Results from the K2K Experiment

KK Joo (Seoul National Univ) for the K2K collaboration

XVIII Rencontres de Physique de La Vallee d'Aoste

2004/02/29-03/06

K2K (KEK to Kamioka) long-baseline neutrino experiment is the first accelerator-based experiment to investigate the neutrino oscillation observed in atmospheric neutrinos

□ Neutrino beam:

almost pure v_{μ} (99%)

 $\Box < E_{v} > \sim 1.3 \text{GeV}$

Contents

Data Accumulation (K2K-I, K2K-II)
 Brief Introduction of K2K, SK Detector
 Result of Oscillation Analysis (K2K-I)
 Search for v_e Appearance (K2K-I)
 New SciBar Detector @Near Detector
 Summary

□ K2K (KEK to Kamioka) Experiment Period:

- K2K-I: 1999.3 2001.7
- Experiment resumed successfully
- K2K-II: 2002.12 Present
 - + K2K-IIa: 2002.12.21 ~
 - + K2K-IIb: 2003.10.03 ~
 - + K2K-IIb period (with SciBar detector)
- K2K-I: USA, Japan, Korea
- K2K-II: EU, Canada group joined
 - + EU: Barcelona/Geneva/INR/Rome/Saclay/Valencia/ Warsaw/Solton
 - + Canada: TRIUMF/UBC

K2K Collaboration

JAPAN: High Energy Accelerator Research Organization (KEK) • Institute for Cosmic Ray Research (ICRR), University of Tokyo Kobe University / Kyoto University Niigata University / Okayama University Tokyo University of Science / Tohoku University KOREA: Chonnam National University Dongshin University / Korea University Seoul National University **U.S.A.:** Boston University / University of California, Irvine University of Hawaii, Manoa Massachusetts Institute of Technology State University of New York at Stony Brook University of Washington at Seattle **POLAND:** Warsaw University / Solton Institute • Since 2002 **JAPAN:** Hiroshima University, Osaka University **CANADA:** TRIUMF / University of British Columbia EUROPE: Rome / Saclay / Barcelona / Valencia / Geneva **RUSSIA: INR**

PS: 12GeV proton 1.1µsec spill/2.2sec ~6x10¹² protons/spill

Primary beam line

Near Detector (1kton water, Scintillating Fiber, Muon)

Remove Lead Glass(LG) detector to explore low energy region

SK direction

Far Detector (Super- Kamiokande)

39m

SK-I: Mar 1996 – Jul 2001 SK-II: Dec 2002 - Present

Water Cherenkov detector

1000 m underground
 50,000 ton
 11,146 20 inch PMTs

Typical Event @ Near Detector

detector

(K2K-I)

Event Display @ SK

Muon Neutrino Candidate Event, 692MeV

Neutrino Direction Measured by MRD

Beam Profile Comparsion

Spectrum Stability

Spectrum stability is confirmed by the measurements of energy and angle of muons produced in the CC interactions by MRD.

Arrival Time of Super-Kamiokande Events

Oscillation Analysis (K2K-I)

Published in PRL 90 (2003) 041801-1

Spectrum Measurements @ ND

- <u>**1KT</u>** : P_{u} < 1.5 GeV/c, 4π acceptance ...</u>
 - 1-ring μ-like(1Rμ) fully contained in Fid.25ton(FC) : 22,476ev.
- <u>SciFi</u> : P_{μ} >1GeV/c, θ_{μ} <60deg.
 - 1-track μ -like : 5963ev.
 - 2-track QE-like ($\Delta \theta_p$ <25deg.) : 764ev.
 - 2-track nonQE-like ($\Delta \theta_p$ >30deg.) : 1288ev.
- <u>PIMON</u>
 - π (p, θ) distribution \Rightarrow Neutrino Spectrum (>1GeV)

Measured Spectrum @ Near Detector

Result of Oscillation Analysis (K2K-I)

Reconstructed E_v

K2K allowed region

- The best fit spectrum shape agrees with the observation

□ Result of K2K-I:

- (June 1999 ~ July 2001)
- Use # of event + Spectrum shape analysis
- Total 5.6x10¹⁹ POT v beam are delivered
- Based on ~200.000 events @K2K,

N_{expected} @SK is 80.1(+6.2_-5.4</sub>) events

- N_{observed} @SK is 56 events
 - Δm² ~ 1.5~3.9x10⁻³ eV² @sin²2Θ=1(90%CL)

Search for v_e Appearance in K2K-I

One single e-like Cherenkov ring is the signature of v_e appearance
 Both the Cherenkov ring pattern & opening angle are required to select an electron event
 E_{visible} > 100 Mev : to reject low momentum charged π & e from μ decay

Summary of Event Reduction ($v_{\mu} \rightarrow v_{e}$)

DATA set: June 99 – July 01 ($4.8 \times 10^{19} \text{ POT}$)

	DATA	V _μ MC (w/o osc)	beam V _e MC	$rac{{f V}_{e} \text{ from } {m u}_{\mu}}{\sin^2 2 heta_{\mu e}}$ =1 , Δm^2 =2.8x10 ⁻³ eV ²
FCFV	56	80	0.82	28
Single ring	32	50	0.48	20
PID (e-like)	1	2.9	0.42	18
E _{vis} >100MeV	1	2.6	0.41	18
w/o decay-e	1	2.0	0.35	16

Comparison to Other Experiments $(v_{\mu} \rightarrow v_{e})$

Search for Electron Neutrino Appearance in a 250 km Long-baseline Experiment

M.H.Ahn,¹ S.Aoki,² Y.Ashie,³ H.Bhang,¹ S.Boyd,^{4,*} D.Casper,⁵ J.H.Choi,⁶ S.Fukuda,³ Y.Fukuda,⁷ R.Gran,⁴
 T.Hara,² M.Hasegawa,⁸ T.Hasegawa,⁹ K.Hayashi,⁸ Y.Hayato,¹⁰ J.Hill,^{11,*} A.K.Ichikawa,¹⁰ A.Ikeda,¹² T.Inagaki,^{8,*}
 T.Ishida,¹⁰ T.Ishii,¹⁰ M.Ishitsuka,³ Y.Itow,³ T.Iwashita,¹⁰ H.I.Jang,^{6,*} J.S.Jang,⁶ E.J.Jeon,¹ K.K.Joo,¹ C.K.Jung,¹¹ T.Kajita,³ J.Kameda,¹⁰ K.Kanevuki,³ I.Kato,⁸ E.Kearns,¹³ A.Kibayashi,¹⁴ D.Kielczewska,^{15,16} B.J.Kim,¹

T.Kajita,⁵ J.Kameda,¹⁶ K.Kaneyuki,⁶ I.Kato,⁶ E.Kearns,¹⁶ A.Kibayashi,¹⁷ D.Kielczewska,¹⁴ B.J.Kim,⁷ C.O.Kim,¹⁷ J.Y.Kim,⁶ S.B.Kim,¹ K.Kobayashi,¹¹ T.Kobayashi,¹⁰ Y.Koshio,³ W.R.Kropp,⁵ J.G.Learned,¹⁴ S.H.Lim,⁶

I.T.Lim,⁶ H.Maesaka,⁸ T.Maruyama,^{10, *} S.Matsuno,¹⁴ C.Mauger,^{11, *} C.Mcgrew,¹¹ A.Minamino,³ S.Mine,⁵ M.Miura,³ K.Miyano,¹⁸ T.Morita,⁸ S.Moriyama,³ M.Nakahata,³ K.Nakamura,¹⁰ I.Nakano,¹² F.Nakata,² T.Nakaya,⁸ S.Nakayama,³ T.Namba,³ R.Nambu,³ K.Nishikawa,⁸ S.Nishiyama,² S.Noda,² Y.Obayashi,³ A.Okada,³ Y.Oyama,¹⁰

M.Y.Pac,¹⁹ H.Park,^{10, *} C.Saji,³ M.Sakuda,¹⁰ A.Sarrat,¹¹ T.Sasaki,⁸ N.Sasao,⁸ K.Scholberg,²⁰ M.Sekiguchi,² E.Sharkey,¹¹ M.Shiozawa,³ K.K.Shiraishi,⁴ M.Smy,⁵ H.W.Sobel,⁵ J.L.Stone,¹³ Y.Suga,² L.R.Sulak,¹³ A.Suzuki,² Y.Suzuki,³ Y.Takeuchi,³ N.Tamura,¹⁸ M.Tanaka,¹⁰ Y.Totsuka,¹⁰ S.Ueda,⁸ M.R.Vagins,⁵ C.W.Walter,¹³ W.Wang,¹³ R.J.Wilkes,⁴ S.Yamada,^{3, *} S.Yamamoto,⁸ C.Yanagisawa,¹¹ H.Yokoyama,²¹ J.Yoo,¹ M.Yoshida,²² and J.Zalipska¹⁶

(The K2K Collaboration)

¹ Department of Physics, Seoul National University, Seoul 151-742, KOREA ² Kobe University, Kobe, Hyogo 657-8501, JAPAN

³ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, JAPAN ⁴ Department of Physics, University of Washington, Seattle, WA 98195-1560, USA ⁵ Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA Department of Physics, Chonnam National University, Kwangju 500-757, KOREA ⁷ Department of Physics, Miyaqi University of Education, Sendai 980-0845, JAPAN Department of Physics, Kyoto University, Kyoto 606-8502, JAPAN ⁹ Research Center for Neutrino Science, Tohoku University, Sendai, Miyaqi 980-8578, JAPAN ¹⁰ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, JAPAN ¹¹ Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA ¹² Department of Physics, Okayama University, Okayama, Okayama 700-8530, JAPAN 13 Department of Physics, Boston University, Boston, MA 02215, USA ¹⁴ Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA ¹⁵ Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, POLAND ¹⁶ A. Soltan Institute for Nuclear Studies, 00-681 Warsaw, POLAND ¹⁷ Department of Physics, Korea University, Seoul 136-701, KOREA ¹⁸ Department of Physics, Niigata University, Niigata, Niigata 950-2181, JAPAN ⁹ Department of Physics, Dongshin University, Naju 520-714, KOREA ²⁰ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Physics, Tokyo University of Science, Noda, Chiba 278-0022, JAPAN Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, JAPAN

(Dated: February 11, 2004)

We present a search for electron neutrino appearance from accelerator produced muon neutrinos in the K2K long baseline neutrino experiment. One candidate event is found in the data corresponding to an exposure of 4.8×10^{19} protons on target. The expected background in the absence of neutrino oscillations is estimated to be 2.4 ± 0.6 events and is dominated by mis-identification of events from neutral current π^0 production. We exclude the ν_{μ} to ν_e oscillations at 90% C.L. for $\sin^2 2\theta_{\mu e} > 0.15$ at $\Delta m_{\mu e}^2 = 2.8 \times 10^{-3} \text{eV}^2$, the best fit value of the ν_{μ} disappearance analysis in K2K. The most stringent limit of $\sin^2 2\theta_{\mu e} < 0.09$ is obtained at $\Delta m_{\mu e}^2 = 6 \times 10^{-3} \text{eV}^2$.

PACS numbers: PACS numbers: 14.60.Pq, 13.15.+g, 23.40.Bw, 95.55.Vj

In 1998, the Super-Kamiokande (SK) collaboration reported evidence of neutrino oscillation based on atmospheric neutrino observations favoring large mixing between ν_{μ} and ν_{τ} and a Δm^2 near $2.2 \times 10^{-3} \text{eV}^2$ [1]. Subsequently, solar neutrino data from various experiments have indicated ν_e disappearance as a result of neutrino oscillations to other active neutrino flavors (ν_{μ} or ν_{τ}) with large mixing and a Δm^2 near $5 \times 10^{-5} \text{eV}^2$ [2, 3]. The KamLAND experiment also observes a deficit of reactor

 $\overline{\nu}_e$ consistent with the same parameter values [4] as those in the solar neutrinos. Recently, the KEK to Kamioka long-baseline neutrino oscillation experiment (K2K) [5] reported indications of $\nu_{\mu} \rightarrow \nu_x$ oscillation using an accelerator produced ν_{μ} beam. The measurement of ν_{μ} disappearance in K2K results in neutrino oscillation parameters which are consistent with the values derived from the atmospheric neutrino oscillations.

Measurements of atmospheric and solar neutrinos sug-

Submitted to PRL (Feb 11, 2004)

From K2K-I result,

Need to study low energy neutrino interactions

Need for New Detector

 Detect low energy v interactions below 1GeV to maximize the sensitivity

Requirements:

- Tracking detector
- Can detect low momentum protons
- P/π/µ separation
- Fairly large fiducial volume
- e-ID and energy measurement

Need for a new detector to replace Lead Glass(LG) detector

K2K Upgrade (SciBar Detector)

SciBar Detector Components

Front End Board (FEB)

Size: 10 x 17cm

40 pin flat cable connector

~300 FEBs have been made & tested at SNU
Installed at K2K site during the summer of 2003

Side View

Installation Completed

Top View

- Signal cable, HV cable are connected & well arranged

SciBar Event Display

Run 4999, Spill 19016, beam trigger

Event Gallery

Many different kinds of v events are observed

- 3 track events
- π^{0} events
- v_e events
- µ track + hadronic
 - interaction
- Single track events

Interesting Cosmic-ray Event

Side View

Top View

Extensive analysis is under way

□ Expected to have many good results from SciBar detector soon

Summary

□ With K2K-I data, oscillation analysis has been done

□ Search for v_e appearance has been made

- \Box Excluded region is set for the v_µ -> v_e oscillation
- K2K-II data taking is under way & going very smoothly
- New detector SciBar has been constructed & working well
- Expected to a good results from a new detector
- □ All results will be updated by May, 2004

Systematic Errors $(v_{\mu} \rightarrow v_{e})$

- Particle ID
 - shift likelihood distributions in MC
 - +11%-11% in νμ BG
 - +7%-12% in ve appearance signal

Ring Counting

- shift likelihood distributions in MC
 - +15%-13% in νμ BG
- compare likelihood of atm.v DATA and MC
 - \pm 6% in ve appearance signal
- NC Cross Section
 - change NC cross section within 30%
 - +20%-25% in νμ BG

Systematic errors in the expected number of v_{μ} BG in SK

 Horn current & target diameter were different in June 99 from the other period

	Jun.'99	Nov.'99~
(FV) ε _{1KT}	±4%	±4%
(FV) ε _{sκ}	±3%	±3%
Ring count	+15%	+15%
	-13%	-13%
PID	± 11%	± 11%
Far/Near	+15%	\pm 6%
ratio	-11%	
Spectrum	±14%	± 1%
	000/	. 000/
NC Cross	+22%	+20%
Section	_27%	-25%
CC –nQE cross section	± 1%	\pm 0.4%
POT normalization	± 0.9%	± 0.6%
Total	±36%	+33%
		-31%

Electron Candidate

π^0 in K2K-SK

check for amount of π^0 production

π0 : FCFV & 2 e-like ring & 90<mass<190MeV & Evis>100MeV w/o decay-e
ve : FCFV & 1 e-like(tight) ring & Evis>100MeV w/o decay-e

	DATA	νμ ΜC
		(NC w/ π ⁰)
FCFV	56	80.1
		(7.7)
π0	2	2.6
		(2.4)
ve	1	2.0
		(1.7)

Reconst. Mass (MeV)

Expectation by vµ MC is consistent with observed 2 events

K2K-I에서 관측한 중성미자

Detector	P.O.T.	Observed Events	SK Expected (w/o oscillation)
<mark>1 kt</mark> (25t, H₂O)	4.24x10 ¹⁹	~80K	80.6 ±0.3(stat) +7.3(sys)-8.0(sys)
SciFi (5.9t, H ₂ O+AI)	4.20x10 ¹⁹	7,240	87.6 ±1.03(stat) +10.6(sys)-11.9(sys)
MRD (73t, Fe)	4.19x10 ¹⁹	~125K	87.4 ±0.24(stat) +12.7(sys)-13.9(sys)