

QCD Physics at the Tevatron

Giuseppe Latino

(University of New Mexico)

for the CDF and DØ Collaborations

Highlights on Run II Results:

- Inclusive Jet Cross Section
- DiJet Mass Cross Section
- → W + Jets Production
- Underlying Event Studies

QCD Studies @ Tevatron

Tevatron: *ppb*ar collider at the highest \sqrt{s} ever reached

- All production processes are QCD related: optimal understanding basic for all analyses
 - Fundamental parameters (ex.: high x gluon PDFs)
 - background for each process of interest (ex.: W+Jets for *top* and *Higgs* production)
 - Phenomenology on non-perturbative regime (ex.: Underlying Event modeling)
- Highest Q² probed ($\lambda \sim 10^{-17}$ cm)
 - Precise test of pQCD at NLO
 - \triangleright Check for deviations \Rightarrow look for new physics
- Other studies of interest: diffraction, heavy flavor, hadron spectroscopy

Legacy from Run I Incl. Jet Cross Section

- \triangleright Great interest about high E_T excess
- SM explanation: increased <u>high x</u> contribution in gluon PDF
- ➤ New PDFs from global fit including CDF/DØ high E_T data:

CTEQ6 and MRST01

Great residual uncertainty for gluon PDF at high *x*:

- Green band: all PDFs fitting data
- Lines: ratio to CTEQ5M/HJ, MRST01

New Run II high E_T measurement expected to improve constraint

Tevatron in Run II

Performances (Feb. 2004):

- $L_{ins} \sim 6 \times 10^{31} \, \text{cm}^{-2} \text{s}^{-1}$
- $L_{\rm int} \sim 400 \ {
 m pb}^{-1} \ ({
 m delivered})$

Long term goal (end 2009):

- $L_{\rm ins} \sim 2 \times 10^{32} \, \rm cm^{-2} s^{-1}$
- $L_{\rm int} \sim 4.4 8.5 \; {\rm fb^{-1}}$

FERMILAB'S ACCELERATOR CHAIN

\sqrt{s} : 1.8 TeV \Rightarrow 1.96 TeV

- ► Higher σ_{iet} (~×5 for P_T ~ 600 GeV)
- Increased kinematic range for jet production

Sensible improvement over Run I Results

CDF & DØ in Run II

CDF Upgrades:

- Si detector & Tracking
- Time of Flight detector
- > "Plug" Calorimeters (up to $|\eta| = 3.6$)
- Forward detectors
- Muon system
- DAQ electronics & Trigger

DØ Upgrades:

- Si detector & Tracking
- Solenoid
- Preshower detector
- Forward detectors
- DAQ electronics & Trigger

U/LAr Calorimeters : linear, $e/\pi \sim 1$, hermetic coverage in Ω up to $|\eta| = 4.2$

Inclusive Jet Cross Section

CDF

- NLO pQCD: <u>EKS</u> ($\mu = E_T/2$), $R_{sep} = 1.3$, CTEQ6.1 PDFs
- Experimental uncertainty dominated by E scale
- Largest theoretical error from PDFs (high x gluon)

CDF Run II Preliminary

Extending Run I reach by ~ 150 GeV!

Reasonable data-theory agreement within errors

Ongoing: reduce systematics, MidPoint/K_T, forward jets

Inclusive Jet Cross Section (2)

 $\sigma(\text{Run II}) / \sigma(\text{Run I})$

Higher σ in Run II from $\sqrt{s} = 1.8 \text{ TeV} \Rightarrow 1.96 \text{ TeV}$ Data and theory in reasonable agreement within errors

Inclusive Jet Cross Section (3)

Inclusive Jet Cross Section DØ Run II preliminary NLO QCD (JETRAD) CTEQ6M R_{sep} = 1.3, $\mu_R = \mu_F = \frac{E_T^{max}}{2}$ 1.5 0.5 Jet Transverse Momentum [GeV / c]

DØ

- "Optimized-cone" algorithm (MidPoint)
- NLO pQCD: **JETRAD** ($\mu = E_T^{max}/2$), CTEQ6M & MRST01 PDFs
- Results differ with PDFs, both consistent with measurement
- Reasonable data-theory agreement within errors dominated by E scale
- ➤ Ongoing: reduce errors, K_T, forward jets

Dijet Mass Cross Section

- Test of pQCD complementary to inclusive jet cross section analysis
- Great sensitivity to new physics
- Limits on theoretical parameters: Λ_c , M (new particles)

Preliminary measurements using similar analysis strategies as for σ_I :

- CDF: comparing with Run I results (JetClu R = 0.7, $|\eta| < 2.0$, jet corr.)
- ► DØ: using new techniques (MidPoint R = 0.7, $|\eta| < 0.5$, jet cal.)

Experimental uncertainty dominated by <u>energy scale</u>

Increased √s in Run II extending Run I results

Dijet Mass Cross Section (2)

Dijet Mass Spectrum

DØ

- NLO pQCD: <u>JETRAD</u> $(\mu = E_T^{max}/2)$, CTEQ6M & MRST01 PDFs
- Differences from PDFs, both consistent with measurement
- Reasonable data-theory agreement within errors (E-scale dominated)
- Ongoing: reduce energy scale uncertainty

Dijet Mass Cross Section (3)

- Run I results already extended by ~ 350 GeV!
- Ongoing: MidPoint, improved jet corrections

CDF

- > Higher Run II $\sigma_{M_{JJ}}$ from higher \sqrt{s}
- Data and theory (LO) in reasonable agreement within errors
- \triangleright Consistency with σ_I results

$\sigma(Run\ II)/\sigma(Run\ I)$

Run II Highest E_T Jets

Highest mass dijet event ever (so far...): $M_{JJ} = 1364 \text{ GeV}$:

W + Jets Production

- $ightharpoonup W^{\pm}
 ightharpoonup e^{\pm} \nu$: clean signature
- ightharpoonup RunII: up to n jets = 6
- Backgrounds:
 - QCD important in all bins
 - top dominant at higher multiplicity

- ➤ Test pQCD at high Q^2 ($\ge M_w$)
- Fundamental channel for SM and new physics processes:
 - *top* quark measurements
 - Higgs and Susy searches

Measurement dominated by jet E uncertainty

$W^{\pm} \rightarrow e^{\pm} v + \geq n$ Jet Cross Section

$W^{\pm} \rightarrow e^{\pm}v + \geq n$ Jet Cross Section (2)

Ratio $\sigma_{\geq n}/\sigma_{\geq n-1}$:

- Measure decrease in cross section for each additional jet
- \triangleright Related to α_s value
- Reduced systematics

Run II vrs. Run I:

 $\sigma_{\geq n}$ (Run II) / $\sigma_{\geq n}$ (Run I) > 1 with big uncertainties

Results in agreement with theory within errors

$W^{\pm} \rightarrow e^{\pm}v + \geq n$ Jet Cross Section (3)

Fair data-theory agreement

Kinematic distributions:

- \triangleright Diff. cross sec. vrs. E_T for n-th highest E_T jet in W+ ≥ n jets: reduced dependence on μ
- Dijet invariant mass and angular separation:

sensitive to soft/collinear jet prod.

Underlying Event Studies

Underlying Event:

- Everything except the two outgoing hard scattered jets:
 - hard initial/final state radiation
 - beam-beam remnants
 - multiple parton interactions
- Unavoidable background <u>NOT</u> well defined/modeled theoretically

Phenomenological studies:

Leading calorimeter jet (JetClu R = 0.7, |η| < 2) defines 3 regions of same size in η-φ space

"Transverse" region very sensitive to U.E.

Charged particle ($p_T > 0.5$ GeV/c, $|\eta| < 1$) $\Delta \phi$ correlations with respect to jet #1

Min-bias & jet data vrs. Pythia and Herwig

Underlying Event Studies (2)

"Transverse" region for 2 topologies:

- "Leading jet": no prescription on jet #2
- "Back-to-back": $\Delta \phi_{12} > 150^{\circ}$, $E_T^{j2}/E_T^{j1} > 0.8$
 - \Rightarrow hard ISR and FSR suppressed

Charged particle density vrs $\Delta \phi$:

- "leading jet": ISR/FSR E_T dependent
- "back-to-back": stable versus E_T^{j1}
- lower density in "min-bias" events

Similar results for scalar P_TSum density

Underlying Event Studies (3)

Involving non-pQCD physics:

- Data not well reproduced by current MC with default parameters
- Pythia (6.206) tuned on Run I data with multi-parton interactions

Comparing data with Pythia & Herwig:

- Consider average charged particle and scalar P_TSum density in the "transverse" region versus E_T^{j1} in events "leading jet" and "back-to-back"
- Compare data with MC dijet events after detector simulation
- Pythia (tuned on Run I data) in good agreement with Run II data
- Herwig (no multi-parton interaction) works only at high E_t^{j1}

Conclusions

- A very exciting and important QCD physics program is ongoing at the Tevatron with the increased √s and higher statistics of Run II extending measurements at high Q²
- Some Preliminary results:
 - measured inclusive jet and dijet mass cross sections in reasonable agreement with NLO pQCD + CTEQ6.1/MRST01; jet E scale (high x gluon PDF) uncertainty dominant error for data (theory)
 - W + jets production fairly described by LO MC (Alpgen) + Herwig
 - Underlying Event well described by Pythia (tuned on Run I data)