

LaThiule, March 3, 2004

Dr. B. Todd Huffman Oxford University

TEVATRON DZERO TARGET HALL ANTIPROTON SOURCE BOOSTER LINAC COCKCROFT-WALTON MESON MESON MAIN INJECTOR TARGET HALL ANTIPROTON SOURCE BOOSTER LINAC COCKCROFT-WALTON

1995-2000 : substantial (\$350m) upgrade

- main injector
- anti-proton recycler
- new synchrotron
- upgraded pbar source

2004

- Tevatron has achieved the initial goal of 5 times the Run-I luminosity (though a bit later than originally hoped).
- Expect a Core dataset of 2fb⁻¹ by the end of 2005.
- Larger dataset (8 fb⁻¹), which was considered difficult to achieve is now looking possible. Certainly the minimum final integrated Luminosity of 4 fb⁻¹ should be achievable.

Post-2000

- Peak Luminosity of 6.8x10³¹cm⁻²s⁻¹ have been achieved, 6x10³¹cm⁻²s⁻¹ is common.

μμ Trigger (J/ψ for this talk)

- - DO

- Two muons of at least
 1.5-2.0 GeV/c CDF
 1.5-3.0 GeV/c D0 (dep. on prescale factor)
- CDF μ^{\pm} central ($|\eta| < 1.1$) D0 $\mu^{\pm} |\eta| < 3.0$
- Good match between muon chamber and track.
- Silicon used to distinguish prompt from B production.

μ

Mass Measurement Details

- J/ψ is used extensively
 - Sets the absolute energy scale
 - Mass is set to World Average
 - Corrections for Energy loss in detector
 - Corrections for alignment (still on-going)
 - Corrections for rad. tail from muon bremstralung.
- Compare Upsilon(1S) mass to PDG value
- Mass difference is consistent!
- Then measure the masses B hadron states.

DO

B Hadron Masses

© Finding Unique Decays of B Hadrons.

B** Mass Measurement

 B_d^{**} is seen $M(B^{**}) = 5.71 + /-0.016 GeV/c^2$

~115 pb⁻¹

Significant signal in RS vs. WS.

No signal seen yet in B_u^{**} .

B Hadron Masses

© Competitive measurements for B_d and B^+ :

 $M(B_d) = 5280.30\pm0.92\pm0.96 \text{ MeV}$ and $M(B^+) = 5279.32\pm0.68\pm0.94 \text{ MeV}$

@ World's best measurements for B_s and Λ_B :

 $M(B_s) = 5365.50 \pm 1.29 \pm 0.94 \text{ MeV}$ and $M(\Lambda_R) = 5620.4 \pm 1.6 \pm 1.2 \text{ MeV}$

Lifetime Measurement Details

• Exclusive decays: Two main procedures used

DO

• Procedure A:

- Plot the Mass
- Fit the close sidebands to a parameterization of the 'short lived' and 'long lived' background. Fix the parameterization and relative background size.
- Fit the lifetime to a convoluted exp-Gaussian distribution.

Procedure B:

- Fit the mass and lifetime simultaneously using a multivariate likelihood fit.
- Include sufficient sidebands in fit to provide a good background sample
- Likelihood functions will have many terms representing signal and background lifetime and mass distributions.

B±/B⁰ Lifetime Ratio

B±/B⁰ Lifetime

- Procedure A
 - Reminder: The separated 'signal' and 'background' fits using the mass as the identifier.
- Used as Check and for systematic studies

B±/B⁰ Lifetime Ratio

Procedure B

- Using the J/ψ and the B cτ fit.

 vertex were tested

 against pull distributions 103 in Monte Carlo.
 - J/ψ vertex is better estimator.
 - Better for combining several results
- Goodness of fit determined by running Toy Monte Carlo experiments
 - CL's are 3.4%, 35.2%, 25.6%, and 26.3% in the 4 cases.

Proc. B is used for final Measurement

B±/B⁰ Lifetime Ratio

Systematic Uncertainties

	$J/\psi K^+$	$J/\psi K^{*+}$	J/ψ K*	$J/\psi K_S$	
Res. function	5 μm				
Alignment	2 μm				
Bg. Model	1 μm	17 μm	7 μm	9 μm	
Total	5 μm	18 μm	9 μm	10 μm	

	B^{+}	\mathbf{B}^0	τ_{+}/τ_{0}
Res. Function	5 μ	0.0014	
Alignment	2 μ	0.0	
Bg. Model	2 μm	6 μm	0.014
Total	6 μ m	8 μm	0.014

B[±]/B⁰ Lifetime Ratio

Signal and Sideband fit (method I)

- Results are combined as weighted averages with correlations between mass, cτ, and resolution scale factor included.
- Results: CDF Run-II Preliminary

B⁺:
$$c\tau = 499 \pm 12(stat) \pm 6 (sys) \mu m$$

B⁰:
$$c\tau = 446 \pm 15(stat) \pm 8(sys) \mu m$$

$$\tau_{+}/\tau_{0} = 1.119 \pm 0.046(\text{stat}) \pm 0.014(\text{sys})$$

Bs: $\tau = 1.330 + 0.148(\text{stat}) - 0.129(\text{stat}) \pm 0.02 \text{ (syst) ps}$

Also uses a similar multivariate fitting technique in the mass and the lifetime.

$$\mathbf{B}_{\mathbf{S}} \rightarrow \mathbf{J}/\psi \phi$$

Work is in progress to add more data and use better track reconstruction.

 \sim 18% of the J/y sample are from B decays.

Similar percentage seen at CDF

Inclusive B->J/ ψ X Need to correct for the missing Momentum - use Monte Carlo

Procedure B:

Simultaneous fit to the mass and lifetime.

$$\int Ldt \cong 115 \ pb^{-1}$$

0.05

10

-0.05

0

candidate ct, cm
$$\tau_{_{Bs}} = 1.19^{+0.19}_{-0.16}(stat) \pm 0.14(sys)$$

0.15

0.2

0.25

$$\tau_{Bd} = 1.51^{+0.19}_{-0.17}(stat) \pm 0.20(sys)$$

0.1

$$\tau_{Bu} = 1.63 \pm 0.083(stat) \pm 0.096(sys)$$

 $\tau(\Lambda_b)$ is in progress.

B Hadron Lifetime and Ratio Summary

D0

Average B⁺ mass PDG 2004

Average B⁰ mass PDG 2004

B Hadron Lifetimes:

Expectations and Existing Data

- In the naive quark spectator model, the decay is a three body decay common to all b hadrons.
- (NLO) QCD predicted deviations in ≈ agreement with data

Heavy Quark Expansion

•
$$\tau(B^+)/\tau(B_d) = 1.06 \pm 0.02$$

•
$$\tau(B_s)/\tau(B_d) = 1.00 \pm 0.01$$

•
$$\Delta \Gamma_{\rm S}^{\rm s} / \Gamma_{\rm S}^{\rm s} \approx 0.1$$

•
$$\tau(\Lambda_b)/\tau(B_d) = 0.90 \pm 0.05$$

Experiment (PDG 2004)

$$1.086 \pm 0.017$$

$$0.951 \pm 0.038$$

$$0.800 \pm 0.066$$

The goal is to measure the ratios accurately.

A Different test of the SM

• The SM predicts a relationship between mixing and the difference in decay time between CP even and CP odd states.

$$\left(\frac{\Delta\Gamma}{\Delta M}\right)_{Bs} = \frac{\pi}{2} \frac{m_b^2}{m_W^2} \left| \frac{V_{cb}V_{cs}}{V_{ts}V_{tb}} \right|^2 \times ratio \ of \ QCD \ bag \ parameters$$

Ref: hep-ph/9808385

$$\left(\frac{\Delta\Gamma}{\Delta M}\right)_{p_0} = \left(2.63^{+0.67}_{-1.36}\left(\mu_1 - dep.\right) \pm ?\right) \bullet 10^{-3}$$

 μ_1 is the renormalization scale factor.

 $\Delta\Gamma/\Gamma$ is also predicted for the B_S and B⁰ $\frac{\Delta\Gamma_S}{\Gamma_c} \Rightarrow 2\%$ @ $4fb^{-1}$ CDF and D0 expect to measure itl CDF and DO expect to measure it!

$$\frac{\Delta\Gamma_S}{\Gamma_S}$$
 \Rightarrow 2% @ 4fb⁻¹

Pentaquark Search

NA49 also claimed observations of the pentaquark cascade (Ξ) states. (hep-ex/0310014)

CDF New Search:

Search conducted in:

Hadronic Two Track & Jet20 triggers

Trig. tracks not explicitly required Decay Chains for Search:

$$\Xi^{--} \rightarrow \Xi^{-} \pi^{-}$$
 and $\Xi^{0} \rightarrow \Xi^{-} \pi^{+}$
 $\Xi^{-} \rightarrow \Lambda \pi^{-}$ with $\Lambda \rightarrow p\pi$

 Ξ^- leaves hits in the silicon detector,

CDF

Impact parameter Trigger

If we have B mesons, we get tracks with high impact parameter.

<u>Data Samples:</u> B and Charm Using the high Impact Parameter (IP) (Hadronic) trigger

Select events by requiring :

- -2 tracks with IP>100 μ m
- Opposite charge
- track P_T > 2GeV/c
- sum 2-track P_T > 5.5 GeV/c

 $35\mu m \oplus 33\mu m$ resol \oplus beam $\Rightarrow \sigma = 48\mu m$

0.5M Charm decays at CDF \rightarrow 10-20% come from B: Great Potential for B and Charm Physics, opens at least as many avenues as J/ψ trigger

All opposite sign tracks within 5MeV/ c^2 of Λ mass L_{xy} > 1cm

Combination combined with a pion track candidate

3-track Combination used to seed a search for Ξ^- hits in the silicon detector.

Finding =

E Can Leave Hits in the Silicon Detectors

Combine the Ξ - (and charge conjugate) candidates with another pion to look for the $\Xi(1860)$ Pentaquark state. We also expect to see the standard $\Xi(1530)$.

Yield of $\Xi(1860)$ relative to $\Xi(1530)$ yield could be used to calibrate yields for CDF unless there is severe penalty in production mechanism for $\Xi(1860)$ in *p-pbar* collisions at 2 TeV vs low energy (18 GeV) pp collisions of CERN SPS.

Pentaquark Search – TTT Data

Pentaquark Search – Jet20 Data

No equivalent signal found.

CDF cannot confirm NA49 observation

More Jet 20 data

Also looking for Θ but search is not complete.

Pentaquark Production Limits

• Yields quoted relative to the production of the $\Xi(1530)$ which is seen in both data sets.

Channel	@ 90% CL	@ 95% CL			
Two Track Trigger Sample – 220pb ⁻¹					
$\Xi^{-}\pi^{+}/\Xi(1530)$	0.06	0.07			
$\Xi^{-}\pi^{-}/\Xi(1530)$	0.03	0.04			
Combined Sample	0.07	0.08			
Jet 20 Trigger Sample – 220pb ⁻¹					
$\Xi^{-}\pi^{+}/\Xi(1530)$	0.06	0.08			
$\Xi^{-}\pi^{-}/\Xi(1530)$	0.07	0.09			
Combined Sample	0.09	0.11			

Conclusions

Back-up Slides

NA49 Digest

3.0 GeV/c cut on π + momentum removes Ξ^0 (1530) state due to phase space.

NA49 Digest

$$N(\Xi^{-}) = 1,640$$

$$N(\bar{\Xi}^+) = 551$$

$$N(\Xi(1530)^0) \sim 150$$

$$N(\Xi(1860)) = 67.5$$

$$N(\Xi(1860)^{--}) = 36$$

$$N(\Xi(1860)^0) = 31.5$$

$$r_{\rm NA49}^0 = \frac{\#\Xi(1860)}{\#\Xi(1530)} = \frac{\sigma(pp \to \Xi(1860)) \cdot Br(\Xi(1860) \to \Xi^-\pi^+) \cdot a(\Xi(1860))}{\sigma(pp \to \Xi(1530)) \cdot a(\Xi(1530))} \sim 0.21, \quad (1)$$

$$r_{\text{NA49}}^{--} = \frac{\#\Xi(1860)}{\#\Xi(1530)} = \frac{\sigma(pp \to \Xi(1860)) \cdot Br(\Xi(1860) \to \Xi^{-}\pi^{-}) \cdot a(\Xi(1860))}{\sigma(pp \to \Xi(1530)) \cdot a(\Xi(1530))} \sim 0.24, \quad (2)$$

$$r_{\text{NA49}} = \frac{\#\Xi(1860)}{\#\Xi(1530)} = \frac{\sigma(pp \to \Xi(1860)) \cdot Br(\Xi(1860) \to \Xi^{-}\pi^{\pm}) \cdot a(\Xi(1860))}{\sigma(pp \to \Xi(1530)) \cdot a(\Xi(1530))} \sim 0.45$$
 (3)

$$\frac{\sigma(pp \to \Xi(1530)) \cdot a(\Xi(1530))}{\sigma(pp \to \Xi) \cdot a(\Xi)} \sim 0.068$$
(4)

Limit Determination

Fit to Gaussian + background, float only the background.

Find Likelihood for N $\Xi(1860)$'s where N is varied from -1000 to +1000 and plot that Likelihood (see above). 90% and 95% CL's are then taken from this plot. If you don't like this: talk to Louis Lyons, Chairman of the CDF Statistics

Pentaquark search

- Bound state of 5 quarks $(qqq\overline{q}q)$
- Several possible states are predicted and some have claims to being found
 - LEPS at Spring-8 (Japan), Phys. Rev. Lett., 92, 012002 (2003).
 - ITEP DIANA Collaboration, hep-ex/0304040.
 - CLAS Collaboration at JLAB, hep-ex/0307018.
 - These report on the state. $(dsds\overline{u})$

Collider Run II Integrated Luminosity

- to ensure success of run-2 the below expectation Tevatron performance has been the main focus at FNAL/DOE in the past 14 months.
- We are seeing the positive impact of this attention! The Tevatron is certainly running up to the standard required to meet the baseline of 4fb⁻¹ by 2008.
- This means we can begin to hope and plan for beyond baseline luminosities.

The CDF-II Detector

The D0 Detector

The CDF & DO Detectors in Run-II

New: Time of Flight (TOF): some hadron ID

New: Silicon (SVT) online Si tracker: Select high IP tracks from b and c@ trigger level (First time at a hadron collider!)

Improvements over Run-I

-Silicon Detector: 3-D tracking, 5 layers: B vertex, track IP resolution,

-Faster Drift Chamber: Momentum

measurement

-Greater muon coverage : Select b, $c \rightarrow \mu$

New: 2T Super conducting Magnet

New: Silicon tracker (vertex, track IP

resolution)

New: Fiber tracker : Momentum

New: Si Track Trigger (displaced

vertices) (Coming soon)

Improvements over Run-I

-Calorimetry and faster readout

-Upgraded muon system.

DO has a magnetic field, and is able to pursue a competitive B-physics program as well!

Detector Performance

300

 $M_{\mu^+\mu^-}$ (GeV)