Prospects in CP violation measurements at the Tevatron (collider experiments only)

XVII^{iémes} Rencontres de Physique de la Vallée d'Aoste February 29th – March 6th, 2004 - La Thuile

<u>Diego Tonelli</u>

tonel@fnal.gov Scuola Normale Superiore and INFN – Pisa for the CDFII and DØ Collaborations

The Tevatron pp collider

2/23

Superconducting proton-synchrotron: $36 \ p \times 36 \ p$ bunches collision every 396 ns at $\sqrt{s} = 1.96 \ TeV$ Luminosity.....: record peak is $6.7 \times 10^{31} \ cm^{-2} \ s^{-1}$ ~ 10 pb⁻¹/ week delivered

interactions / bunch-crossing.....: $< N >_{poisson} = 1.5$ (at 5 \diamond 10³¹ cm⁻²s⁻¹) Luminous region size.....: 30 cm (beam axis) \diamond 30 \bigcirc m (transverse)

Delivered Luminosity

~ 290 pb⁻¹ on tape per experiment

Data taking efficiency: 80 - 90% stable for both experiments

For the following results: CDF analyses use: ~65 to ~190 pb⁻¹ DØ analyses use: ~47 to ~114 pb⁻¹

La Thuile - March 4th, 2004

Heavy Flavor physics at the Tevatron

The Good

 $b\overline{b}$ production x-section O(10⁵) larger than e⁺e⁻ at \oplus (4S) /Z⁰. Incoherent strong production of all *b*-hadrons: B[±], B⁰, B_s, B_c, Λ_{b} , Ξ_{b} .

The Bad

Total inelastic x-section ~ $10^3 \times \sigma$ (*bb*). BRs' for interesting processes O(10⁻⁶).

...and The Ugly

Messy environments with large combinatorics. Need highly selective trigger

Triggering bs' (and cs')

Detectors

Both detectors Silicon microvertex tracker Axial solenoid Central tracking High rate trigger/DAQ Calorimeters and muons

La Thuile - March 4th, 2004

DØ

Excellent electron and muon ID Excellent tracking acceptance CDF L2 trigger on displaced vertexes Particle ID (TOF and dE/dx) Excellent mass resolution

Overall game plan

CPV at Tevatron: mainly *b*-sector. Unique opportunity to study B_s physics. CDF explores also charm.

La Thuile - March 4th, 2004

B ***** h⁺h⁻: towards \mathfrak{S} , \mathfrak{P}_{o} and direct A_{CP}

Resolve the signal composition. Admixture of (at least):

- $B^0_{\ d} \rightarrow \pi^+ \pi^-$ and Charge Conjugate
- $B^0_{\ d} \rightarrow K^+ \pi^-$ and C. C.
- $B^0_{\ s} \rightarrow K^+K^-$ and C. C.
- $B^0_{s} \rightarrow K^- \pi^+$ and C. C.

La Thuile - March 4th, 2004

 $p_T > 2 \text{ GeV/c: TOF doesn't help}$

Combine kinematics with dE/dx to achieve statistical separation

MeV/c² 200 MC B⊿→Kπ CDF Run 2 P B_e→Kπ per 30 B_s→KK 400 ents 300 M_m (GeV/c² 200 891 ± 47 signal events 100 Mean 5.240±0.002 GeV/c² Width $0.036 \pm 0.002 \text{ GeV/c}^2$ 0 4.8 5 5.2 5.6 $\pi\pi$ Mass (GeV/c²) Lumi ~ 180 pb⁻¹

Expect ~ 6500 evts / fb^{-1}

Diego Tonelli, CDF - Pisa

B **♣** h⁺h⁻: resolve peak composition

Specific ionization

dE/dx calibrated on 78K D* decays.

$\Box/K \Rightarrow 1.16^{\bullet}$ (improved soon !)

Kinematics

Exploit correlation between mass, charge and momentum imbalance

 $M_{\Box\Box}$ vs (1- $p_{min}/p_{max})Q_{min}$

Diego Tonelli, CDF - Pisa

La Thuile - March 4th, 2004

B **♣** h⁺h⁻ results (only 65/pb)

Measurement of the relative populations. Not sensitive (yet) to $B^0_s \rightarrow K^- \pi^+$. Dominant systematic from dE/dx calibrations

$\begin{aligned} f_{s} \cdot BR & (B_{s} \rightarrow KK) / f_{d} \cdot BR & (B_{d} \rightarrow K\Box) = 0.74 \pm 0.20 \text{ (stat)} \pm 0.22 \text{ (syst)} \\ \hline & First \ evidence \ of \ B_{s} \rightarrow K^{+}K^{-} \ decays. \end{aligned}$

Direct $A_{CP}(B_d \rightarrow K\Box) = 0.02 \pm 0.15$ (stat) ± 0.02 (syst) 15% statistical error, systematic comparable with B-factories

$BR(B_d \rightarrow \Box \Box) / BR(B_d \rightarrow K \Box) = 0.26 \pm 0.11 \text{ (stat)} \pm 0.06 \text{ (syst)}$

Consistent with B-factories results.

La Thuile - March 4th, 2004

B ♣ h⁺h⁻ what's next ?

Almost done: upgraded measurement on current ~200/pb: will be competitive on direct A_{CP} and sensitive to $B_s \rightarrow K \square$.

Medium term: BRs' alone could provide, with minimal dynamic assumptions, a measurement of \mathcal{Y}_{o} (*R. Fleischer hep-ph/0306270*)

Longer time-scale: tagging + time dependent analysis measure γ_{0} w/o penguin pollution as suggested in (Fleischer and Matias: PR D66 (2002) 054009)

$B_{s}^{0} - \overline{B}_{s}^{0}$ mixing

Explore one side of the CKM triangle

Unique opportunity at Tevatron

Key issues

- \checkmark B⁰_s flavor identification at decay
- \checkmark ${\rm B^0}_{\rm s}\,$ flavor identification at production
- \checkmark High Yield with good S/B.
- ✓ High resolution on proper decay time ...additional difficulty wrt B_d

La Thuile - March 4th, 2004

$\overline{B_{s}^{0}}$ - B_{s}^{0} mixing

Was B_s or \overline{B}_s at the time of decay ?

Triggering and reconstruction of flavor-specific final states:

high c \blacklozenge resolution, low yield $\rightarrow B_s \curvearrowright D_s \Box (\Box \Box) (D_s \varpropto \checkmark \Box \varpropto [KK] \Box)$

high yield & S/B, worse $c \diamond resol. \rightarrow B_s \varpropto D_s I = + X (D_s \varpropto \times D_s KK)$

$B^0{}_s$ mixing: significance depends on yield, tagging,dilution and $\sigma_{c\tau}$

SIG $\approx \sqrt{N\epsilon D^2} e^{-(x_s \sigma_{c\tau}/\tau)^2/2} \sqrt{\frac{S}{S+B}}$

Units of sigma

			$c\tau - L_{xy}$	$L_{xy}m(B)$	
ε D² [%]	CDF	DØ	$c_T = \frac{1}{\beta_T \gamma}$	$=$ $p_T(B)$	
Soft muon	$\textbf{0.66} \pm \textbf{0.09}$	1.6 ± 1.1			
Soft electron	in progress	In progress	vertexing and momentum resolution		
Jet charge	in progress	3.3 ± 1.7	$\sigma_{c\tau} = \left(\frac{\sigma_{J}}{2}\right)$	$\sigma_{c\tau} = \left(\frac{\sigma_{L_{xy}} \cdot m(B)}{\langle D \rangle}\right) \oplus \left(\frac{\sigma_{p_T}}{\langle D \rangle}\right) \cdot c\tau$	
Same side	$\textbf{1.9} \pm \textbf{0.9}$	$\textbf{5.5} \pm \textbf{2.0}$	$\left(p_T(B) \right) \left(p_T(B) \right)$		
Opp. side kaon	in progress	N/A			
Same side kaon	in progress	N/A		σ _{cτ} [fs]
			CDF	67 (50 exp. v	with LØØ)
N^{right} \wedge		Vright _ Nwrong			
$\epsilon = \frac{1}{N^{right} + N^{wrong} + N^{no-tag}} \qquad D = \frac{1}{N}$		$\frac{1}{N^{right} + N^{wrong}}$	DØ	110 - 1	50

La Thuile - March 4th, 2004

Towards B⁰_s mixing – hadronic side

B⁰_s ↔ D⁻_s □⁺ ↔ [X¹□⁻] □⁺ ↔ [[K⁺K⁻] □⁻] □⁺ and charge conjugate Fully reconstructed CDF "golden

channel", maximum proper time resolution: resolve fast oscillations.

Low statistics: add soon $B_s \curvearrowright D_s$ $\square \square \square$ and $D_s \varpropto K^*K / K_sK / \square \square \square$

Reconstructed the signal with Yield / lumi = 0.7 pb S/B ~ 2 measure BR($B_s \propto D_s \square$)

 $\frac{f_s \cdot BR(B_s^0 \to D_s^- \pi^+)}{f_d \cdot BR(B_d^0 \to D^- \pi^+)} = 0.35 \pm 0.05(stat) \pm 0.04(syst) \pm 0.09(BR)$

Towards B⁰_s mixing – semileptonic side

B⁰_s \curvearrowright D⁻_s I⁺■ + X \curvearrowright [X⁻□⁻] I⁺■ \varpropto [[K⁺K⁻] □⁻] I⁺■ and C.C. high yield and clean but neutrino: poor +_c

Yield / lumi ~ 7.6 pb \bigcirc & electrons

Prospects on $\overline{B_{s}^{0}}$ - B_{s}^{0} mixing

CDF today Hadronic modes only. Performance: 1600 events/ fb⁻¹ S/B ~ 2/1 $M_{\circ}D^{2} \sim 4\%$ $\sigma_{c\tau} = 67 \text{ fs}$ 2σ sensitivity $m_{s} = 15/\text{ps}$ with 0.5 fb⁻¹

CDF slightly improved Hadronic modes only. Performance: 2000 events/ fb⁻¹ S/B ~ 2/1 $M_{\bullet}D^{2} \sim 5\%$ (K tagging) $\sigma_{c\tau} = 50$ fs 5σ for $\Im m_{s} = 18/ps$ with 1.7 fb⁻¹ 5σ for $\Im m_{s} = 24/ps$ with 3.2 fb⁻¹

La Thuile - March 4th, 2004

DØ projections Semileptonic only. Performance: Yield: 30K + 4K events/ fb⁻¹ $M_{\star}D^{2}$: ~ 10% - ~ 50% $S/B \sim 1/3 \qquad \sigma_{c\tau} = 150$ fs 1.5σ for $\Im m_{s} = 15/ps$ with 0.5 fb⁻¹

CDF Run I: average time-integrated ^{18/23} mixing probability (PRD69, 2004: 012002)

Ratio R = LS/OS of like (LS) to opposite sign (OS) dileptons in ~100 pb⁻¹ of double semileptonic decays of $b\bar{b}$. 2-D fit of the impact parameter in samples of $\bigcirc \bigcirc$, e \bigcirc . If mixing occurs LS increases. R related to the average time-integrated mixing parameter \mathbb{N} :

$$\bar{\chi} = \frac{\Gamma(B^0_{d,s} \to \bar{B}^0_{d,s} \to l^+ X)}{\Gamma(b \to l^\pm X)} = f_d \cdot \chi_d + f_s \cdot \chi_s$$

 $\begin{array}{ll} \text{numerator:} & \text{only } B_d \text{ and } B_s \\ \text{denominator:} & \text{all } b\text{-hadrons} \end{array}$

A probe for either mixing or fragmentation fractions

CDF Run Ia + Run Ib new result: - M)= 0.152 ↔ 0.007(stat)↔ 0.011(syst)

World average (LEP): 0.118 \oplus 0.005

La Thuile - March 4th, 2004

Indication of discrepancy with world average, confirms early hints from hadronic colliders ?

UA1: 0.157 ⊕ 0.020 ⊕ 0.032

CDF a: 0.131 + 0.020 + 0.016

$B_s^0 \propto J/\bigtriangleup \times$: a probe for $sin(2\partial_s)$

$B_{s}^{0} \propto J/ \bigtriangleup \times \propto [O^{+}O^{-}] [K^{+}K^{-}]$ and Charge Conjugate

Measurement of V_{ts} weak phase

$$\boldsymbol{\beta}_{s} \equiv \text{arg}\!\left(\frac{\boldsymbol{V}_{ts}\boldsymbol{V}_{tb}^{*}}{\boldsymbol{V}_{cs}\boldsymbol{V}_{cb}^{*}}\right)$$

Expected very small. Anomalous CPV phases if asymmetry observed. Both experiments.

B \bigcirc V V: CP parity of final state depends on the relative angular momentum. Need angular analysis. $\textcircledleft e_s$ too!

La Thuile - March 4th, 2004

CPV in other B ***** PV and B ***** V V

Measure direct A_{CP} in $B^+ \propto \sqrt[]{}K^+ \propto [K^+K^-] K^+$ and C.C. searching for B # V V CDF Preliminary 120 ± 7 pb $22 = \mathbf{B}^{\pm} \rightarrow \phi \mathbf{K}^{\pm}$ B^0 , $\alpha \times \lambda$ and c.c. ($\P \bullet$, too!) Data events in 10 MeV/c 22.8 ± 6.7 events Fit sideband
 $B_0^{d} \propto X K^*$ and c.c. 16 $B_{d}^{0} \propto \times K_{s}^{0}$ and c.c. ō ...and for baryons Jumber (SM expects ~10% CPV) $\otimes_{\mathsf{P}} \operatorname{cd} \times \otimes$ and c.c. $\otimes_{\mathbf{p}}^{0} \otimes \mathbf{p} \mathbf{K}^{-} / \mathbf{p} \mathbf{\Box}^{-}$ and c.c. 5.3 5.1 5.2 5.4 Expect ~ 200 events/fb⁻¹ Mass (GeV/c $\frac{BR(B^{\pm} \to \phi K^{\pm})}{BR(B^{\pm} \to J/\psi K^{\pm})} = [6.8 \pm 2.1(stat) \pm 0.7(syst)] \cdot 10^{-3}$

20/23

Direct A_{CP} in Cabibbo suppressed D⁰

 $D^0 \propto K^+K^- / \square^+\square^-$ and C.C.

SM expects O(10⁻³) CPV in charm. Sensitive to non-SM CPV sources.

Excellent purity through D* - tag: $D^* \oslash D^0 \square_S (Q = 39 \text{ MeV})$ cut on M (D*) - M(D⁰)

- sign (\mathbf{D}_{S}) tags D⁰ flavor
- eliminate reflection BCKG

 $A_{CP} (D^{0} \curvearrowright KK) = 2.0 \oplus 1.2 \text{ (stat)} \oplus 0.6 \text{ (syst) \%}$ PDG world average = 0.5 ⊕ 1.6 % $A_{CP} (D^{0} \varpropto \Box \Box) = 1.0 \oplus 1.3 \text{ (stat)} \oplus 0.6 \text{ (syst) \%}$ PDG world average = 2.1 ⊕ 2.6 %

B \bigcirc D K (expected yields only) Extract \checkmark_{b} from Cabibbo suppressed B charmed decays: B \bigcirc D \land K \bigcirc [K \boxdot] K and B \bigcirc D \land K \bigcirc [K \dashv] K and C. C. B \bigcirc \bigcirc C \bigcirc [X \boxdot] X \boxdot [X \blacksquare] K \circlearrowright C \land [K \dashv] K \multimap C.

 $B_u \propto D \square$: ~ 24K per fb⁻¹ $B_d \propto D K$: ~ 2.2K per fb⁻¹ $B_s \propto D_s \square$: ~ 1.6K per fb⁻¹ $B_s \propto D_s K$: ~ 130 per fb⁻¹

Summary and final remarks

Substantial Tevatron improvement during last year, and performance is steadily ramping.

From masses / lifetimes transition ongoing to "second generation" measurements: CDF and DØ ready for CPV studies. Deep understanding of tracking and of most low-level tools

CDF: already world-class charm physics, soon exciting CPV results on B \circledast h⁺h'⁻. Less fast than expected but moving to attack B_s mixing in hadronic decays, SM favorite region accessible by the end of 2004 Many other channels in future B \circledast V V, B \circledast DK

DØ: very high semileptonic yields, lot of progress on flavor tagging. Preparing for B_s mixing in semileptonic decays.

La Thuile - March 4th, 2004

BACKUP SLIDES

La Thuile - March 4th, 2004

Diego Tonelli, CDF - Pisa

24/23

Tevatron Collider collaborations

CDF Detector Upgrades

7-8 silicon layers 1.6< r <28 cm |z|<45 cm $|\eta| \le 2.0$, cosθ = 0.964 σ(hit) ~ 14 μm

Some resolutions: $p_T \sim (0.7 \oplus 0.1 p_T)\%$ J/ Ψ mass ~15 MeV EM E ~ 16%/ \sqrt{E} Had E ~ 100%/ \sqrt{E} $d_0 \sim 6+22/p_T \mu m$ Primary vtx ~10 μm Secondary vtx $r-\Phi \sim 14 \mu m$ $r-z \sim 50 \mu m$

La Thuile - March 4th, 2004

1.4 T magnetic field Lever arm 132 cm

132 ns front end COT tracks @L1 SVX tracks @L2 30000 /300 / 70 Hz ~no dead time

26/23

Time-of-flight 100 ps @150cm p, K, π id

96 layer drift chamber $|\eta| \le 1.0$ 44 < r < 132 cm, 30k channels σ (hit) ~ 170 µm dE/dx for p, K, π id

Tile / fiber endcap calorimeter $1.1 < |\eta| < 3.5$

μ coverage to |η|≤1.5 80% in *Ջ*

D0 Detector Upgrades

4 silicon layers+disks Suited to limited space 2.8 < r < 10 cm $|\eta| \le 3.0, \cos\theta = 0.993$

Some resolutions: $p_T \sim (2.0 \oplus 0.2 p_T)\%$ J/ Ψ mass ~27 MeV EM E ~ 15%/ \sqrt{E} Had E ~ 80%/ \sqrt{E} $d_0 \sim 13+50/p_T \mu m$ Primary vtx ~15 μm Secondary vtx: $r-\Phi \sim 40 \mu m$ $r-z \sim 80 \mu m$ 2.0 T magnetic field Lever arm 52 cm Now! Sci-Fi tracks @ L1 Next! Silicon track s@ L2 5000 / 1000 / 50 Hz

µ coverage to

≤ 2.0

90% in phi

27/23

8 layer Sci-Fi tracker $|\eta| \le 1.7$ 10 < r < 52 cm, 80k channels VLPC's at 9K, 85% QE $\sigma(hit) \sim 100 \ \mu m$

La Thuile - March 4th, 2004

BACKUP SLIDES

La Thuile - March 4th, 2004

Diego Tonelli, CDF - Pisa

28/23

..more semileptonic B⁰_s

Diego Tonelli, CDF - Pisa

29/23

La Thuile - March 4th, 2004

..more semileptonic B⁰_s

Diego Tonelli, CDF - Pisa

La Thuile - March 4th, 2004

30/23

Two-body Charm-less B Decays: Physics Motivations

$$B_d \rightarrow \pi^+ \pi^- / K \pi$$
 accessible at B-factories too:

- ✓ Branching ratios
- ✓ Direct A_{CP} in $B_d \rightarrow K \pi$: $A_{CP} = (N^+ N^-) / (N^+ + N^-)$

✓ Direct + mixing A_{CP} in $B_d \rightarrow \pi^+\pi^-$: $A_{CP}(t) = A_{CP}^{dir} \cos(\Delta m_d t) + A_{CP}^{mix} \sin(\Delta m_d t)$

Amplitude ~ T

Amplitude ~ P

Diego Tonelli, CDF - Pisa

$$B_s \rightarrow K^+K^- / K \pi$$
 only at Tevatron, never observed

- Branching ratios
- ✓ Direct A_{CP} in $B_s \rightarrow K \pi$: $A_{CP} = (N^+ N^-) / (N^+ + N^-)$
- ✓ Direct + mixing A_{CP} in $B_s \rightarrow K^+K^-$: $A_{CP}(t) = A_{CP}^{dir} \cos(\Delta m_s t) + A_{CP}^{mix} \sin(\Delta m_s t)$

La Thuile - March 4th, 2004

31/23

The combination of B_d and B_s decays provides a promising way to extract CP-related physical parameters avoiding the "penguin pollution". (*R. Fleischer PLB45* (1999) 306)

Assume U-spin symmetry (d \star s), the A_{CP} are function of the CKM angles ∂_{2} and \mathcal{Y}_{0} and of the amplitude ratio P/T (~ de^{i□}) → 4 equation with 4 unknowns (∂_{2} , \mathcal{Y}_{0} , d, \Box). A combined fit of the 4 CP asymmetries measures ∂_{2} , \mathcal{Y}_{0} and P/T ratio.

Above strategy need time-dependent analysis with tagged samples: long term goal

Statistical resolution on $A_{CP}(B_d \rightarrow K^+ \square^-)$

Best measurement today by BaBar: 0.035

CDF needs \sim 850 pb⁻¹ to reach that accuracy.

Theory* predicts: $A_{CP} \in [-13\%, +5\%]$ with ~1500 pb⁻¹ CDF gets sensitive to it.

* Keum, Sanda hep-ph/0306004 Beneke, Neubert hep-ph/0308039

33/23

Projections on time-dependent A_{CP} on tagged samples

We do not have a resolution to extrapolate from. Use the analytic expressions for the expected resolutions:

$$\sigma = \frac{1}{\sqrt{\epsilon D^2}} \cdot \frac{\sqrt{S+B}}{S} e^{x^2 \sigma^2 \Gamma^2 / 2} \sqrt{\frac{1+4x^2 \pm cos\theta \mp 2x sin\theta}{2x^2}}$$

Assume a minimal improvement scenario with:

✓ 6.48 pb specific yield
 ✓ + 25% in S/B
 (wrt current S/B)
 ✓ M, D² = 5% (today is 4%)

(today is 67 fs) ✓ Trigger lifetime cut = 0.5♦ ✓ x_s = 30

✓ Proper time resol. = 50 fs

La Thuile - March 4th, 2004