

W/Z Physics at DØ

Nirmalya Parua (for the DØ Collaboration) State University of New York Stony Brook

Les Recontres de Physique de la Vallée d'Aosta Italy, Feb 29-March 6, 2004

Plan of the talk:

- Overview of Tevatron and DØ Detector
- Introduction to W/Z Physics
- Results
- Summary and outlook

Increased center of mass energy 1.8 Tev \rightarrow 1.96 TeV

Increased luminosity

Overview of DØ Detector

>2 Tesla solenoid magnetic field for central tracking system to facilitate charge and momentum measurement.

Silicon and fiber tracker detector.

>Add scintillator detector in muon system for faster trigger

> Pre-shower detectors.

Pipelined 3 Level trigger

Feb 29 – Mar 6, 2004

Overview of the DØ Detector

- Three layers of Scintillator detectors and Drift Tubes divided into two regions central and forward.
- One layer inside toroid magnet and two layer outside.
- > Muon η coverage to ±2
- Shielding reduces backgrounds by factor of 50-100.

- Liquid argon sampling
 - Stable, uniform response, rad. hard, fine spatial seg.
 - LAr purity important (impurity <0.5 ppm)
- Uranium absorber (Cu or Steel for coarse hadronic)
 - Compensating $e/\pi \sim 1$, dense \Rightarrow compact Uniform, hermetic with full coverage

• $|\eta| < 4.2 \ (\theta \approx 2^{\circ}), \ \lambda_{int} > 7.2 \ (total)$

Particle identification

Feb 29 – Mar 6, 2004

Importance of W/Z Physics

- Test of standard model couplings
- Help predicting and test higher order QCD corrections
- Constrains PDFs
- >Helps in understanding detector performance, trigger studies, tuning up algorithms
- >Used to understand background processes of other physics processes like top and Higgs.
- >Can used as independent measurement of integrated luminosity
- Precision measurement of W mass in conjunction to top mass can be used to predict bounds on Higgs mass

Mechanism of W/Z production

D

- W/Z production is dominated by q q
- In RunII millions of Ws and 100ks of Zs will be produced

- > Avoids high QCD background
- ~11% Br per leptonic mode for W
- ~3% Br per leptonic mode for Z
- Clean distinctive signature
- High PT leptons
 - •For W : 1 high p_T lepton and high missing E_T

•For Z : 2 high p_T leptons

Only a portion of the dataset collected so far has been used for the analysis reported here.

$$\sigma \cdot B = \frac{N_{obs} - N_{bkg}}{A\varepsilon \int \mathcal{L}dt}$$

 N_{obs} is the number of events observed N_{bkg} is the estimated number of background events A is the acceptance, derived from Monte Carlo ϵ is the efficiency, computed mostly from data

 $\int \mathcal{L} dt$ is the total integrated luminosity

Selection criteria:

- Two central tracks:
 - loose μ -id
 - pT > 15 GeV
 - opposite charge
- <mark>≻ |η| <1.8</mark>
- > M $_{\mu\mu}$ > 30 GeV
- Cosmic veto
- \geq **1** isolated

 $σ_Z • Br(Z→μ^+μ^-) = 261.8 \pm 5.0 \pm 8.9 \pm 26.2 pb$ stat. syst. lumi.Feb 29 – Mar 6, 2004 Nirmalya Parua <mark>₿₩</mark>Z→e+e⁻

Selection Criteria:

- **>**Two Isolated electrons
 - $E_T > 25 \text{ GeV } \& |\eta| < 1.1$
 - Electrons also must satisfy
 - shower shape, Emfr cuts.

Electron ID efficiency:

-Trigger 98+/-2 %

-EMF, isolation ~100 %

-Shower shape 86+/-1

➢ 70 < M_{ee} <110 Number of Z events after background subtraction 1139 ±42</p>

Drell-Yan Contribution

- Small effect (1.7%) in the mass window of 70 < m_{ee} < 110 GeV
- **QCD Background**
- Determined to be (2.3 ±1.0)% from data by fitting signal and bkg distributions.

DØ: $\sigma_z \bullet Br(Z \rightarrow e+e-) = 275 \pm 9 \text{ (Stat)} \pm 9 \text{ (syst)} \pm 28 \text{ (lumi) pb}$

\mathbf{Z}' search in $\mathbf{Z}' \rightarrow \mathbf{ee}$ Channel

Many extensions of SM predicts the Existence Z'

Look for bumps in the high mass region of the invariant mass distribution.

 $Z \rightarrow \tau^+ \tau^-$

$$\mathbf{Z} \rightarrow \mathbf{\tau} \ (\rightarrow \mu \nu \nu) \ \mathbf{\tau} \ (\rightarrow \pi^{\pm} \nu + n \pi^{\mathbf{0}})$$

Event signature is isolated high $p_{\rm T}$ muon opposite to narrow hadronic jet

Background

- QCD μ from bb or π/K decay
- W $\rightarrow \mu \nu$ or $\tau \nu$ + jet

- $Z \rightarrow \mu\mu$

Handfull of events consistent with SM expectation

Selection Criteria

- One Isolated electrons
 - $E_T > 25 \text{ GeV } \& |\eta| < 1.1$
 - Electrons also must satisfy shower shape, Emfr cuts.
 - Should have track matching
- $> E_T^{miss} > 25 \text{ GeV}$

Backgrounds:

> Dominant source QCD dijet events

Estimated from data

- > W $\rightarrow \tau v \rightarrow e v v v$
 - $Z \rightarrow e e$

Both these two backgrounds are estimated from MC

E_T Distribution of Electrons

Missing E_T Distribution of Electrons

Number of Candidate events after background subtraction 27370 \pm 898

 $σ_W$ • Br(W→e ∨) = 2844 ±21 (stat) ±128 (syst) ± 284 (lumi)

Selection Criteria

- $p_T(\mu) > 20 \text{ GeV}$
- E_T^{miss} > 20 GeV

background subtraction 8302

 $\sigma_{W} \bullet Br(W \rightarrow \mu v) = 3226 \pm 128 \text{ (stat)} \pm 100 \text{ (syst)} \pm 322 \text{ (lumi)}$

Determination of R

$$\mathbf{R} = \frac{\sigma_{W} \cdot Br(W \rightarrow |_{V})}{\sigma_{Z} \cdot Br(Z \rightarrow |^{+}|^{-})}$$

Luminosity error cancels out

Common systematic uncertainty like PDF uncertainty cancels out

DØ RunII Preliminary:
-
$$R_e = 10.34 \pm 0.59$$

- $R_u = 12.32 \pm 0.73$

Summary and Outlook

Preliminary result from W/Z cross sections available and are consistent with SM

> Performance of detectors, triggers, details of simulations are being better understood.

- > Limit on Z' mass already exceeded Run I Limit
- > More data is being collected

➢ More precise results with ~ 200 pb⁻¹ luminosity will be available soon.