

Impact on physics visible but acceptable

Main loss : B-physics programme strongly reduced (single μ threshold p_T > 14-20 GeV)

Ultimate statistical precision achievable after few days of operation. Then face systematics E.g. : tracker alignment : 100 μ m (1 month) \rightarrow 20 μ m (4 months) \rightarrow 5 μ m (1 year) ?

Steps to achieve the detector goal performance

- Stringent construction requirements and quality controls (piece by piece ...)
- Equipped with redundant calibration/alignment hardware systems
- Prototypes and part of final modules extensively tested with test beams (allows also validation of Geant4 simulation)
- In situ calibration at the collider (accounts for material, global detector, B-field, long-range mis-calibrations and mis-alignments) includes :
 - -- cosmic runs : end 2006-beg 2007 during machine cool-down
 - -- beam-gas events, beam-halo muons during single-beam period
 - -- calibration with physics samples (e.g. $Z \rightarrow II$, tt, etc.)

Test-beam π F-resolution

70.26 +

0.7296

ATLAS HAD end-cap calo

G4-OGSP

30

8

Example of this procedure : ATLAS electromagnetic calorimeter

Pb-liquid argon sampling calorimeter with Accordion shape, covering $|\eta| < 2.5$

 $H \rightarrow \gamma\gamma$: to observe signal peak on top of huge $\gamma\gamma$ background need mass resolution of ~ 1% \rightarrow response uniformity (i.e. total constant term of energy resolution) $\leq 0.7\%$ over $|\eta| < 2.5$

① Construction phase (e.g. mechanical tolerances):

measured with ultrasounds during construction

1% more lead in a cell → 0.7% response drop → to keep response uniform to 0.2-0.3%, thickness of Pb plates must be uniform to 0.5% (~ 10 μm)

F. Gianotti, La Thuile, 5/3/2005

2 Beam tests of 4 (out of 32) barrel modules and 3 (out of 16) end-cap modules:

From full simulation of ATLAS (including cavern, overburden, surface buildings) + measurements with scintillators in the cavern:

~ 0.5 Hz

Through-going muons~ 25 Hz(hits in ID + top and bottom muon chambers)

Pass by origin (|z| < 60 cm, R < 20 cm, hits in ID)

Useful for ECAL calibration ~ 0.5 Hz (|z| < 30 cm, E _{cell} > 100 MeV, $\sim 90^{\circ}$)

→ ~ 10⁶ events in ~ 3 months of data taking
 → enough for initial detector shake-down
 (catalog problems, gain operation experience, some alignment/calibration, detector synchronization, ...)

④ First collisions : calibration with $Z \rightarrow ee$ events \leftarrow

 $c_L \approx 0.5\%$ demonstrated at the test-beam over units $\Delta \eta \times \Delta \phi = 0.2 \times 0.4$ $c_{LR} \equiv long-range$ response non-uniformities from unit to unit (400 total) (module-to-module variations, different upstream material, etc.)

Use $Z \rightarrow$ ee events and Z-mass constraint to correct long-range non-uniformities.

From full simulation : ~ 250 e[±] / unit needed to achieve $c_{LR} \le 0.4\% \rightarrow c_{tot} = 0.5\% \oplus 0.4\% \le 0.7\%$ $^{\bullet}$ ~ 10⁵ Z \rightarrow ee events (few days of data taking at 10³³)

Nevertheless, let's consider the worst (unrealistic?) scenario : no corrections applied

• $c_L = 1.3 \%$ measured "on-line" non-uniformity of individual modules • $c_{LR} = 1.5 \%$ no calibration with $Z \rightarrow ee$ conservative : implies very poor knowledge of upstream material (to factor ~2) $H \rightarrow \gamma\gamma$ significance m_H ~ 115 Ge

 $H \rightarrow \gamma\gamma$ significance m_{H}^{\sim} 115 GeV degraded by ~ 25% \rightarrow need 50% more L for discovery

Towards the complete experiment : ATLAS combined test beam in 2004

Full "vertical slice" of ATLAS tested on CERN H8 beam line May-November 2004

F. Gianotti, La Thuile, 5/3/2005

F. Gianotti, La Thuile, 5/3/2005

B

		1		
Channels (<u>examples</u>)	Events to tape for 10 fb ⁻¹		~ 1 PB c	of data per year per
	(per experiment)		experin	hent \rightarrow challenging
$W \rightarrow \mu \nu$	7 × 10 ⁷		for sof	tware and computing
$Z \rightarrow \mu \mu$	1.1 × 10 ⁷		(esp. a)	The Deginning)
tt →W b W b → μ ν + X	0.08 × 10 ⁷			
QCD jets p _T >150	~ 10 ⁷		ssuming 1%	
Minimum bias	~ 10 ⁷		andwidth	
$\widetilde{\widetilde{g}}\widetilde{\widetilde{g}}$ m = 1 TeV	10 ³ - 10 ⁴			-

Already in first year, large statistics expected from:

- -- known SM processes \rightarrow <u>understand detector</u> and physics at \sqrt{s} = 14 TeV
- -- several New Physics scenarios

Note: overall event statistics limited by ~ 100 Hz rate-to-storage ~ 10⁷ events to tape every 3 days assuming 30% data taking efficiency

F. Gianotti, La Thuile, 5/3/2005

Example of initial measurement : top signal and top mass

- Use gold-plated tt \rightarrow bW bW \rightarrow blv bjj channel
- Very simple selection:
 - -- isolated lepton (e, μ) $\,p_{T}\,$ > 20 GeV
 - -- exactly 4 jets $p_T > 40 \text{ GeV}$
 - -- no kinematic fit
 - -- no b-tagging required (pessimistic, assumes trackers not yet understood)

 $\boldsymbol{\cdot}$ Plot invariant mass of 3 jets with highest p_{T}

Time	Events at 10 ³³	Stat. error δM _{top} (GeV)	Stat. error δσ/σ
1 year	3x10 ⁵	0.1	0.2%
1 month	7×104	0.2	0.4%
1 week	2×10 ³	0.4	2.5%

top signal visible in few days also with simple selection and no b-tagging
cross-section to ~ 20% (10% from luminosity)
top mass to ~7 GeV (assuming b-jet scale to 10%)
get feedback on detector performance : m_{top} wrong → jet scale ?

gold-plated sample to commission b-tagging

What about early discoveries?

An easy case : a new resonance decaying into e+e-, e.g. a Z ' \rightarrow ee of mass 1-2 TeV

An intermediate case : SUSY

A difficult case : a light Higgs (m ~ 115 GeV)

An "easy case" : Z' of mass 1-2 TeV with SM-like couplings

 $Z' \rightarrow ee, SSM$

Mass	Expected events for 10 fb ⁻¹	∫L dt needed for discovery
	(after all cuts)	(corresponds to 10 observed evts)
1 TeV	~ 1600	~ 70 pb ⁻¹
1.5 TeV	~ 300	~ 300 pb ⁻¹
2 TeV	~ 70	~ 1.5 fb ⁻¹

- signal rate with $\int L dt \sim 0.1-1 \text{ fb}^{-1}$ large enough up to m $\approx 2 \text{ TeV}$ if "reasonable" Z'ee couplings
- dominant Drell-Yan background small
 (< 15 events in the region 1400-1600 GeV, 10 fb⁻¹)
- signal as <u>mass peak</u> on top of background

 $Z \rightarrow II$ +jet samples and DY needed for E-calibration and determination of lepton efficiency

F. Gianotti, La Thuile, 5/3/2005

<u>An "intermediate case" : SUPERSYMMETRY</u>

Large $\tilde{q}\tilde{q}, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ cross-section $\rightarrow \approx 100$ events/day at 10^{33} for $m(\tilde{q}, \tilde{g}) \sim 1$ TeV Spectacular signatures \rightarrow SUSY could be found quickly

From M_{eff} peak \rightarrow first/fast measurement of SUSY mass scale to $\approx 20\%$ (10 fb⁻¹, mSUGRA)

Detector/performance requirements:

- -- quality of E_T^{miss} measurement (calorimeter inter-calibration, cracks)
 - \rightarrow use control samples (e.g. Z \rightarrow II +jets)

-- "low" Jet / E_T^{miss} trigger thresholds for low masses at overlap with Tevatron region (~400 GeV)

<u>A difficult case: a light Higgs (m_H ~ 115 GeV) ...</u>

Signal significance

Remarks:

Each channel contributes ~ 2σ to total significance \rightarrow observation of all channels important to extract convincing signal in first year(s)

The 3 channels are complementary \rightarrow robustness:

- different production and decay modes
- different backgrounds
- different detector/performance requirements:
 - -- ECAL crucial for $H \rightarrow \gamma\gamma$ (in particular response uniformity) : $\sigma/m \sim 1\%$ needed
 - -- b-tagging crucial for ttH: 4 b-tagged jets needed to reduce combinatorics
 - -- efficient jet reconstruction over $|\eta| < 5$ crucial for $qqH \rightarrow qq\tau\tau$:
 - forward jet tag and central jet veto needed against background
- Note : -- all require "low" trigger thresholds

E.g. ttH analysis cuts : p_T (I) > 20 GeV, p_T (jets) > 15-30 GeV

-- all require very good understanding (1-10%) of backgrounds

 H → WW → Iv Iv : high rate (~ 100 evts/expt) but no mass peak → not ideal for early discovery ...
 H → 4I : low-rate but very clean : narrow mass peak, small background Requires: -- ~ 90% e, µ efficiency at low p_T (analysis cuts : p_T^{1,2,3,4} > 20, 20, 7, 7, GeV) -- σ /m ~ 1%, tails < 10% → good quality of E, p measurements in ECAL and tracker

Conclusions

- LHC has potential for major discoveries already in the first year (months ?) of operation Event statistics: 1 day at LHC at $10^{33} = 10$ years at previous machines for SM processes SUSY may be discovered "quickly", light Higgs more difficult ... and what about surprises ?
- Machine luminosity performance will be <u>the</u> crucial issue in first year(s) (... but also complete and commissioned experiments)
- Experiments: lot of emphasis on test beams and on construction quality checks
 → results indicate that detectors "as built" should give good starting-point performance.
- However: lot of data (and time ...) will be needed at the beginning to:
 - -- commission the detector and trigger in situ (and the software ...)
 - -- reach the performance needed to optimize the physics potential
 - -- understand standard physics at \sqrt{s} = 14 TeV $\,$ and compare to MC predictions $\,$
 - [Tevatron (and HERA) data crucial to speed up this phase ...]
 - -- measure backgrounds to possible New Physics (with redundancy from several samples ...)
- Efficient/robust <u>commissioning with physics data</u> in the various phases (cosmics, one-beam period, first collisions, ...) is <u>our next challenge</u> Crucial to reach quickly the "discovery-mode" and extract a convincing "early" signal

Back-up slides

Backgrounds will be estimated using <u>data (control samples)</u> and Monte Carlo:

F. Gianotti, La Thuile, 5/3/2005

- -- HLT/DAQ deferrals limit available networking and computing for HLT \rightarrow limit LVL1 output rate
- -- <u>Large uncertainties</u> on LVL1 affordable rate vs money (component cost, software performance, etc.)

Selections (examples)	IVI1 rate (kHz)	IVI1 rate (kH	z) IVI1 rate (kHz)
	$L=1 \times 10^{33}$	$L= 2 \times 10^{33}$	$L= 2 \times 10^{33}$
Real thresholds set for	no deferrals	no deferrals	with deferrals
95% efficiency at these E_{T}			An example for illustration
MU6, <mark>8,20</mark>	23	→ 19	− ▶ 0.8
2MU6		0.2	0.2
EM20i, <mark>25,25</mark>	11	→ 12	→ <u>12</u>
2EM15i, <mark>15,15</mark>	2	4	4
J180, <mark>200,200</mark>	0.2	0.2	0.2
3J75, <mark>90,90</mark>	0.2	0.2	0.2
4J55, <mark>65,65</mark>	0.2	0.2	0.2
J50+xE50,60, <mark>60</mark>	0.4	0.4	0.4
TAU20, <mark>25,25</mark> +xE30	2	2	2
MU10+EM15i		0.1	0.1
Others (pre-scaled, etc.)	5	5	5
Total	~ 44	~ 43	~ 25
	T		
	LVL1 designed for 75 kl	-lz	Likely max affordable rate,
F. Gianotti, La Thuile, 5/3/2005	\rightarrow room for factor ~ 2 s	safety	no room for safety factor

B Which data samples ?

High-Level-Trigger output

Total trigger rate to storage at 2 x 10³³ reduced from ~ 540 Hz (HLT/DAQ TP, 2000) to ~ 200 Hz (now)

Selection (examples)	Rate to storage at 2x10 ³³ (Hz)	Physics motivations (examples)
e25i, 2e15i	~ 40 (55% W/b/c → eX)	Low-mass Higgs (ttH, $H \rightarrow 4\lambda$, $qq\tau\tau$)
μ20i, 2μ10	~ 40 (85% W/b/c → μX)	W, Z, top, New Physics ?
γ60i, 2γ20i	~ 40 (57% prompt γ)	$H \rightarrow \gamma\gamma$, New Physics
		(e.g. $X \rightarrow \gamma yy m_X \sim 500 \text{ GeV}$)?
j400, 3j165, 4j110	~ 25	Overlap with Tevatron for new
		X → jj in danger
j70 + ×E70	~ 20	SUSY : ~ 400 GeV squarks/gluinos
τ35 + xE45	~ 5	MSSM Higgs, New Physics
		(3 rd family !) ? More difficult high L
2μ6 (+ m _B)	~ 10	Rare decays $B \rightarrow \mu\mu X$
Others	~ 20	Only 10% of total !
(pre-scaled, exclusive,)		
Total	~ 200	No safety factor included.

Best use of spare capacity when $L < 2 \times 10^{33}$ being investigated

"Signal" (W, γ, etc.) : ~ 100 Hz

Expected rates of beam-gas events

Expected rates of beam-halo muons

- Rates for initial period scaled from high-luminosity rates by assuming 3×10^{10} p per bunch and 43 bunches $\rightarrow \sim 200$ times lower current
- Expected optics and vacuum for commissioning period not included yet (need input from machine people) → these results are very preliminary
- Total rates are for two months of single-beam with 30% data taking efficiency
- Simple definition of "useful tracks" : 2-3 segments in MDT, 3-4 disks in ID end-cap

				Verv
Detector	Rate	Total	Rate	Total
	(B-field off)	(B-field off)	(B-field on)	(B-field on)
MDT barrel	15 Hz	2.5 107	72 Hz	1.5 10 ⁸
MDT end-cap	145 Hz	2.5 10 ⁸	135 Hz	2.5 10 ⁸
Pixel/SCT	1.8/17 Hz	3 106 / 3 107	2/19 Hz	3 106 / 3 107
EM E>5GeV	2 Hz	3.5 106	1 Hz	1.7 106
Tile/HEC E > 20 GeV	1.7/1.2 Hz	2.9/2.1 106	1.6/0.9 Hz	2.8/1.6 106