Top Physics at CDF

Julia Thom Fermilab

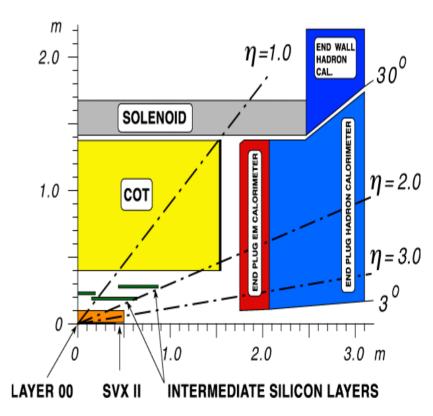
XVIII Rencontres de Physique de La Vallee d'Aoste La Thuile 3/5/2004

Motivations for Studying Top

- Only known fermion with a mass at the natural electroweak scale
 Window into the problem of EWSB?
- New physics may appear in production (e.g. topcolor) or in decay (e.g. charged Higgs).

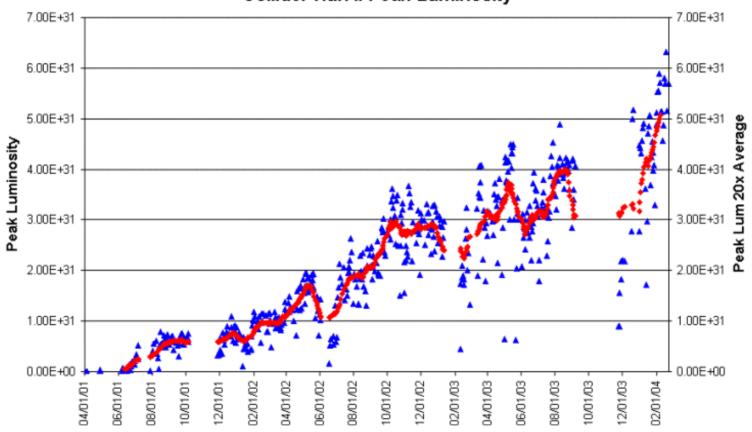
Run I Top Studies

- Observed in 1995 in first ~70 pb⁻¹ of Run I data.
- Final Run I top analyses based on ~110 pb⁻¹.
 - Production cross sections in many channels
 - Mass: 174.3 ± 5.1 GeV (CDF/DØ combined)
 - Event kinematics
 - W helicity, limits on single top production..
- · overall consistency with the Standard Model.
- but only ~100 top candidates
 - → analyses statistics-limited.


Improvements for Run II

Accelerator:

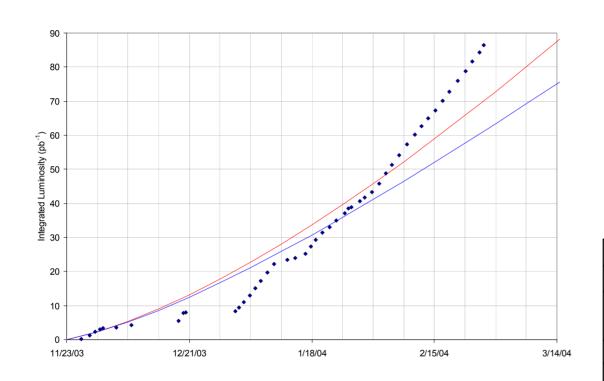
sqrt(s) = 1.96 TeV (was 1.8 TeV in RunI)
->30-40% increase in top cross section

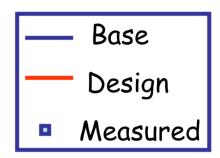

CDF Detector:

- -New DAQ
- -New Silicon system
 - ->improved b-tagging
- -Extended muon systems
- -Calorimeter endplug for forward coverage
- -New central drift chamber

Tevatron Peak Luminosity

Collider Run II Peak Luminosity

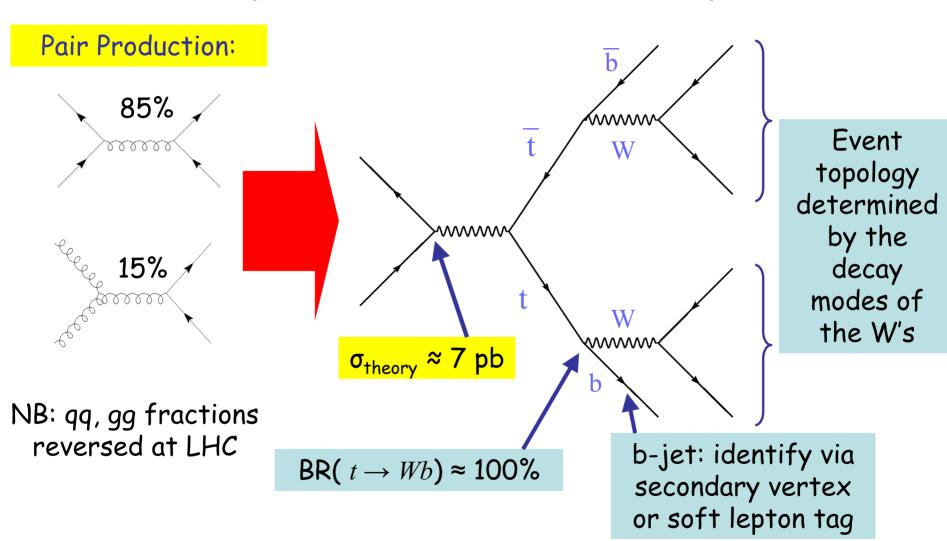



Record Luminosity: 6.3×10^{31} (3x better than Run I)

First store w/antiprotons from recycler

Current to tape: 350pb⁻¹, for this talk: up to 200pb⁻¹

Tevatron Luminosity



Integrated Luminosity (fb ⁻¹)						
	Design P	rojection	Base Projection			
	per year	Accum- ulated	per year	Accum- ulated		
FY03	0.22	0.30	0.20	0.28		
FY04	0.38	0.68	0.31	0.59		
FY05	0.67	1.36	0.39	0.98		
FY06	0.89	2.24	0.50	1.48		
FY07	1.53	3.78	0.63	2.11		
FY08	2.37	6.15	1.14	3.25		
FY09	2.42	8.57	1.16	4.41		

Predicted for 2004: 380 pb⁻¹ delivered (design)

Pair-production and Decay Basics

La Thuile March 5th, 2004 Julia Thom Fermilab

t-tbar Final States

Dilepton

- BR = 11%
- 2 high-P_T leptons + 2 b-jets + missing-E_T

· Lepton + jets

- BR = 44%
- single lepton + 4 jets(2 b-jets) + missing- E_T

Highest signal:noise

High pt decay products

Central/spherical topology

All-hadronic

- BR = 45%
- six jets, no missing- E_T

More challenging backgrounds (QCD multijet)

Tools:

- Lepton ID (tracking, detector coverage)
- Calorimetry (calibration)
- B identification (tagging)
- Simulation

Julia Thom Fermilab

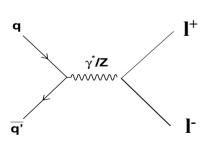
Programme:

Top cross-section

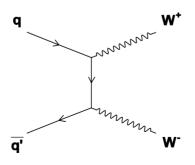
```
dilepton channel New results

Lepton+jets channel New results
```

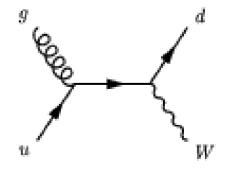
- · Single top physics New results
- Top Mass
- W helicity in top decay


Measuring the ttbar Cross Section

- starting point for all top physics
- Requires detailed understanding of backgrounds and selection efficiencies.
- Test of QCD
 - Latest calculations: NNLO + NNNLL
 - Departures from prediction could indicate nonstandard production mechanisms, i.e. production through decays of SUSY states.

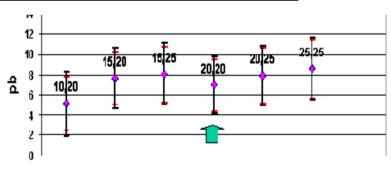

Dilepton Cross Section: lepton+track

- Signature: 1 lepton+1 isolated track, missing E_t , \geq 2 central jets
- Acceptance: ~2x better than Run I
- \sim 20% from τ
- Background:


Drell-Yan

WW, ZZ, WZ

W+jets
("fakes")


La Thuile March 5th, 2004

Relative weight depends on number of jets

Dilepton Cross Section: lepton+track

	njet = 0		njet = 1		njet >= 2	
	#	error	#	error	#	error
top-dilep	0.29	0.04	3.38	0.13	11.53	0.24
Di boson	24.12	0.56	6.89	0.31	1.32	0.14
DY	26.78	5.66	16.59	3.42	4.25	1.00
Total Pbg	50.90	5.69	23.48	3.44	5.57	1.01
Fakes	13.78	1.57	4.16	0.49	1.48	0.19
Total bg	64.68	5.90	27.64	3.47	7.06	1.02
Total pred.	64.97	5.90	31.02	3.47	18.59	1.05
observed	73		26		19	

Measured cross section for different jet E_t and track p_t thresholds

New result

Kinematical Region (Jet Et, Trk Pt)

$$\sigma_{tt} = 6.9^{+2.7}_{-2.4}(stat) \pm 1.2(syst) \pm 0.4(lumi)pb$$

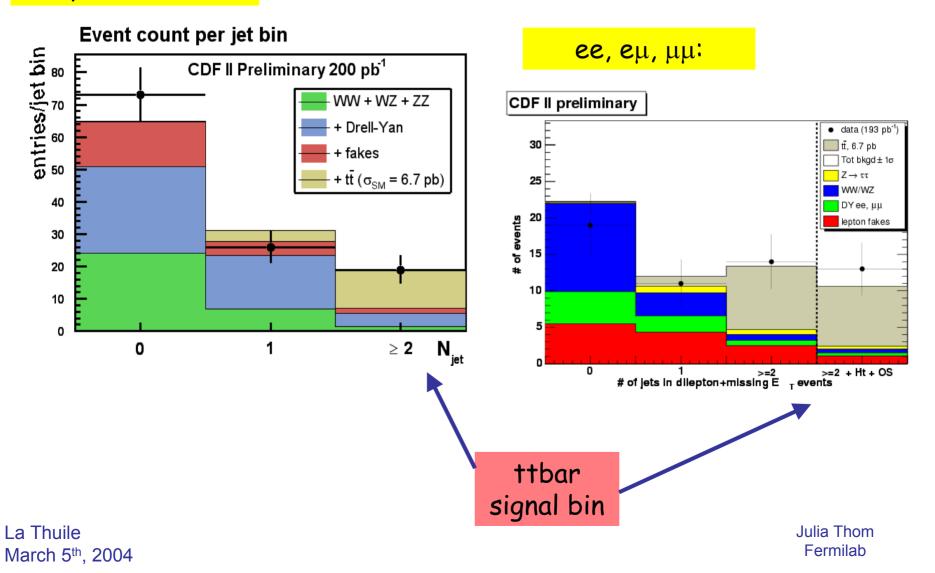
Dilepton cross section: ee, eµ, µµ

Different background composition, higher S:N, lower acceptance

 \Rightarrow Events with 1 "tight" and 1 "loose" e or μ

$$\sigma_{t\bar{t}} = 8.7^{+3.9}_{-2.6}(stat) \pm 1.4(syst) \pm 0.5(lumi) \ pb$$

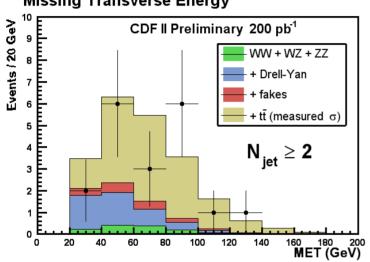
lepton composition: 1 ee, 3 μμ, 9 eμ


 \Rightarrow 2 "tight" leptons (e, μ)

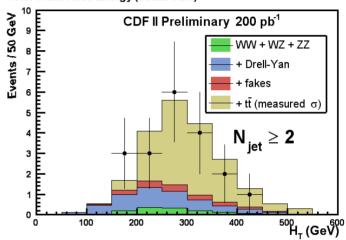
$$\sigma_{tt} = 8.1^{+4.4}_{-3.4}(stat) \pm 1.6(syst) \pm 0.5(lumi) pb$$

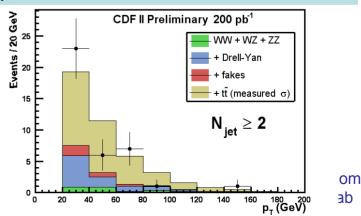
lepton composition: 1 ee, 2 μμ, 4 eμ

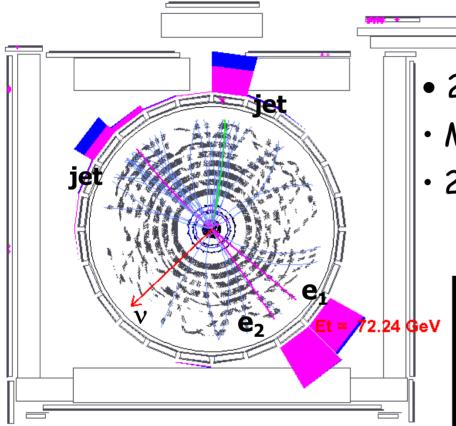
Jet Multiplicity in Dilepton Events


Lepton + track:

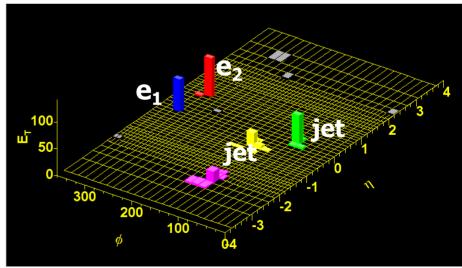
Dilepton Kinematics


RunI: had seen hints of discrepancy in kinematic distribution:

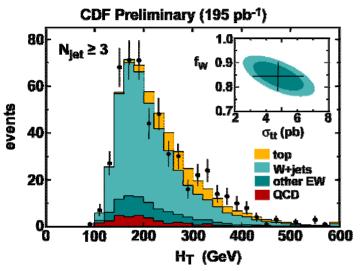

H_t : Scalar summed E_T of jets, leptons, and missing E_T

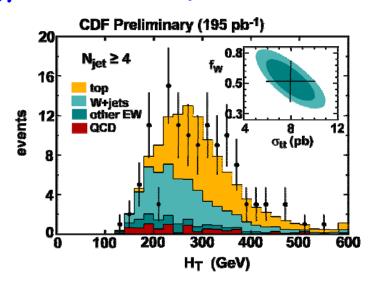


Leptons transverse momentum


With higher statistics in Run II see good agreement with SM

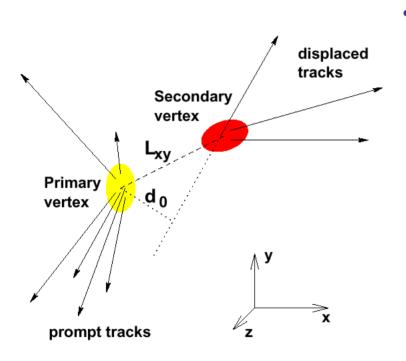
Dilepton event display




- 2 electrons (E_{T1}=73 GeV, P_{T2}=63 GeV)
- Missing $E_T = 59 \text{ GeV}$
- · 2 central jets + 1 forward jet

Cross Section - lepton+jets using kinematic fits

Isolate signal from large W+jets background using kinematic shapes: H_t (scalar sum of energy in the event)

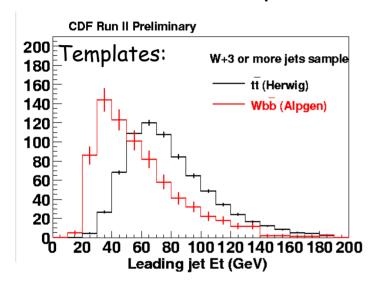


W+>=3 jets: observe 519 events

Top fraction from fit: 0.13+-0.04

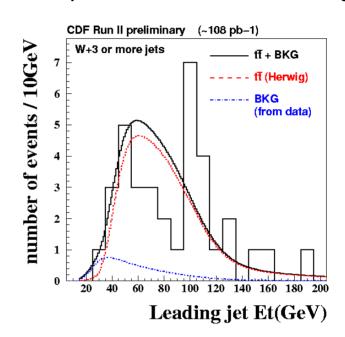
$$\sigma_{tt} = 4.7 \pm 1.6(stat) \pm 1.8(syst)pb$$

Tagging high-p_t jets: Silicon vertex tag (SVX-tag)


- Signature of a B decay is a displaced vertex:
 - Long lifetime of B hadrons ($c\tau \sim 450 \mu m$)+ boost
 - B hadrons travel
 L_{xy}~3mm before decay
 with large charged track
 multiplicity

Top event efficiency: 55%

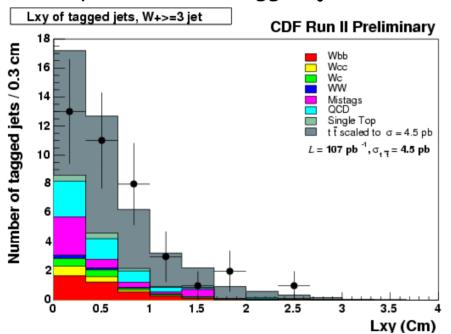
False tag rate (QCD jets): 0.5%


Cross Section - lepton+jets using kinematic fits + SVX-tag

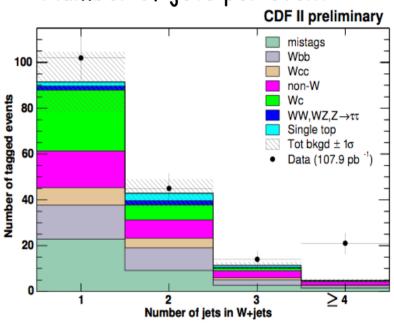
In addition to shape information: require at least one b-tag

W+>=3 jets: observe 35 events

Top fraction from fit: $0.88^{+1.0}_{-1.6}$



Using 108 pb⁻¹


$$\sigma_{tt} = 6.9^{+1.6}_{-1.9}(stat + fit) \pm 0.9(syst)pb$$

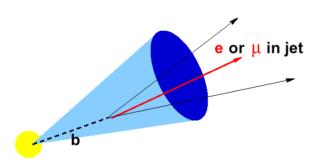
Cross Section - lepton+jets using SVX-tag

2d displacement of tagged jets:

Number of jets per event:

W+>=3 jets: 35 positive tags

Expected background (mistags, QCD,..): 15.1+-2

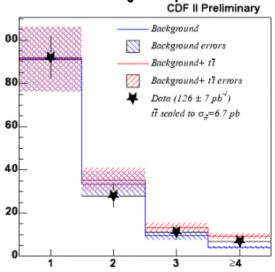

Using 107 pb⁻¹

$$\sigma_{tt} = 4.5^{+1.4}_{-1.3}(stat) \pm 0.8(syst)pb$$

Cross Section - lepton+jets using "Soft Lepton Tag"

tag semi-leptonic decays of B

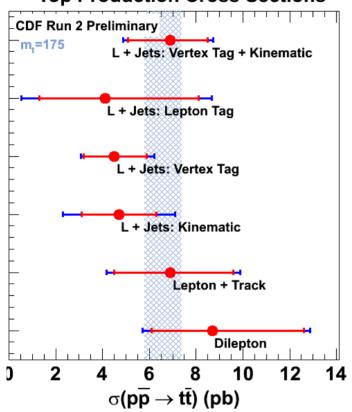
- \Rightarrow leptons have a softer p_T spectrum than W/Z leptons
- ⇒ They are less isolated
- ⇒ Identify low-p_t muon

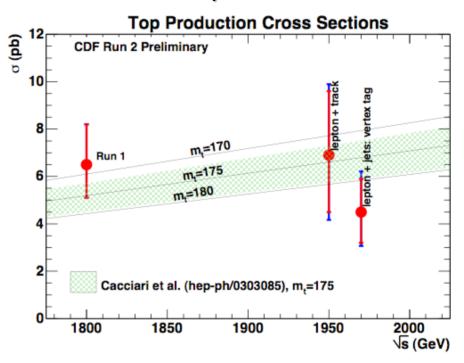

Top Event (>2 jets)
Tag Efficiency:15%
False Tag Rate
(QCD jets): 3.6%

- $b \rightarrow \ell \nu c \text{ (BR} \sim 20\%)$
- $b \rightarrow c \rightarrow \ell \nu s \text{ (BR} \sim 20\%)$

Using 125 pb⁻¹

$$\sigma_{tt} = 4.1^{+4.0}_{-2.8}(stat) \pm 1.9(syst)pb$$


Number of jets per event:


Julia Thom Fermilab

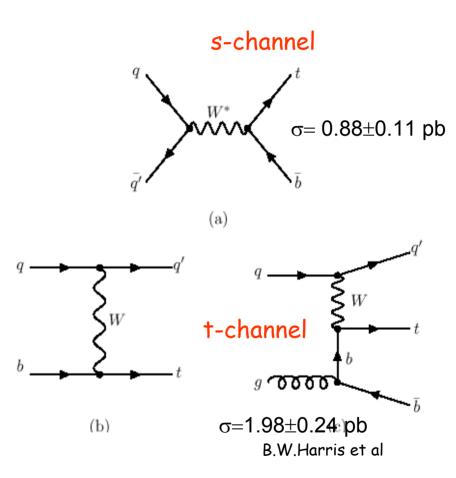
Summary of Cross Section Results

Top Production Cross Sections

√s-Dependence:

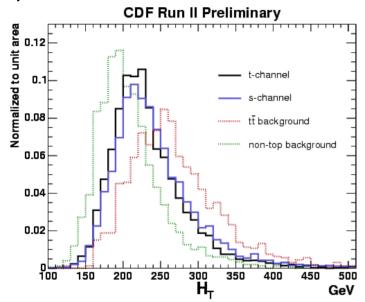
 \Rightarrow Main data driven systematics (jet energy scale, ISR, ϵ_{btag}) scale with $1/\sqrt{N}$

RunII(2fb⁻¹) $\delta \sigma_{tt} / \sigma_{tt} < 10\%$

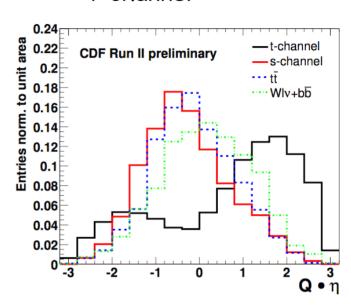

Single Top Physics

- Probe top EW coupling direct determination of V_{tb}
- Sensitivity to new physics:

 t-channel:anomalous couplings,
 FCNC
 s-channel: new charged gauge
 bosons

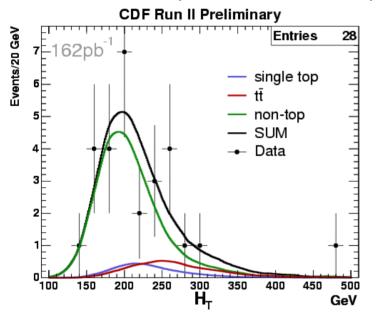

- Strategy:

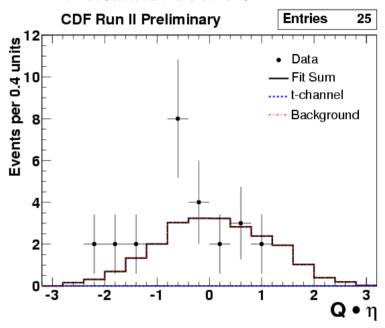
Isolate W+ exactly 2 jets and tag one jet Likelihood Fit to $Q^*\eta$ (t-channel) Likelihood Fit to H_t (combined)



Single Top Physics

Templates from MC (combined):

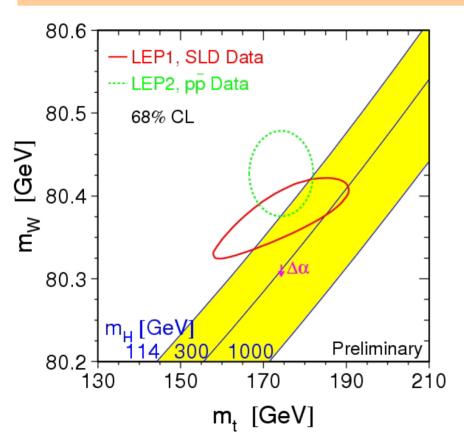

t-channel:

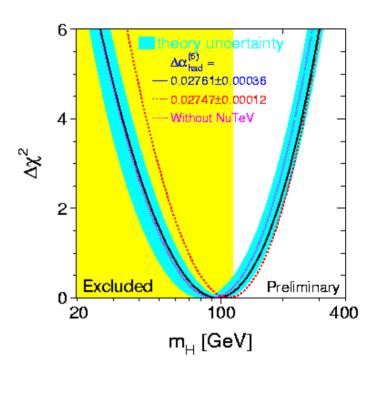

Process	N events		
(Combined Search t-channel search		
t-channel	2.39 +- 0.56	2.34 +- 0.54	
s-channel	1.19 +- 0.25	1.16 +- 0.24	
t tbar	3.47 +- 1.04	3.39 +- 1.02	
non-top	20.7 +- 4.1	17.4 +- 3.3	
Sum	27.8 +- 4.3	24.3 +- 3.5	

Search for Single Top

Fit to the data (combined search):

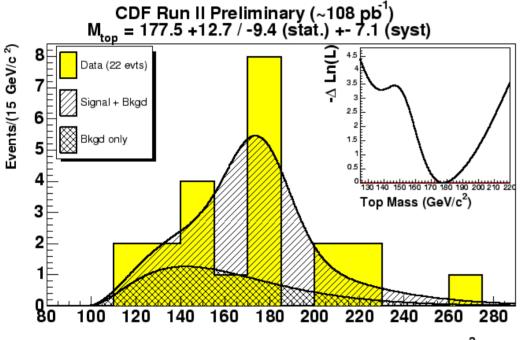
t-channel search:


Using 162 pb⁻¹ of data:


 $\sigma_{\rm t}$ (t-channel)<8.5pb @95% C.L. $\sigma_{\rm t}$ (combined)<13.7pb @95% C.L.

Uncertainty	2fb ⁻¹		
$\delta\sigma(\text{tbX})$	26%		
$\delta\Gamma$ (t \rightarrow Wb)	28%		
$\delta V_{tb} $	14%		

Top Mass Measurement

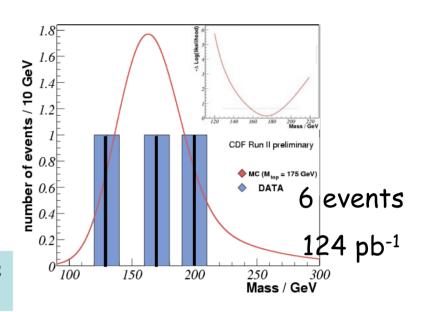

 M_{top} is a precision electroweak parameter that helps constrain the mass of the Higgs.

Top Mass: Lepton + 4 jets with SVX-tag

22 vertex-tagged events from lepton+4 jet sample

Reconstructed Top Mass, Tagged Events (GeV/c²)

- -6 parton/jet matching assignments possible
- -test for consistency with top using kinematic constraints
- -pick lowest χ^2
- -fit resulting mass distribution to background + signal templates at different values of M_{top}


Likelihood fit result: $m_{top} = 177.5^{+12.7}_{-9.4}$ (stat.) ± 7.1 (syst.) GeV/c²

La Thuile Dominant syst: jet energy scale, expecting significant impruisonn March 5th. 2004

Top Mass: Dilepton Channel

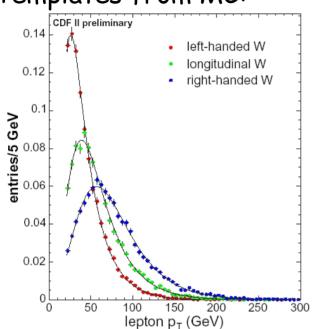
- -Underconstrained system
- -Use P_{ttbar,z} to weight the mass fit distribution
- -Likelihood fit to top mass templates

$$175.0^{+17.4}_{-16.9}(stat) \pm 7.9(syst) \text{ GeV/c}^2$$

Improved tools are underway:

- -"Dynamic Likelihood" method (matrix element convoluted likelihood) K.Kondo 1988 J.Phys.Soc.57 4126
- results expected soon

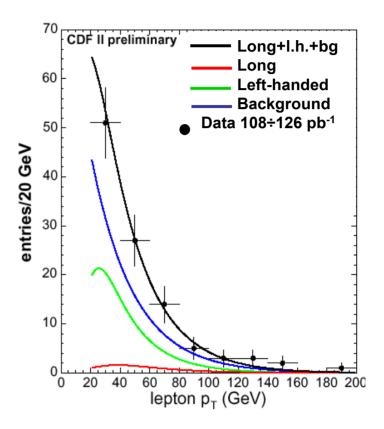
W Helicity Measurement


- Top decays before it can hadronize, because width $\Gamma_{\rm t}$ = 1.4 GeV > $\Lambda_{\rm QCD}$.
 - Decay products preserve information about the underlying Lagrangian.
 - Unique opportunity to study the weak interactions of a bare quark, with a mass at the natural electroweak scale!

SM Prediction:

- W helicity in top decays is fixed by M_{top} , M_W , and V-A structure of the tWb vertex.
- W helicity reflected in kinematics: W lepton pt,...

Helicity affects lepton P_T in lab frame


Templates from MC:

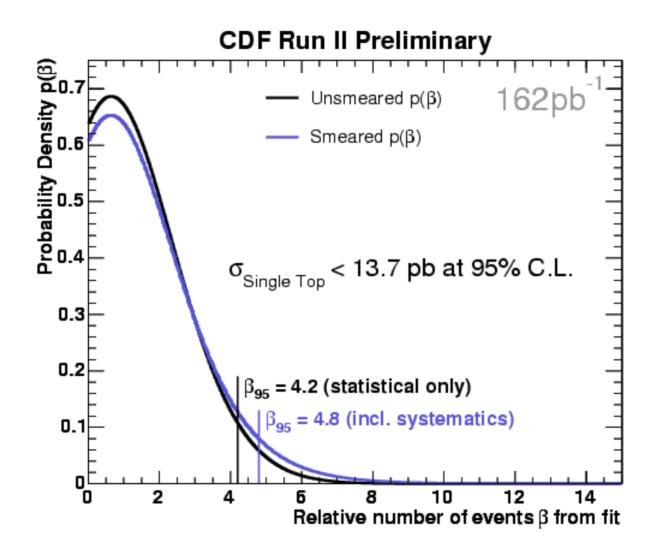
SM V-A predicts W helicity:

F₀ = 70% longitudinal F₋ = 30% left-handed

[V+A: 70% long., 30% r.-h.]
La Thulle
March 5th, 2004

CDFI Result (106pb⁻¹): $F_0 = 0.91 \pm 0.37 \pm 0.13$ $F_{\downarrow} < 0.28 @ 95\% C.L.$

CDFII result soon


Julia Thom Fermilab

Conclusion and Outlook

Now using 2x the RunI data set

- · Improving measurements of cross section, mass
- W helicity, single top... are making progress.
- We expect ~50x more data compared to Run I!
- What's ahead: top \to H⁺ Study of τ channels measure V_{tb} ttbar resonant production rare decays

Backup Slides

Matrix Element Method

 $d^n\sigma$ is the differential cross section

W(y,x) is the probability that a parton level set of variables y will be measured as a set of variables x

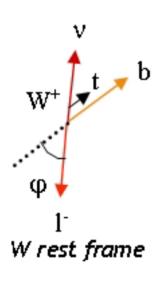
$$P(x;\alpha) = \frac{1}{\sigma} \int d^n \sigma(y;\alpha) \, dq_1 \, dq_2 \, f(q_1) \, f(q_2) W(x,y)$$

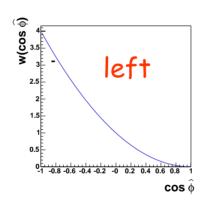
f(q) is the probability distribution than a parton will have a momentum q

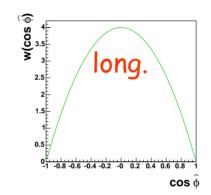
$$P(x;\alpha) = c_1 P_{ttbar}(x;\alpha) + c_2 P_{background}(x)$$

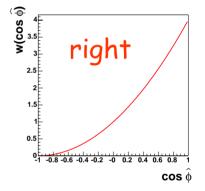
- Leading-Order ttbar->lepton+jets matrix element, PDFs
- 12 jet permutations, all values of P(v)
- Phase space of 6-object final state
- Detector resolutions

- **❖** Only *W*+jets, 80%
- ❖ VECBOS subroutines for *W*+jets
- Same detector resolutions as for signal
- \diamond All permutations, all values of P(v)
- Integration done over the jet energies
- Convolute probability to include all conditions for accepting or rejecting an event


$$P_{measured}(x;\alpha) = Acc(x)P(x;\alpha)$$


Form a Likelihood as a function of: Top Mass, F₀ (longitudinal fraction of W bosons)


W Helicity Measurement, contd.


The angular dependence of the semileptonic decay in the W rest frame is given by

$$w(\cos\varphi_{l^{-}\bar{b}}) = F_{-} \cdot \frac{3}{8} (1 - \cos\varphi_{l^{-}b})^{2} + F_{0} \cdot \frac{3}{8} (1 - \cos^{2}\varphi_{l^{-}b}) + F_{+} \cdot \frac{3}{8} (1 + \cos\varphi_{l^{-}b})^{2}$$

$$F_{-} = \frac{2\omega}{1 + 2\omega} \approx 0.3$$

where
$$\omega = M_W^2/M_{top}^2$$

$$F_{-} = \frac{2\omega}{1 + 2\omega} \approx 0.3 \quad F_{0} = \frac{1}{1 + 2\omega} \approx 0.7 \quad F_{+} = 0$$

parameter to measure