Results from the K2K experiment

T. Nakadaira KEK

K2K experiment

KEK to Kamioka long baseline Neutrino Oscillation Experiment

K2K Collaboration

- JAPAN: High Energy Accelerator Research Organization (KEK) / Institute for Cosmic Ray Research (ICRR), Univ. of Tokyo / Kobe University / Kyoto University / Niigata University / Okayama University / Tokyo University of Science / Tohoku University
- **KOREA:** Chonnam National University / Dongshin University / Korea University / Seoul National University
- **U.S.A.:** Boston University / University of California, Irvine / University of Hawaii, Manoa / Massachusetts Institute of Technology / State University of New York at Stony Brook / University of Washington at Seattle
- **POLAND:** Warsaw University / Solton Institute

Since 2002

JAPAN: Hiroshima University / Osaka University **CANADA:** TRIUMF / University of British Columbia

ITALY: Rome FRANCE: Saclay SPAIN: Barcelona / Valencia SWITZERLAND: Geneva RUSSIA: INR-Moscow U.S.A.: Duke University

Principle of K2K

Neutrino beam and the directional control

 ~1GeV neutrino beam by a dual horn system with 250kA.

Near Detector

- IKT: water Cerenkov detector [25t fiducial]
- SciFi: scintillating fiber and water target [6t fiducial]
- LG: Lead glass calorimeter (removed in 2002)
- → SciBar: fully-active scintillator detector [10t fiducial]

(installed in 2003)

MRD: muon range detector

Super-Kamiokande (Far detector on K2K)

39.3m

Delivered Protons On Target

Analysis Flow

Near Detector Measurements

Event Rate Measurement @1KT

Use total # of events in the fiducial volume (25t).

$$\Phi_{\rm kT} \cdot {\rm Far/Near Ratio}$$

$$N_{SK}^{\rm exp} = N_{KT}^{obs} \bullet \frac{\int \Phi_{SK}(E_{\rm n}) {\bf s}(E_{\rm n}) {\bf e}_{SK} dE_{\rm n}}{\int \Phi_{KT}(E_{\rm n}) {\bf s}(E_{\rm n}) {\bf e}_{KT} dE_{\rm n}} \bullet \frac{M_{SK}}{M_{KT}}$$
measured spectrum

M: Fiducial mass M_{SK} =22,500ton, M_{KT} =25ton **e**: efficiency ε_{SK-I(II)}=77.1(78.2)%, ε_{KT}=74.5%

 $N_{SK}^{expect} = 150.9^{+11.6}_{-10.0}$ (w/o oscillation)

Ev Reconstruction

Used Data for Spectrum Meas.

simultaneously fit

- **n** spectrum **F**_{Near}(**E**_n) (8 bins)
- n interaction model (nQE/QE)

Measured Spectrum

14

Super-K Observation and Oscillation Analysis

Super-K Event Selection

Super-K Event Summary

K2K-all	DATA	MC
(K2K-I, K2K-II)	(K2K-I, K2K-II)	(K2K-I, K2K-II)
FC 22.5kt	107	150.9
	(55, 52)	(79.1, 71.8)
1ring	67	94.0
	(33, 34)	(48.9, 45.1)
μ-like	57	85.4
for E _v rec	(30, 27)	(44.9, 40.5)
e-like	10	8.6
	(3, 7)	(4.0, 4.5)
Multi Ring	40	56.9
	(22, 18)	(30.2, 26.7)

Ref; K2K-I(47.9¹⁰¹⁸POT), K2K-II(41.2¹⁰¹⁸POT)

Reconstructed Ev for $1R\mu$ events

K2K-I + K2K-II ... 57 events

Maximum likelihood fit

- Total Number of events
- E_v^{rec} spectrum shape of FC-1ring- μ events
- Systematic error term
- $L(\Delta m^2, \sin 2\boldsymbol{q}, f^x)$

$$= L_{norm}(\Delta m^2, \sin 2\boldsymbol{q}, f^x) \cdot L_{shape}(\Delta m^2, \sin 2\boldsymbol{q}, f^x) \cdot L_{syst}(f^x)$$

f^x: Systematic error parameters

Normalization, Flux, and nQE/QE ratio are in fx

Near Detector measurements, Pion Monitor constraint, beam MC estimation, and Super-K systematic uncertainties.

Fit results of v oscillation parameters

Allowed region (Contour of $\Delta \ln L$)

Event Rate vs. Spectrum

Null Oscillation Probability

The null oscillation probabilities calculated based on $\Delta \ln L$.

	K2K-I	K2K-II	K2K-I+II
number of events	1.4%	3.7%	0.26%(3.0σ)
E_{v} spectrum distortion	12.0%	5.8%	0.74% (2.6σ)
Combined	0.58%	0.56%	0.005%
	(2.7σ)	(2.7σ)	(4.0 σ)

Disappearance of n_m and distortion of the energy spectrum as expected in neutrino oscillation.

K2K <u>confirmed</u> **neutrino oscillation** discovered in Super-K atmospheric neutrinos.

K2K & SK Atmospheric results

Other Physics in K2K (based on K2K-I data)

Summary and Prospects

- K2K confirmed neutrino oscillation at 4.0σ with $8.9x10^{19}POT$.
 - Both number of events and Ev spectrum distortion are consistent with neutrino oscillation
 - Allowed region for ν_μ dis-appearance is 1.9⁻¹0⁻³ £ Δm² £ 3.6⁻¹0⁻³ (90%C.L.) @ sin²2θ=1.0
 Consistent with SK atm. results.
 - This result will be published soon. hep-ex/0411038 (Accepted by PRL)
- K2K physics run resumed in Oct. 2004, but …
 - The horn was broken in Nov. 2004. It is hard to recover because we can not access the horn area due to high radiation.

 \rightarrow K2K physics run is finished.

 Next long-baseline v experiment in Japan (T2K) will starts in 2009.

100 intense v beam using 0.75MW 50GeV PS (JPARC).