# Sensitivity to New Physics in $B \rightarrow VV$ Polarization

Alex Kagan

University of Cincinnati

Extensions of Standard Model (SM) often include opposite chirality operators  $(V - A \leftrightarrow V + A)$ , e.g.,

QCD Penguin operators

 $\frac{\text{SM Chirality}}{Q_{3,5} = (\bar{s}b)_{V-A} (\bar{q}q)_{V\mp A}} \xrightarrow{\text{Opposite Chirality}}{\rightarrow \tilde{Q}_{3,5} = (\bar{s}b)_{V+A} (\bar{q}q)_{V\pm A}} \xrightarrow{\tilde{Q}_{3,5} = (\bar{s}b)_{V+A} (\bar{q}q)_{V\pm A}}{\rightarrow \tilde{Q}_{4,6} = (\bar{s}_i b_j)_{V+A} (\bar{q}_j q_i)_{V\pm A}}$ 

Chromo/Electromagnetic Dipole Operators

 $Q_{7\gamma} = \frac{e}{8\pi^2} m_b \bar{s}_i \sigma^{\mu\nu} (1+\gamma_5) b_i F_{\mu\nu} \quad \to \tilde{Q}_{7\gamma} = \frac{e}{8\pi^2} m_b \bar{s}_i \sigma^{\mu\nu} (1-\gamma_5) b_i F_{\mu\nu}$  $Q_{8g} = \frac{g_s}{8\pi^2} m_b \bar{s} \sigma^{\mu\nu} (1+\gamma_5) t^a b G^a_{\mu\nu} \quad \to \tilde{Q}_{8g} = \bar{s} \sigma^{\mu\nu} (1-\gamma_5) t^a b G^a_{\mu\nu}$ 

Electroweak Penguin Operators

$$Q_{7,9} = \frac{3}{2} (\bar{s}b)_{V-A} e_q (\bar{q}q)_{V\pm A} \longrightarrow \tilde{Q}_{7,9} = \frac{3}{2} (\bar{s}b)_{V+A} e_q (\bar{q}q)_{V\mp A}$$
$$Q_{8,10} = \frac{3}{2} (\bar{s}_i b_j)_{V-A} e_q (\bar{q}_j q_i)_{V\pm A} \longrightarrow \tilde{Q}_{8,10} = \frac{3}{2} (\bar{s}_i b_j)_{V+A} e_q (\bar{q}_j q_i)_{V\mp A}$$



**•** Tree-level: Z or Z' exchange

$$Z^{(\prime)}s_L \, b_L \Rightarrow Q_{7,..,10}, \qquad Z^{(\prime)}s_R \, b_R \Rightarrow \tilde{Q}_{7,..,10}$$

### **Helicity final states**

- Three helicity amplitudes in  $\bar{B} \rightarrow V_1 V_2$ 
  - $\mathcal{A}^0$ : both vectors helicity h= 0 (longitudinaly polarized)
  - $A^-$ : both vectors helicity h=-1 (transversely polarized)
  - $A^+$ : both vectors helicity h=+1 (transversely polarized)

Does V - A structure of  $b \rightarrow s(d)$  transitions in SM imply a helicity amplitude hierarchy, or polarization?

**Naive Factorization (NF)** 

Leading order in  $\alpha_s$ ,  $1/m_b$ . Example:  $\bar{B} \rightarrow \phi K^*$ 



$$\mathcal{A}^{h} \quad \propto <\phi^{h}|\bar{s}\gamma^{\mu}s|0> < K^{*\,h}|\bar{s}\gamma_{\mu}\gamma_{5}b|\bar{B}>, \quad h=0,-,+$$

 $\propto$  decay constant  $\times$  form factor

Quark helicity-flip requires transverse momentum,  $k_{\perp}$ 

 $\Rightarrow \Lambda_{QCD}/m_b$  suppression



•  $\mathcal{A}^0 = O(1), \quad \mathcal{A}^- = O(1/m), \quad \mathcal{A}^+ = O(1/m^2)$ 

•  $\mathcal{A}^-/\mathcal{A}^0 = \mathcal{O}(m_{\phi}/m_B)$ , helicity of  $\bar{s}$  in  $\phi$  flipped

•  $\mathcal{A}^+/\mathcal{A}^- = \mathcal{O}(\Lambda_{QCD}/m_b)$ , helicity of s in  $K^*$  flipped

power counting follows formally from large energy form factor relations of Charles et al



 $V_2$ : two upward lines,  $V_1$ : Form factor vector meson

• contributions to the helicity amplitudes,  $\mathcal{A}^h(V_1V_2)$ :

$$\mathcal{A}^{0}(V_{1}V_{2}) \propto f_{V_{2}} m_{B}^{2} \zeta_{\parallel}^{V_{1}} = O(1)$$
  
$$\mathcal{A}^{-}(V_{1}V_{2}) \propto -2f_{V_{2}} m_{V_{2}} m_{B} \zeta_{\perp}^{V_{1}} = O\left(\frac{1}{m}\right)$$
  
$$\mathcal{A}^{+}(V_{1}V_{2}) \propto -f_{V_{2}} m_{V_{2}} m_{B} \times O(\zeta_{\perp}^{V_{1}} \frac{\Lambda_{QCD}}{m_{b}}) = O\left(\frac{1}{m^{2}}\right)$$

- $\mathcal{A}^-$ : quark helicity-flip costs 1/m
- $\mathcal{A}^+$ : additional helicity-flip  $\implies$  form factor suppression 1/m

Transverse amplitudes in transversity basis:

$$A_{\perp,\parallel} \equiv (A^- \pm A^+)/\sqrt{2}$$

In naive factorization, rates satisfy

$$\frac{\Gamma_{\perp}}{\Gamma_{\parallel}} = 1 + O\left(\frac{1}{m_b}\right)$$

**•** Total transverse rate,  $\Gamma_T = \Gamma_{\perp} + \Gamma_{\parallel}$ , satisfies

$$\frac{\Gamma_{\rm T}}{\Gamma_0} = O\left(\frac{1}{m_b^2}\right)$$

• Experimental situation  $R_{0,\perp,\parallel} \equiv \Gamma_{0,\perp,\parallel} / \Gamma_{\text{total}}$ 

 $R_0(B^0 \to \phi K^{*0})_{\text{Babar, Belle}} = 0.58 \pm 0.10, \ R_0(B^+ \to \phi K^{*+})_{\text{Babar}} = 0.46 \pm 0.12$  $R_\perp(B^0 \to \phi K^{*0})_{\text{Belle}} = 0.41 \pm 0.11, \ R_\parallel(B^0 \to \phi K^{*0})_{\text{Belle}} = .001 \pm 0.15$ 

$$R_0(B^+ \to \rho^0 K^{*+})_{\text{Babar}} = 0.96 \pm 0.16, \quad R_0(B^+ \to K^{*0}\rho^+) = ?$$
$$R_0(B^+ \to \rho^+\rho^0)_{\text{Babar, Belle}} = 0.96 \pm 0.06, \quad R_0(B^0 \to \rho^+\rho^-)_{\text{Babar}} = 0.99 \pm 0.08$$

■ NF power counting ⇒ New Physics in  $R_0(B \to \phi K^*)$ 

 Is power counting preserved by non-factorizable graphs? (penguin contractions, vertex corrections, spectator interactions, annihilation graphs)

Can address in QCD factorization

#### Non-factorizable amplitudes in QCD factorization (Beneke et al)



- convolutions of short-distance scattering amplitudes with long-distance meson light-cone distribution amplitudes
  - 'Twist-expansion' for distributions:

$$\text{Twist}-2 = O(1), \quad \text{Twist}-3 = O\left(\frac{1}{m_b}\right), \quad \text{Twist}-4 = O\left(\frac{1}{m_b^2}\right)$$

• Leading power in  $1/m_b$ , all orders in  $\alpha_s$ : amplitudes factorize into calculable short-distance part /long-distance part given in terms of universal non-perturbative parameters

Formal proof in Soft Collinear Effective Theory is near

## **Subleading powers**

• At subleading powers  $\leq 1/m_b$ 

short / long distance separation breaks down. Certain graphs soft dominated

 Signaled by infrared log divergence in light cone quark momentum fraction x,

$$\int_0^1 \frac{dx}{x} \sim \ln \frac{m_b}{\Lambda_h}, \quad \text{physical IR cutoff } \Lambda_h \sim \Lambda_{QCD}$$

- Challenge: transverse amplitudes begin at O(1/m)
   Can we say anything about polarization? Strategy:
  - parametrize uncertainties for log divergences
  - hope observables not sensitive to them

## Power counting for helicity amplitudes in QCD factorization

work to next-to-leading order in  $\alpha_s$ 

1) Penguin contractions: charm quark, up quark loops



Each helicity-flip costs  $\frac{1}{m}$ : one unit of twist or form factor (FF) suppression

– p.1

2) Penguin contractions: chromomagnetic dipole operator  $Q_{8g}$ 



Contribution of  $a_4^0$  to  $\mathcal{A}^0$  is O(1). All other contributions vanish!

Physical reason? would require coupling to longitudinal component of gluon but:

dipole operator tensor current only couples to transverse component

- Important implications for NEW PHYSICS
  - Anomalies in  $S(\phi K_s)$ ,  $S_0(\phi K^*)$ , but NO anomaly in  $S_{\perp,\parallel}(\phi K^*) \Rightarrow$  new physics in dipole operators.
  - Anomaly in  $S_{\perp,\parallel}(\phi K^*) \Rightarrow$  new physics in four-quark operators

3) Vertex corrections:



|                 | $\mathcal{A}^{0}$             | $\mathcal{A}^-$                                                      | $\mathcal{A}^+$                      |
|-----------------|-------------------------------|----------------------------------------------------------------------|--------------------------------------|
| $a_{1,,4,9,10}$ | O(1)                          | $O\left(\frac{1}{m_b}\right)$                                        | $O\left(\frac{1}{m_b^2}\right)$      |
|                 |                               | twist- $3^{V_2}$                                                     | twist- $3^{V_2} \times FF^{V_1}$     |
| $a_{1,,4,9,10}$ | O(1)                          | $O\left(\frac{1}{m_b}\right)$                                        | $O\left(\frac{1}{m_b^2}\right)$      |
|                 |                               | twist- $3^{V_2}$                                                     | twist- $3^{V_2} \times FF^{V_1}$     |
| $a_{6,8}$       | $O\left(\frac{1}{m_b}\right)$ | $\leq O\left(\frac{1}{m_b^3}\right)$                                 | $\leq O\left(\frac{1}{m_b^2}\right)$ |
|                 | twist- $3^{V_2}$              | twist-4 <sup><math>V_2</math></sup> × FF <sup><math>V_1</math></sup> | twist-4 $V_2$                        |

Each helicity-flip costs  $\frac{1}{m}$ : one unit of twist or FF suppression



$$A^{0} = O(1), \qquad A^{-} = O\left(\frac{1}{m}\ln\frac{m}{\Lambda_{h}}\right), \qquad A^{+} = O\left(\frac{1}{m^{2}}\ln\frac{m}{\Lambda_{h}}\right)$$

- overall parametric suppression:  $\frac{C_F}{N_c^2} \frac{f_B}{m_B \zeta} \approx .02$
- Soft spectator limit in  $V_1 \implies$  Log divergences

#### Spectator interaction summary:



 $V_2$ : two upward lines,  $V_1$ : Forr

 $V_1$ : Form factor vector meson

|                 | $\mathcal{A}^0$ | $\mathcal{A}^-$                                   | $\mathcal{A}^+$                                     |
|-----------------|-----------------|---------------------------------------------------|-----------------------------------------------------|
| $a_{1,,4,9,10}$ | O(1)            | $O\left(\frac{1}{m}\ln\frac{m}{\Lambda_h}\right)$ | $O\left(\frac{1}{m^2}\ln\frac{m}{\Lambda_h}\right)$ |
|                 |                 | twist- $3^{V_2}$                                  | twist-3 $V_1$ × twist-3 $V_2$                       |
| $a_{5,7}$       | O(1)            | $O\left(\frac{1}{m}\ln\frac{m}{\Lambda_h}\right)$ | $O\left(\frac{1}{m^2}\ln\frac{m}{\Lambda_h}\right)$ |
|                 |                 | twist- $3^{V_2}$                                  | twist- $3^{V_1} \times$ twist- $3^{V_2}$            |
| $a_{6,8}$       |                 | $O\left(\frac{1}{m}\ln\frac{m}{\Lambda_h}\right)$ | $O\left(\frac{1}{m^2}\ln\frac{m}{\Lambda_h}\right)$ |
|                 |                 | twist- $3^{V_1}$                                  | twist-4 $V_2$                                       |

• Each helicity-flip costs one unit of twist or  $\frac{1}{m_b}$ 

5) Annihilation graphs: e.g.,  $a_6 < (\bar{d}b)_{S-P} \times (\bar{s}d)_{S+P} >$ 



$$\mathcal{A}^0, \ \mathcal{A}^- = O\left(\frac{1}{m^2}\ln^2\frac{m}{\Lambda_h}\right), \qquad \mathcal{A}^+ = 0$$

- annihilation topology  $\implies$  overall 1/m
- helicity-flips  $\implies$  rest of 1/m factors, or twists:
- overall parametric suppression:  $\frac{C_F}{N_c^2} \frac{f_B}{m_B \zeta} \approx .02$

#### Annihilation summary:



|                        | $\mathcal{A}^0$                         | $\mathcal{A}^-$                                | $\mathcal{A}^+$                         |
|------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|
| $A_{1}^{i}, A_{2}^{i}$ | $\frac{1}{m}\ln\frac{m}{\Lambda_h}$     | $\frac{1}{m^3}$ (lin div) $\sim \frac{1}{m^2}$ | $\frac{1}{m^3}\ln^2\frac{m}{\Lambda_h}$ |
| $A_1^f, A_2^f$         |                                         | $\frac{1}{m^3}\ln\frac{m}{\Lambda_h}$          | $\frac{1}{m^3}\ln\frac{m}{\Lambda_h}$   |
| $A_3^{i,f}$            | $\frac{1}{m^2}\ln^2\frac{m}{\Lambda_h}$ | $rac{1}{m^2}\ln^2rac{m}{\Lambda_h}$          | $< \frac{1}{m^3}$                       |
| Totals                 | $\frac{1}{m}\ln\frac{m}{\Lambda_h}$     | $\frac{1}{m^2}\ln^2\frac{m}{\Lambda_h}$        | $\frac{1}{m^3}\ln\frac{m}{\Lambda_h}$   |

• NF power counting  $(1, \frac{1}{m}, \frac{1}{m^2})$  preserved

• Each helicity-flip  $\implies$  one unit of twist,  $\frac{1}{m}$ 

6) Higher Fock states with collinear gluons: e.g.,



•  $V_2(q\bar{q}g)$  has negative helicity but:

 $\phi(q\bar{q}g)$  distribution amplitudes are twist-3  $\Rightarrow \frac{1}{m}$ 

 $\implies \mathcal{A}^- \sim O(1/m)$ 

 $\mathcal{A}^+$  could be obtained via, e.g.,

 $V_2(q\bar{q}g) + V_1(q\bar{q}g) \implies \mathcal{A}^+ \sim O(1/m^2)$ 

•  $(q\bar{q}g)$  states preserve NF power counting

#### **Power counting summary**

NF +  $O(\alpha_s)$  corrections (penguin contractions, vertex corrections):

$$A^{0} = O(1), \qquad A^{-} = O\left(\frac{1}{m}\right), \qquad A^{+} = O\left(\frac{1}{m^{2}}\right)$$

Spectator interactions:

$$A^0 = O(1), \qquad A^- = O\left(\frac{1}{m}\ln\frac{m}{\Lambda_h}\right), \qquad A^+ = O\left(\frac{1}{m^2}\ln\frac{m}{\Lambda_h}\right)$$

Annihilation graphs:

$$A^{0} = O\left(\frac{1}{m}\ln\frac{m}{\Lambda_{h}}\right), \quad A^{-} = O\left(\frac{1}{m^{2}}\ln^{2}\frac{m}{\Lambda_{h}}\right), \quad A^{+} = O\left(\frac{1}{m^{3}}\ln\frac{m}{\Lambda_{h}}\right)$$

Each quark helicity-flip costs 1/m: via one unit of twist, or form factor suppression

## Numerical study

- - 'tree-level' (W-exchange) operator dominated
  - CKM suppressed electroweak penguin graphs
  - no QCD penguin, annihilation graphs

$$10^{6} \operatorname{Br} = \left[25.2^{+3.6}_{-2.1} (\text{ leading power}) \pm 1.5 \left(\frac{1}{m}\right)\right] \times \left[\frac{|V_{ub}|}{.037} \frac{\zeta_{\parallel}^{B \to \rho}}{.37}\right]^{2}$$

$$R_0 = .97 \pm .02(\zeta_{\parallel,\perp}) \pm .01(\text{ leading power}) \pm .01\left(\frac{1}{m}\right)$$

• 
$$R_0^{\text{exp}} = .96 \pm .06, \quad 10^6 \,\text{Br}^{\text{exp}} = 27.0 \pm 5.8$$

## 

- QCD penguin dominated
- One penguin operator annihilation graph could be important
- $O\left(\frac{1}{m_b^2}\ln^2\frac{m_b}{\Lambda_h}\right)$  but large Wilson coefficient, color factor
- modeling log divergence uncertainties in annihilation Beneke et al:

$$\int_0^1 \frac{dx}{x} \to X_A = (1 + \varrho_A e^{i\varphi_A}) \ln \frac{m_B}{\Lambda_h}; \quad \varrho_A \lesssim 1, \quad \Lambda_h \approx 0.5 \,\text{GeV}$$

Arbitrary strong phases  $\varphi_A$  from soft rescattering

Longitudinal BR vs.  $\rho_A^0$ , Transverse BR vs.  $\rho_A^-$ 



Blue bands: uncertainty due to variation of input parameters ( $\phi_A^{0,-} = 0$ ). Yellow bands: include uncertainty from variation of  $\phi_A^{0,-}$ , variation of other annihilation and log divergent spectator interactions.

- Large sensitivity to annihilation / log divergences
- With annihilation can account for 'large' transverse rate:  $10^{6} Br_{T}^{exp} = 4.5 \pm 0.8$  (Babar+Belle)
- can account for  $\Gamma_0 ≈ \Gamma_T$ , as observed

Does NF prediction

$$rac{\Gamma_{\perp}}{\Gamma_{\parallel}} = 1 + O\left(rac{\Lambda_{QCD}}{m_b}
ight)$$
 survive?



Scatter plot for  $\Gamma_{\perp}/\Gamma_{\parallel}$  VS.  $Br_T$ : varied all inputs, including for annihilation, hard spectator interactions, over full ranges. blue:  $\zeta_{\perp}$  from  $B \to K^* \gamma$  rate; green:  $\zeta_{\perp}$  from QCD sum rules

- p.2-

- Full scan of theoretical input parameters.
  - SCET  $\Rightarrow$  FF for  $\mathcal{A}^+$  is  $O\left(\zeta_{\perp} \frac{\Lambda_{QCD}}{m_b}\right)$ . Take  $[-0.2 \zeta_{\perp}, +0.2 \zeta_{\perp}]$ . (QCD sum rules give  $\approx .04 \zeta_{\perp}$ )

• 
$$ho_{A_i} \leq 1$$
,  $\phi_{A_i} = [0, 2\pi]$ .

- In the angular analysis, can measure strong phase differences between the transversity amplitudes. Reduce predicted range for  $\Gamma_{\perp}/\Gamma_{\parallel}$ .
- Obtain sensitive test of SM V A structure. Deviation implies new right-handed currents

**Right-handed currents, or opposite chirality**  $\tilde{Q}_i$ 

$$A_{\perp,\parallel} \equiv \frac{\mathcal{A}^+ \pm \mathcal{A}^-}{\sqrt{2}}$$

dependence on SM, NP Wilson coefficients:

 $A_{0,\parallel} \propto C_i^{\rm SM} + C_i^{\rm NP} - \tilde{C}_i^{\rm NP}, \qquad A_{\perp} \propto C_i^{\rm SM} + C_i^{\rm NP} + \tilde{C}_i^{\rm NP}$ 

- Example: Opposite chiraliy QCD penguin operators with strenghth  $\approx 0.2 \times$  strenghth of SM operators  $\Rightarrow \Gamma_{\perp}/\Gamma_{\parallel} \approx 2$

#### Summary

- Observed dominance of longitudinal polarization in  $B \rightarrow \rho \rho$ modes well reproduced, with small theoretical errors
- Very large theoretical uncertainty in penguin dominated decays due to QCD penguin annihilation graph ( $Q_6$ )
  - can account for  $\Gamma_{\perp} \approx \Gamma_0$  in  $B \to \phi K^*$ .
  - But  $\Gamma_0 \gg \Gamma_{\perp}$  in  $B \to K^{*0} \rho^{\pm}$  would imply new physics in  $b \to s\bar{s}s$
- Predict

$$\frac{\Gamma_{\perp}}{\Gamma_{\parallel}} = 1 \pm 0.3$$

 $\Rightarrow$  sensitive test for right-handed currents in  $b \rightarrow s$  transitions

Comparison of CP asymmetries in 0, ⊥, || transversities can further discriminate between different new physics operators