

- *H* = *H*(dark energy)
- Modified gravity: additional term on r.h.s.

 Ω_M

 Ω_{R}

 Ω_{DF} (?-1 $\leq w \leq -1/3$)

- Model expansion rate of the Universe with ($\Sigma \Omega_i = 1$)
 - Matter: $\rho_M \propto a^{-3}$
 - Radiation: $\rho_R \propto a^{-4}$
 - Dark Energy: $ho_{DE} \propto a^{-3[1+w(z)]}$
 - Curvature: $\rho_k \propto a^{-2}$ $\Omega_k = 1 \Omega_{DE} \Omega_M \Omega_R$
- In typical model cosmology there are something like 8 cosmological parameters.

Dark energy: $w(z) = w_0 + w_a(1-a) = w_0 + w_a z / (1+z)$ and Ω_{DE}

- All parameterizations of w(z) are quirky
- Cosmological constant: $w_0 = -1$ and $w_a = 0$
- Theory predictions dense in w_0 and w_a
- No magic goal (say w_0 to 1% or w_a to 3%).

The goal of dark-energy science is to determine the very nature of the dark energy that causes the Universe to accelerate and seems to comprise most of the mass-energy of the Universe.

1. Exclude Λ CDM ($w_0 = -1$ and $w_a = 0$), *i.e.*, a null hypothesis test

- 2. If it is not due to a constant, probe the underlying dynamics by measuring as well as possible the time evolution of dark energy, for example by measuring w(a).
- **3**. Search for a possible failure of GR through comparison of cosmic expansion with growth of structure.
- **4**. Precise determination of Ω_{Λ} is not that crucial.*

^{*} Present theoretical predictions for Ω_{Λ} are off by 120 orders-of-magnitude, so don't require much precision.

Observational program

Inverse-square law: Flux = Luminosity / $4\pi d_L^2 = d_L(z) \propto r(z)(1+z)$

$$r(z) \text{ determined from } \int_{0}^{r(z)} \frac{dr'}{\sqrt{1-kr'^2}} = \int_{0}^{z} \frac{dz'}{H(z')}$$
$$H^2(z) = H_0^2(z) \left[\Omega_M (1+z)^3 + \Omega_k (1+z)^2 + \Omega_{DE} (1+z)^{3\left[1+w(z)\right]} \right]$$
$$\Omega_M + \Omega_k + \Omega_{DE} = 1$$

- Have to measure redshift and intensity as fn. of time (light curve)
- Systematics (dust, evolution, intrinsic luminosity dispersion, etc.)
- Present procedure:
 - Discover SNe by wide-area survey (the "easy" part)
 - Follow up with spectroscopy (the "hard" part) (requires a lot of time on 8m-class telescopes)
 - Photometric redshifts?
- A lot of information per supervova
- Well developed and practiced

Photometric redshifts

Traditional redshift from spectroscopy

Photometric redshift from multicolor photometry

Riess et al. Astrophys.J.607:665-687,2004

Always read the fine print:

- Astrophysical systematic errors
- What are the model assumptions?
 - -w = constant? w', w_a
 - assume a value for Ω_{Λ} ?
- What are the priors?

$$-\Omega_M, \Omega_B, H_0, \ldots, \Omega_{\text{TOTAL}} = 1?$$

observe deflection angle

$$\delta\theta = \frac{4GM}{b} \frac{D_{LS}}{D_{OS}}$$

dark energy affects geometric distance factors

dark energy affects growth rate of M

The signal from any single galaxy is *very* small, but there are a *lot* of galaxies! Require photo-z's?

Systematic errors:

- Dominant source is PSF of atmosphere and telescope - use stars to correct
- Errors in photometric redshifts
 - biases in the estimated z
 - catastrophic errors in z
- Lensing from space
 - Better resolution, helps PSF
 - NIR improved photo-z's
 - deeper?
 - stable platform
- What area/aperture of space survey beats ground large-area large-aperture

The Landscape:

- Current projects
 - 100's of sq. degs.
 - deep multicolor data - 1000's of sq. degs.
 - shallow 2-color data
- DES (2009)
 - 1000's of sq. degs. deep multicolor data
- LSST (201?)
 - full hemisphere,
 - very deep 6 colors
- JDEM (201?)

Baryon Acoustic Oscillations

Pre-recombination

- universe ionized
- photons provide enormous pressure and restoring force
- perturbations oscillate (acoustic waves)

Post-recombination

- universe neutral
- photons travel freely (decouple from baryons)
- perturbations grow (structure formation)

Time

Baryon Acoustic Oscillations

- Each overdense region is an overpressure that launches a spherical sound wave
- Wave travels outward at 0.57c
- Photons decouple, travel to us and observable as CMB acoustic peaks

- Sound speed plummets, wave stalls
- Total distance traveled (150 Mpc) imprinted on power spectrum

- Acoustic oscillation scale depends on $\Omega_M h^2$ and $\Omega_B h^2$ (set by CMB acoustic oscillations)
- It is a small effect ($\Omega_B h^2 \ll \Omega_M h^2$)
- Dark energy enters through d_A and H

- Virtues: pure geometry. Systematic effects should be small.
- Problems: Amplitude small, require large scales, huge volumes.
- Photometric redshifts?

Cluster redshift surveys measure

- cluster redshift distribution
- cluster mass distribution as function of z
- spatial clustering of clusters

Sensitivity to dark energy

- volume-redshift relation
- angular-diameter distance-redshift relation
- growth rate of structure
- power spectrum shape (transfer fn.)

Cluster selection must be well understood

- "by eye" in optical samples
- ICM properties (x-ray, SZE effect)
- weak lensing shear
- best probably x-ray or SZE with optical confirmation
- need photo-z's

Things to learn

- photo-z's
- proxy for cluster mass
- spatial clustering of clusters
- "self-calibration"
- numerical simulations of structure formation

Things to work on

- theory of structure formation/halo mass fn. and evolution
- cluster selection
- cluster mass proxy

	2006			2	010			2015
Lensing	ing CFHTLS SUBARU			DES, V	VISTA	DUNE	LSST	SKA
D	LS SDSS A	TLAS K	IDS	Hyper Pan-S	suprime TARRS		JDEM	
BAO	F	MOS	LAMOST	DES, VIS	TA,VIRUS	WFMOS	LSST	SKA
	SDSS A	TLAS		Hyper Pan-S	suprime TARRS		JDEM	
SNe (CFHT CSP	ESSEN	ICE	DES			LSST	
	SDSS CF	HTLS		Pan-STA	RRS			JDEM
Cluster	s AMI	ΑΡΕΧ	(SPT	DES				
	XCS SZA		A ACT					
СМВ	WMAP 2/3 WM		AP 6 yr					
2005			Plar	Planck		Planck 4yr		
				2010				2015

DES	\$18M	Not a
Darkcam	\$18M	My e
PanSTARRS	\$70M	
HETDEX	\$25M	
HyperSuprime	\$20M	
WFMOS	\$60M	
Total	\$211M	
and later		
LSST	\$500M	
SKA	\$700m	
JDEM	_\$600M_\$	\$1B
Total	\$1.8B-\$	2.2B
Grand total	\$2B-\$2	.4B

Not all on same cost basis My estimate of costs

- The expansion history of the universe, H(z), is not described by Einstein-de Sitter. Evidence:
- 1. Well established: Supernova la
- 2. Circumstantial: subtraction, age, structure formation, ...
- 3. Emergent techniques: baryon acoustic oscillations, clusters, weak lensing

Explanations:

- 1. Dark energy
 - "constant" vacuum energy "Λ"
 - time varying vacuum energy (low-mass scalar fields)
- 2. Modification of GR
 - growth rate of structure modified
- 3. Standard cosmological model (FLRW) not applicable
 - Should make predictions for cosmological observables: effective H(z)
- Phenomenology:
- **1.** $w(z): w_0, w_a$
- 2. Figure of merit: $w_0 \times w_a$
- 3. Order of magnitude improvement in figure of merit feasible

"You can see a lot by looking." - Y. Berra

Rocky Kolb La Thuile 2006