

T. Spadaro, INFN/Frascati, for the KLOE collaboration

Les rencontres de physique de la Vallée d'Aoste La Thuile, 29th February – 6th March, 2004

KLOE physics

KLOE physics focus: tests of discrete symmetries: **C, CP, CPT** Clean and absolute SM predictions

Kaon properties

 $K_S K_L (K^+K^-)$ produced in pure $J^{PC} = 1^-$ state:

$$K_S, K^+ \longleftarrow \phi \longrightarrow K_L, K^-$$

Observation of
$$K_{S,L}$$
 signals presence of $K_{L,S}$

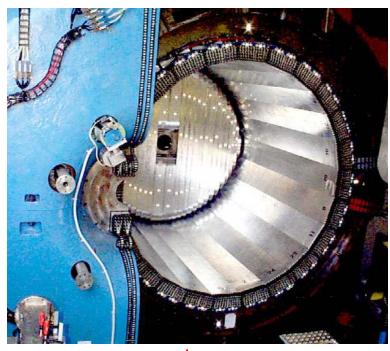
Allows precision measurement of absolute BR's

$$\frac{1}{\sqrt{2}} (|K_L, \mathbf{p}\rangle | K_S, -\mathbf{p}\rangle - |K_L, -\mathbf{p}\rangle | K_S, \mathbf{p}\rangle)$$

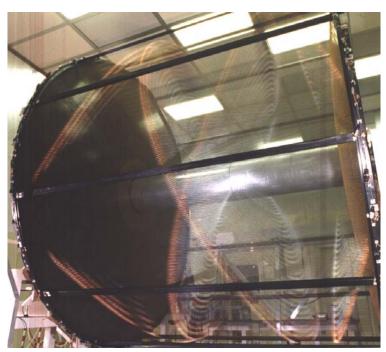
Allows interference measurements of K_SK_L system

 $\lambda_S = 6$ mm: K_S decays near interaction point

 $\lambda_L = 3.4 \text{ m}$: Appreciable acceptance for $K_L \ (\sim 0.5 \lambda_L)$

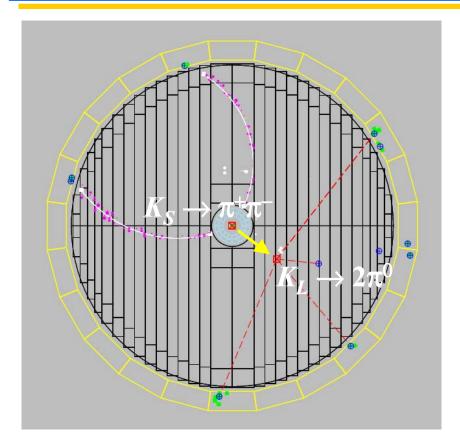

 $\sigma(e^+e^- \rightarrow hadrons)$

News on ππγ analyses


News on analyses of η decays and φ meson properties

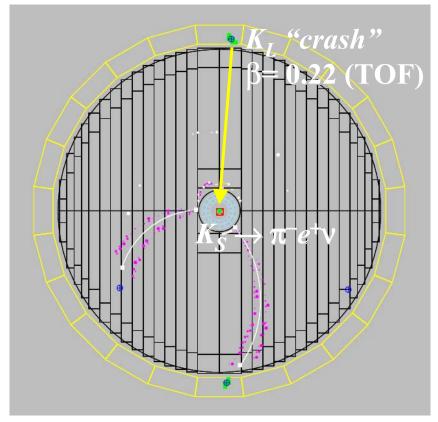
The KLOE experiment

 $σ_E/E = 5.7\% / VE(GeV)$ $σ_t = 54 \text{ ps } / VE(GeV) \oplus 50 \text{ ps}$ (relative time between clusters) PID capabilities $σ_L(\gamma\gamma) \sim 1.5 \text{ cm} (\pi^0 \text{ from } K_L \to \pi^+\pi^-\pi^0)$



 $4m-\varnothing$, 3.75m—length, all-stereo $\sigma_p/p = 0.4$ % (tracks with $\theta > 45^\circ$) $\sigma_x^{hit} = 150 \ \mu m \ (xy)$, 2 mm (z) $\sigma_x^{vertex} \sim 1 \ mm$

Results presented in this talk from 2001-2002 data, $\int \mathcal{L} = 450 \text{ pb}^{-1}$


Tagging of K_S and K_L "beams"

 K_L tagged by $K_S \to \pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) K_L angular resolution: ~ 1°

 K_L momentum resolution: ~ 1 MeV

 K_S tagged by K_L interaction in EmC Efficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 1 MeV

$K_S \rightarrow \pi^0 \pi^0 \pi^0 - test \ of \ CP \ and \ CPT$

Observation of $K_S \to 3\pi^0$ signals CP violation in mixing and/or in decay:

SM prediction: $\Gamma_S = \Gamma_L |\eta|^2$, giving BR($K_S \to 3\pi^0$) = 1.9 10⁻⁹

Present published results: BR($K_S \rightarrow 3\pi^0$) < 1.4 10^{-5}

Uncertainty on $K_S \rightarrow 3\pi^0$ amplitude limits precision of CPT test:

from unitarity

$$(1 + i \tan \phi_{SW}) \text{Re } \varepsilon - \Sigma_f A^*(K_S \to f) \ A(K_L \to f) / \Gamma_S = (-i + \tan \phi_{SW}) \ \text{Im } \delta$$

$$(\varepsilon_{S,L} = \varepsilon \pm \delta)$$

A limit on BR($K_S \rightarrow 3\pi^0$) at 10^{-7} level translates into a 2.5-fold improvement on the accuracy of Im δ , i.e.

$$\frac{\delta(M_{K0} - M_{\overline{K0}})}{M_{K}} \sim 2 \ 10^{-18} \rightarrow \frac{\delta(M_{K0} - M_{\overline{K0}})}{M_{K}} \sim 8 \ 10^{-19} \qquad (M_{K}/M_{Planck} = 4 \ 10^{-20})$$

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$

Signal selection

Ks's tagged by means of Kcrash identification

6 photons (neutral clusters, TOF consistent with $\beta = 1$)

No charged tracks from IP

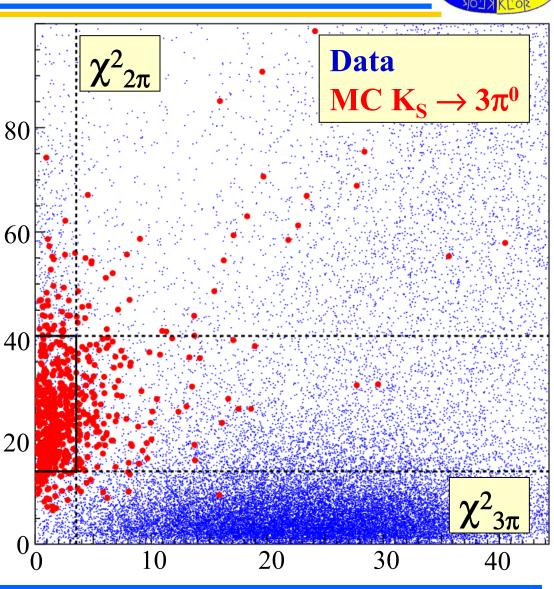
Kinematic fit:

- Impose K_S mass and energy-momentum conservation, $\beta = 1$ for each γ
- Estimate E_{γ} , r_{γ} , t_{γ} , \sqrt{s} , p_{ϕ}

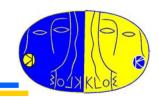
Rejection power of χ^2_{fit} not sufficient to eliminate main background due to $K_S \to \pi^0 \pi^0 + 2$ fake γ 's

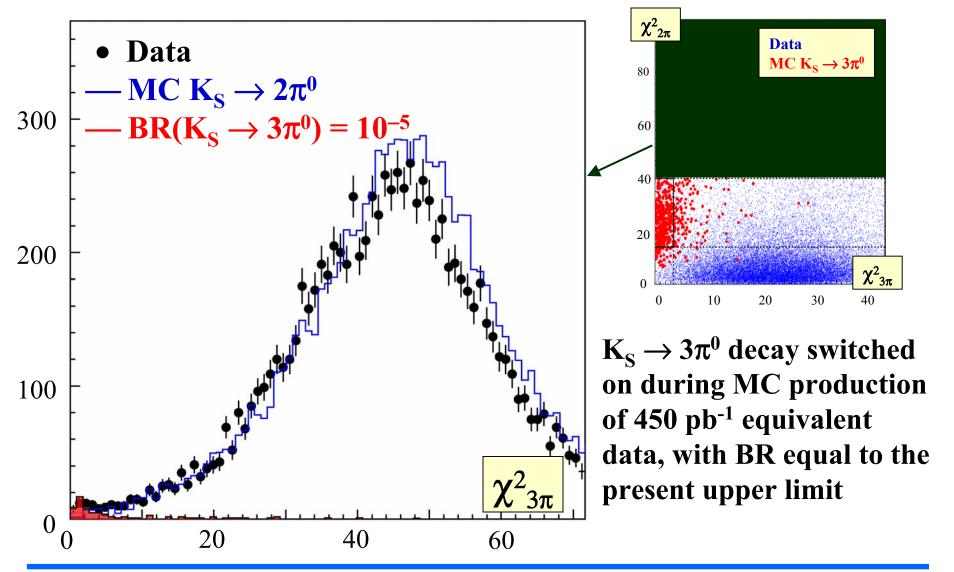
Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0 - 2\pi^0 \text{ vs } 3\pi^0$

Main background from $K_s \rightarrow \pi^0 \pi^0 + 2$ fake γ 's:

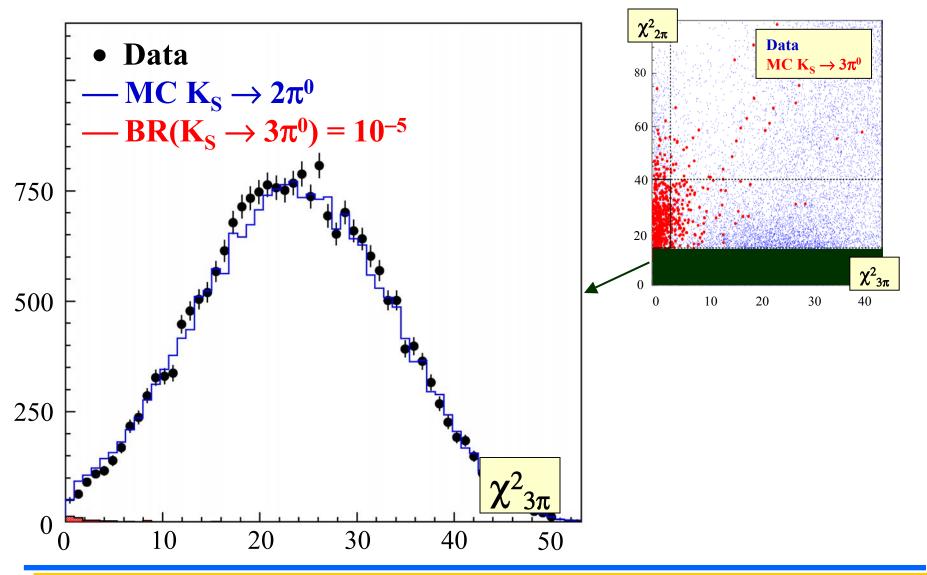

Compare 3π vs 2π

hypotheses:

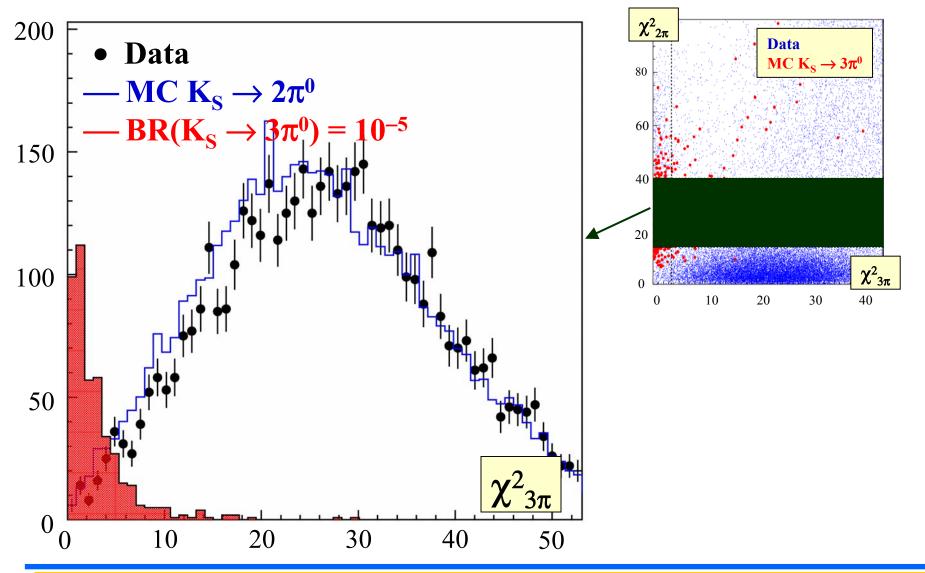

 $\chi^2_{3\pi}$ – pairing of 6γ clusters with better π^0 mass estimates 60


 $\chi^2_{2\pi}$ – pairing of 4 γ 's out of 6: π^0 masses, E(K_S), **P**(K_S), c.m. angle between π^0 's

Definition of the signal box obtained from analysis of 6-pb⁻¹-equivalent MC subsample


Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$ - sidebands




Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$ - sidebands

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0 - signal\ region$

$K_S \rightarrow \pi^0 \pi^0 \pi^0 - Preliminary results$

 $N_{sel}(data) = 5$ events selected as signal, with efficiency $\varepsilon_{3\pi} = 21\%$

 $N_{sel}(bkg) = 3\pm1.3 \pm0.2$ bkg events expected from MC, use $N_{sel}(bkg) = 1.6$

Can state: $N_{3\pi}$ < 7.68 with a 90% CL

Normalize signal counts to $K_S \to \pi^0 \pi^0$ count in the same data set:

$$BR(K_S \to \pi^0 \pi^0 \pi^0) = \frac{N_{3\pi} / \epsilon_{3\pi}}{N_{2\pi} / \epsilon_{2\pi}} BR(K_S \to \pi^0 \pi^0) < 3 \ 10^{-7},$$

Which translates into a limit on
$$|\eta_{000}| = \left| \frac{A(K_S \to \pi^0 \pi^0 \pi^0)}{A(K_L \to \pi^0 \pi^0 \pi^0)} \right| < 3 \ 10^{-2}$$

$K_S \rightarrow \pi e \nu decays - Physics issues$

Sensitivity to CPT violating effects through charge asymmetry:

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ \nu) - \Gamma(K_{S,L} \to \pi^+ e^- \overline{\nu})}{\Gamma(K_{S,L} \to \pi^- e^+ \nu) + \Gamma(K_{S,L} \to \pi^+ e^- \overline{\nu})}$$

If CPT holds, A_S=A_L

 $A_S \neq A_L$ signals CPT violation in mixing and/or decay with $\Delta S \neq \Delta Q$

Sensitivity to CP violation in $K^0-\overline{K}^0$ mixing:

$$A_S = 2Re \epsilon$$
 (CPT symmetry assumed)

A_S never measured before

Can extract $|V_{us}|$ via measurement of $BR(K_S \to \pi e \nu)$

Unitarity test of CKM matrix $-V_{us}$

Most precise test of unitarity possible at present comes from 1st row:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$$

Can test if $\Delta = 0$ at few 10⁻³:

from super-allowed $0^+ \rightarrow 0^+$ Fermi transitions, n β -decays: $2|V_{ud}|\delta V_{ud} = 0.0015$ from semileptonic kaon decays (PDG 2002 fit): $2|V_{us}|\delta V_{us} = 0.0011$

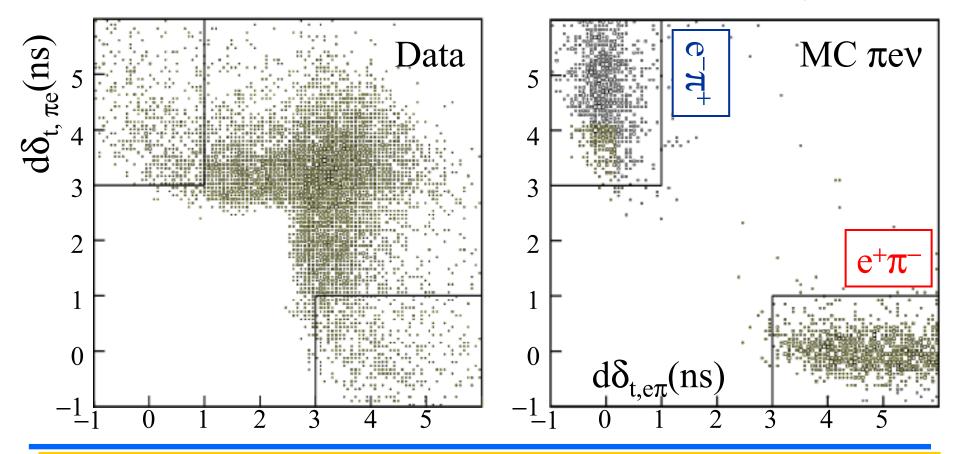
To extract $|V_{us}|$ from K_{e3}^0 decays, have to include EM effects:

$$\Gamma(K^0 \to \pi e \nu(\gamma)) \propto |V_{us}|^{K0\pi} (0)|^2 I(\lambda_t) (1 + \Delta I(\lambda_t, \alpha)) (1 + \delta_{EM})$$

Relative uncertainty:

$$\frac{\delta |V_{us}|}{|V_{us}|} = 0.5 \frac{\delta \Gamma}{\Gamma} \oplus 0.05 \frac{\delta \lambda_t}{\lambda_t} \oplus \frac{\delta f_+^{K0\pi}(0)}{f_+^{K0\pi}(0)}$$

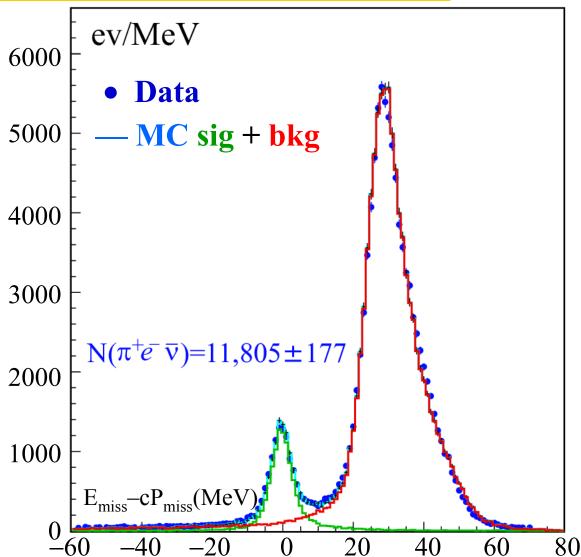
$$0.5\% \oplus 0.3\% \oplus 1\%$$


$K_S \rightarrow \pi e \nu decays - Analysis outline$

Main background from $K_S \rightarrow \pi\pi(\gamma)$

Kinematic rejection: $M_{\pi\pi} < 490 \text{ MeV}$

TOF identification: compare π -e expected flight times, reject $\pi\pi$, $\pi\mu$ bkg

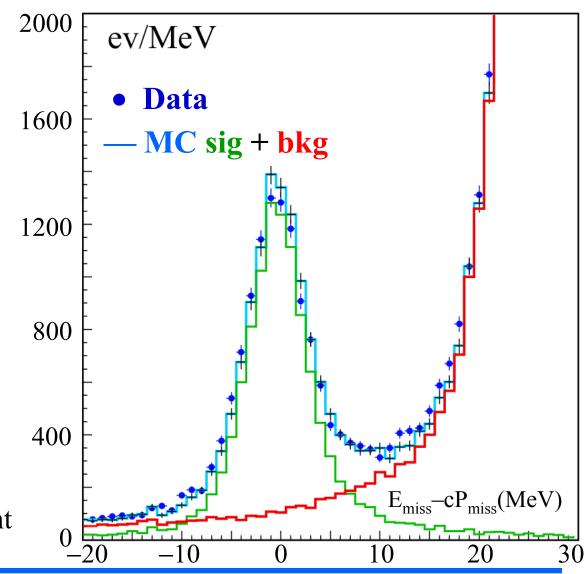

$K_S \rightarrow \pi e \nu decays - Analysis outline$

Kinematic closure: use K_L to obtain K_S momentum P_K and test for presence of neutrino:

$$\begin{aligned} \mathbf{E}_{\mathrm{miss}} &= \sqrt{\mathbf{M_K}^2 + \mathbf{P_K}^2} - \mathbf{E_{\pi}} - \mathbf{E_e} \\ \mathbf{P}_{\mathrm{miss}} &= |\mathbf{P_K} - \mathbf{P_{\pi}} - \mathbf{P_e}| \end{aligned}$$

Determine number of signal counts by fitting data to a linear combination of MC spectra for signal and background

$K_S \rightarrow \pi e \nu decays - Analysis outline$



Signal spectrum clearly sensitive to the presence of a photon in the final state

Include radiative effects through an IR-finite treatment in MC (no energy cutoff)

Normalize signal counts to $K_S \rightarrow \pi\pi(\gamma)$ counts in the same data set

Use BR($K_S \rightarrow \pi\pi(\gamma)$) from previous KLOE measurement

$K_S \rightarrow \pi e \nu decays - Preliminary results$

Correct for charge-dependent efficiencies, mostly extracted from data

$$\varepsilon \approx 20\%$$
 given the tag

BR(K_S
$$\rightarrow \pi^- e^+ \nu$$
) = (3.54 ± 0.05_{stat} ± 0.05_{syst}) 10⁻⁴
BR(K_S $\rightarrow \pi^+ e^- \nu$) = (3.54 ± 0.05_{stat} ± 0.04_{syst}) 10⁻⁴

BR(
$$K_S \to \pi e \nu$$
) = $(7.09 \pm 0.07_{stat} \pm 0.08_{syst}) 10^{-4}$

KLOE preliminary

Evaluation of the systematics near completion

Published result: $(6.91 \pm 0.34_{stat} \pm 0.15_{syst}) 10^{-4}$, KLOE '02

Dependence of efficiencies on charge mainly due to TOF effects, estimated using data control sample of $K_L \to \pi e \nu$

$$A_S = (-2 \pm 9_{stat} \pm 6_{syst}) \ 10^{-3}$$

$$A_L = (3.322 \pm 0.058 \pm 0.047) \, 10^{-3} \, [KTeV \, 2002]$$

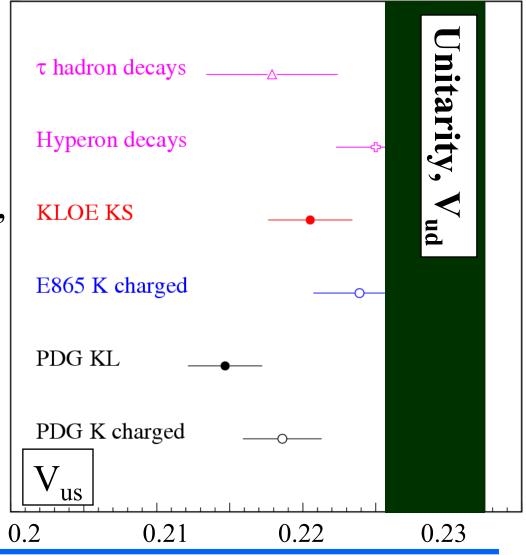
$$A_L = (3.317 \pm 0.070 \pm 0.072) \, 10^{-3} \, [NA48 \, 2003]$$

$K_S \rightarrow \pi e \nu \ decays - Preliminary \ results$

$$V_{us}(K_{S.e3}) = 0.2205 \pm 0.0029$$

Compare with PDG 2002:

PDG fit result for $\Gamma(K^+ \rightarrow \pi^0 e^+ \nu)$


PDG fit result for $\Gamma(K_L \rightarrow \pi^- e^+ \nu)$,

and recent determinations of V_{us} , with error on Δ ranging from 0.0012 to 0.0016:

Measurement of $\Gamma(K^+ \to \pi^0 e^+ \nu)$ from E865 experiment

Re-analysis of semileptonic decays of Λ , Σ^- , $\Xi^{-,0}$

Estimate from spectral functions of hadronic τ decays, $\tau^- \to \nu_{\tau} X_{had}$

$K_L decays - Present knowledge$

Knowledge of 4 main K_L BR's at present dominated by 3 measurements:

$$\frac{\Gamma(K_L \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L \to \pi e \nu)} \ \, \text{and} \ \, \frac{\Gamma(K_L \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L \to \pi^+ \pi^- \pi^0)} \ \, , \, \text{with $\sim \! 2\%$ relative uncertainty [NA31]}$$

$$R_{\mu/e} = \frac{\Gamma(K_L \to \pi \mu \nu)}{\Gamma(K_L \to \pi e \nu)} = 0.702 \pm 0.011 \text{ [Argonne HBC 1980]}$$

3-σ discrepancy (~4%) between measurement and expectation for $R_{\mu/e}$:

$$R_{\mu/e} = 0.671 \pm 0.002$$
, direct measurement for K⁺, from KEK-E246 2001

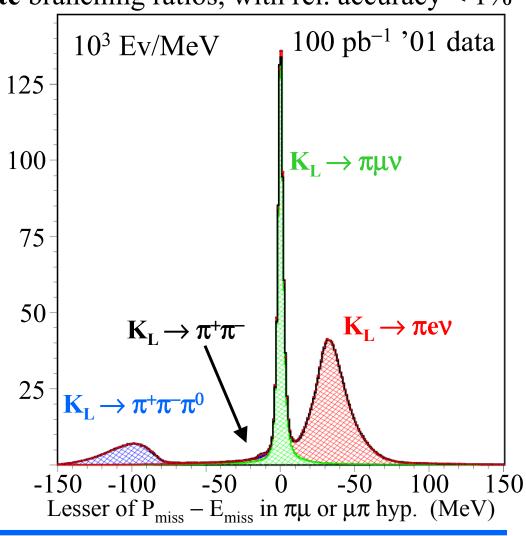
 $R_{\mu/e}$ calculable from the slopes λ_+ and λ_0 of vector and scalar form factors:

$$0.670 \pm 0.002$$
, if $\lambda_0 = 0.0183 \pm 0.0013$, from ISTRA+ 2003

$$0.668 \pm 0.006$$
, if $\lambda_0 = 0.017 \pm 0.004$, from one-loop χPt

K_L decays – Status and objectives

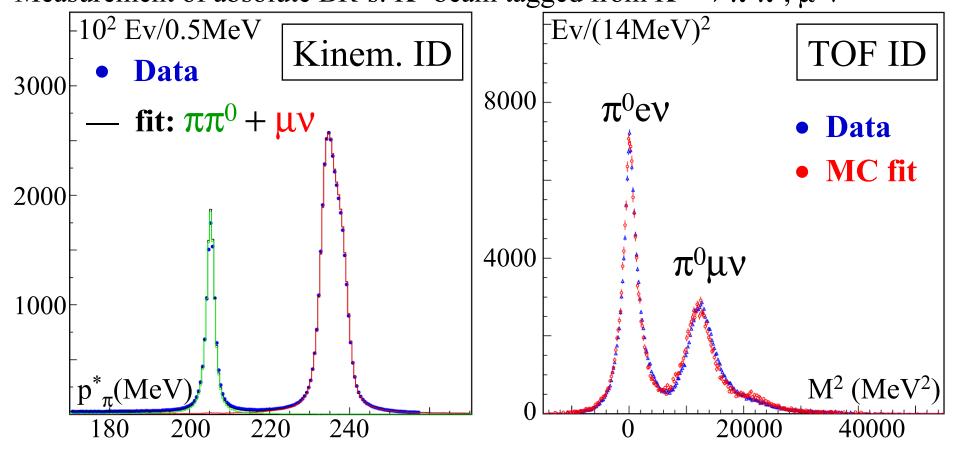
Have to precisely measure **absolute** branching ratios, with rel. accuracy < 1%


 K_L beam tagged by identification of $K_S \to \pi^+\pi^-$

K_L decay vertex in a given fiducial volume in DC

Kinematic identification using reconstructed momenta

In progress (new detailed MC):


Selection efficiency as a function of K_L vertex position and momenta of decay products

K^{\pm} decays – Status and objectives

Dedicated reconstruction for K^{\pm} tracks applied, all data re-processed Measurement of absolute BR's: K^{+} beam tagged from $K^{-} \rightarrow \pi^{-}\pi^{0}$, $\mu^{-}\nu$

Working on: efficiency estimates, bias from requiring tagging decay

a_u – SM prediction vs experiment

Updated measurement from E821@BNL, averaging results for μ^+ and μ^- :

$$a_{\mu} = (11 659 208 \pm 6) 10^{-10}$$

Contributions to the SM prediction: (10^{-10} units)

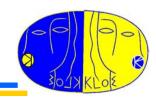
$$a_{\mu}(QED)$$
, 11 658 470.4 ± 0.3 $a_{\mu}(weak)$, 15.4 ± 0.2 $a_{\mu}(hadronic)$, ~700

Uncertainty on lowest-order hadronic vacuum polarization, , dominates

Hadronic correction to the γ propagator not calculable by p-QCD for low $M_{\gamma *}$

a_{μ} – SM prediction vs experiment

Dispersion integral relates $a_{\mu}^{had}(vac\text{-pol})$ to $\sigma(e^+e^- \to hadrons)$


$$a_{\mu}^{\text{had,lo}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{e^+e^- \to \text{hadr}}(s) K(s) \mathrm{d}s$$

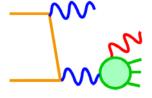
Process $e^+e^- \to \pi^+\pi^-$ @ $\sqrt{s} < 1$ GeV contributes as much as 66% to $a_\mu^{\ had}$ So far, estimates of $a_\mu^{\ had}$ from:

- measuring $\sigma(e^+e^- \to \pi^+\pi^-)$ vs \sqrt{s} at an e^+e^- collider, varying the beam energy (CMD2, 0.9% rel. uncertainty)
- using the spectral function from $\tau^{\pm} \to \pi^{\pm} \pi^0 \nu_{\tau}$ (LEP, CESR data)

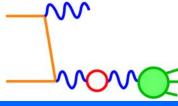
However,
$$a_{\mu}(e^+e^-) - a_{\mu}(\tau) \sim 20 \ 10^{-10}$$

$\sigma(e^+e^- \to \pi^+\pi)$ from $\pi\pi\gamma$ events

Measure $\sigma(e^+e^- \to \pi^+\pi^-\gamma)$ at fixed \sqrt{s} **Exploit ISR to extract** $\sigma(e^+e^- \to \pi^+\pi^-)$ for \sqrt{s} from $2m_\pi \to \sqrt{s}$


$$e^{-}e^{+}$$
, s' hadr, s'

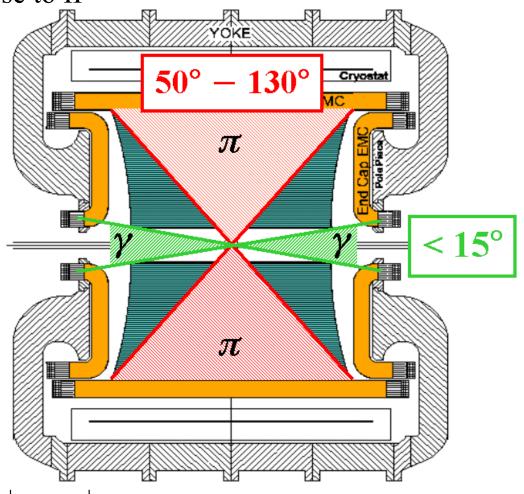
Have to watch out for hard FSR:


- Rate ~ same order as ISR signal
- FSR causes events with $M_{\gamma*} = \sqrt{s}$ to be assigned to lower $\sqrt{s'}$ values

Have to properly include radiative corrections,

Must remove vacuum polarization,

Measurement of $\sigma_{\pi\pi\gamma}$ – Analysis scheme


Two high- θ tracks from a vertex close to IP

Compute photon momentum, without explicit γ detection:

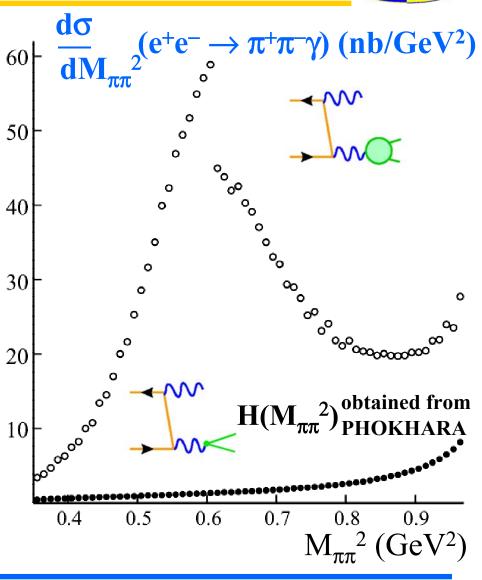
$$p_{\gamma} = p_{e+} + p_{e-} - p_{\pi+} - p_{\pi-}$$

Select signal with a small- θ photon to enhance ISR: $d\sigma_{ISR}/d\Omega \sim 1/\sin^2\theta$

- relative contribution of hard FSR below the % level over entire $M_{\pi\pi}$ spectrum
- Lose events with $M_{\pi\pi} < 600 \text{ MeV}$
- Reduce background

Residual background from $\pi^+\pi^-\pi^0$, $e^+e^-\gamma$, $\mu^+\mu^-\gamma$

$\sigma(\pi\pi\gamma)$ – Preliminary result


Luminosity from $e^+e^-(\gamma)$ counts, $55^{\circ} < \theta_{e} < 125^{\circ}$, σ calculated at 0.5%, experimental accuracy 0.3%

Experimental $M_{\pi\pi}^2$ resolution unfolded in all spectra shown

Radiator function $H(M_{\pi\pi}^2)$, defined as:

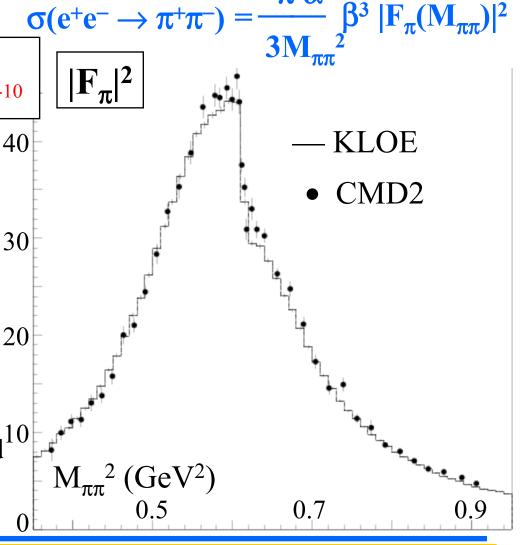
$$\frac{d\sigma(\pi\pi\gamma, M_{\pi\pi}^{2})}{dM_{\pi\pi}^{2}} = H(M_{\pi\pi}^{2}) \sigma(\pi\pi, M_{\pi\pi}^{2}),$$

with inclusion of radiative effects, from QED MC calculation (PHOKHARA, Karlsruhe Theory Group, Kühn et al.)

a_u – Preliminary results

Calculating the dispersion integral,

$$a_{\mu}^{\text{ had-}\pi\pi}(0.35 \le M_{\pi\pi} \le 0.95 \text{ GeV}^2) = (389.2 \pm 0.8_{\text{stat}} \pm 4.7_{\text{syst}} \pm 3.9_{\text{theo}}) \ 10^{-10}$$


• Comparison with CMD2:

$$a_{\mu}^{\text{had-}\pi\pi}(0.37 \le M_{\pi\pi} \le 0.93 \text{ GeV}^2) =$$

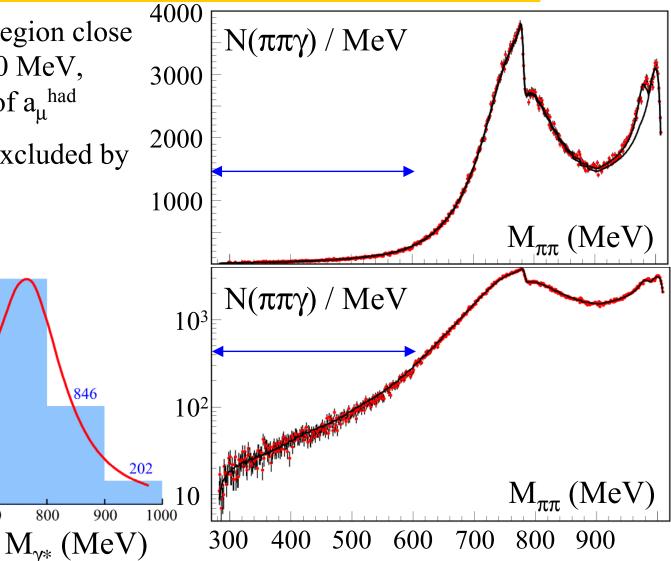
KLOE
$$(376.5 \pm 0.8_{\text{stat}} \pm 5.9_{\text{syst+theo}}) \ 10^{-10}$$

CMD2
$$(378.6 \pm 2.7_{\text{stat}} \pm 2.3_{\text{syst+theo}}) \ 10^{-10}$$

- Measurements are in agreement
- $e^+e^- \tau$ discrepancy is confirmed 10

a_{u} – Prospects

Contribution

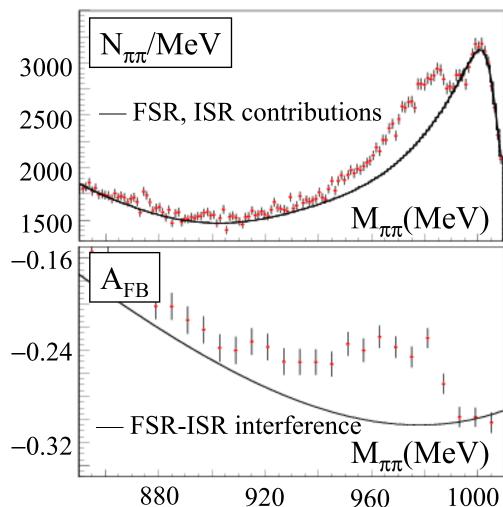

to a_u (x10¹¹)

 $\sigma(\pi\pi)$, nb

Measure $\sigma(\pi\pi)$ in the region close to threshold, $M_{\pi\pi} < 600 \text{ MeV}$, responsible for $\sim 20\%$ of a_{μ}^{had}

This region currently excluded by angular selection

News on $\pi^+\pi^-\gamma$ analysis

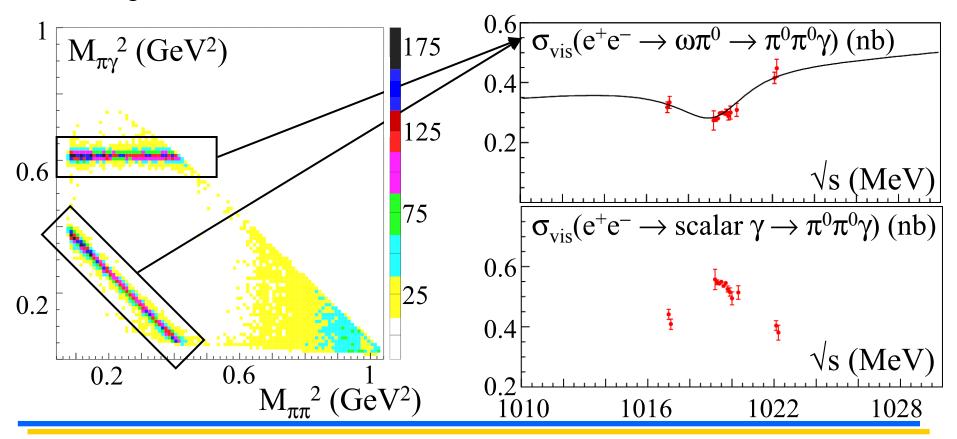


Large-angle events, study of the decay $\phi \rightarrow \gamma f_0 \rightarrow \pi^+\pi^-\gamma$

 $\pi^+\pi^-$ system C-odd in ISR events, C-even in FSR events and scalar decays

FB asymmetry measures ISR-FSR and ISR-scalar interference:

$$A_{FB} = \frac{N_{\pi^+}(\theta > 90^\circ) - N_{\pi^+}(\theta < 90^\circ)}{N_{\pi^+}(\theta > 90^\circ) + N_{\pi^+}(\theta < 90^\circ)}$$


Preliminary evidence for an f₀ contribution

News on analysis of $\pi^0\pi^0\gamma$ final state

450 pb⁻¹ allow for high statistical reach, ~30000 events assigned to scalar + γ Dalitz plot analysis in progress: aims at extracting all possible contributions

- $e^+e^- \to \omega \pi^0$ interferes with ϕ -mediated production
- Line shape for non-ω-mediated final state shows resonant behavior

Outlook – Kaon physics

Present status - K_S :

Sensitivity to BR's at the 10⁻⁷ level (preliminary UL for $K_S \rightarrow 3\pi^0$)

Measurement of K_{e3} mode at the % level, 10^{-2} accuracy on A_S

Expect 2 fb⁻¹ of integrated luminosity in 2004, would allow:

 A_S with a total accuracy of 4 10⁻³, first test of SM prediction $A_S = 2 \text{ Re } \epsilon$

Sensitivity to $K_S \rightarrow 3\pi^0$ at 10^{-8} level

A measurement of BR($K_S \rightarrow \pi^+\pi^-\pi^0$) with 20% relative uncertainty

- First direct measurement
- Test of the χ Pt prediction, BR(K_S $\rightarrow \pi^+\pi^-\pi^0$) = (2.4 ± 0.7) 10⁻⁷

In progress:

Measurement of BR's for semileptonic K_L and K⁺ decays

- Huge statistics, uncertainty will be limited by systematics
- Will clarify situation concerning V_{us}

Outlook – measurement of $\sigma(\pi\pi\gamma)$

Present status:

Analysis at small γ angles almost completed (draft in preparation)

Measurement of a_{μ}^{had} with 6 10⁻¹⁰ total error, $\sigma(e^+e^- \to \pi^+\pi^-)$ at 1.6%

In progress:

Analysis at large γ angles, measure $a_{\mu}^{\ \ had}$ contribution for $M_{\gamma*} < 600 \ MeV$

Contribution of scalar-γ final states

Forward-backward asymmetry

Visible cross section

Normalization to $\mu^+\mu^-\gamma$ events, check of MC calculation

Other ongoing analyses

~ 20 million η 's produced

Search for forbidden η decays:

C violating: BR($\eta \to \gamma \gamma \gamma$) < 1.7 10⁻⁵, 90% CL, hep-ex/0402011

(best world limit)

CP, P violating: BR($\eta \to \pi^+\pi^-$) < 9 10⁻⁶, 90% CL, in progress

Precision studies of meson dynamics:

Dalitz plot analyses of $\eta \to 3\pi$, $\eta \to \pi^0 \gamma \gamma$, and $\eta \to \pi^+ \pi^- \gamma$

Pseudoscalar mixing angle measurements, $\phi \rightarrow \eta' \gamma$ decays:

Analysis of $\pi^+\pi^-3\pi^0\gamma$ final states from decay chain $\eta'\to\eta\pi\pi$, $\eta\to3\pi$ BR($\phi\to\eta'\gamma$) = $(6.04\pm0.10_{stat}\pm0.36_{syst})10^{-5}$, confirming previous KLOE result Can extract mixing angle, uncertainty at 1-degree level

φ-meson properties:

Combined line-shape fit in principal decay channels Measurement of $\Gamma(\phi \to e^+e^-)$ and $\Gamma(\phi \to \mu^+\mu^-)$ from FB asymmetry vs \sqrt{s}