QCD at HERA

Günter Grindhammer, MPI Munich

on behalf of the H1 and ZEUS collaborations

Inclusive DIS measurements: F_2 Gluon, valence, sea and $\alpha_s(M_Z)$ Gluon and charm The low x region $\alpha_s(M_Z)$ from jets Low-x parton dynamics Summary

Deep-Inelastic Scattering

$$\begin{array}{ll} Q^2 = -(k-k')^2 & \mbox{virtuality of } \gamma^*, Z^0, W^{\pm} \\ x = Q^2/2(pq) & \mbox{Bjorken scaling variable} \\ y = (Pq)/(pk) & \mbox{inelasticity} \end{array}$$

 $Q^2 = xys$, $\sqrt{s} \approx 320$ GeV at HERA $W^2 = (P+q)^2 = Q^2(1/x-1)$ hadronic cms energy squared

Neutral Current: γ^* , Z° exchange $\frac{d^2 \sigma_{\rm NC}^{e^{\pm}p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [Y_+ \tilde{F}_2(x, Q^2) \mp Y_- x \tilde{F}_3(x, Q^2) - y^2 \tilde{F}_L(x, Q^2)], Y_\pm = 1 \pm (1 - y)^2$ QPM: $F_2 = x \sum e_q^2 (q + \bar{q}), xF_3 = 2x \sum e_q a_q (q - \bar{q}), F_L = 0$

Charged Current:
$$W^{\pm}$$
 exchange

$$\frac{d^2 \sigma_{\text{CC}}^{e^{\pm}p}}{dx dQ^2} = \frac{G_F^2}{2\pi x} \frac{M_W^4}{(Q^2 + M_W^2)^2} \tilde{\sigma}_{\text{CC}}^{\pm}(x, Q^2)$$
QPM: $\tilde{\sigma}_{\text{CC}}^+ = x[(\bar{u} + \bar{c}) + (1 - y)^2(d + s)]$
 $\tilde{\sigma}_{\text{CC}}^- = x[(u + c) + (1 - y)^2(\bar{d} + \bar{s})]$

Kinematic Reach: Yesterday, Today and Tomorrow

F_2 vs. x and Q^2

Gluon, Valence and Sea Distributions

Differences and remaining uncertainties are due to:

- different assumptions
- parametric form of PDFs

- heavy flavor treatment
- consistency of data sets
- NNLO terms

CC at high Q^2 : Valence Distributions

HERA Charged Current

CC: e^+p and e^-p

• e^+p dominated by d at large x

• e^-p dominated by u at large x

 $e^{\pm}p$ CC and NC essential for flavor separation of PDFs

$lpha_s(M_Z)$ from QCD fits

NLO

H1	$\alpha_s(M_Z) = 0.1150 \pm 0.0017 \ (exp)$
	$^{+0.0009}_{-0.0005} \ (model) \pm 0.005 \ (theory)$
ZEUS	$\alpha_s(M_Z) = 0.1166 \pm 0.0008 \; (uncor) \pm 0.0032 \; (cor) \pm 0.0036 \; (norm)$
	$\pm 0.0018 \; (model) \pm 0.004 \; (theory)$
Alekhin	$\alpha_s(M_Z) = 0.1171 \pm 0.0015 \ (exp) \pm 0.0033 \ (theory)$
"NNLO"	
Alekhin	$\alpha_s(M_Z) = 0.1143 \pm 0.0014 \ (exp) \pm 0.0013 \ (theory)$

- H1 QCD fit includes BCDMS ($\mu p, y > 0.3$) data only
- ZEUS QCD fit includes BCDMS, NMC, E665, CCFR data
- consistent $\alpha_s(M_Z)$ values
- theory uncertainty (and value of $\alpha_s(M_Z)$) much reduced in "NNLO"

Gluon and Open Charm Production

charm $\rightarrow D^* \rightarrow D^\circ \pi \rightarrow K \pi \pi$

- scaling violations from F_2 and from charm agree
- $F_2^{c\bar{c}}/F_2 \approx 30\%$ at low x \rightarrow treatment of charm in evolution important

Rise of F_2 at low x

Rise of F_2 at low $x ightarrow (\partial F_2/\partial \ln x)_{Q^2}$

• $\lambda \approx \text{const.}$ at fixed Q^2 (x < 0.01)

 \bullet no change of dynamics observed at low x

Rise of F_2 : $\lambda(Q^2)$

 $\lambda(Q^2)$ from the fit to $F_2(x,Q^2)=c(Q^2)\,x^{-\lambda(Q^2)}$

- $\lambda(Q^2) \propto \ln Q^2$
- $\sigma_{NC} \propto W^{2\lambda}$
- change of behavior at $Q^2 \approx 0.5 \ {\rm GeV}^2$
- soft Pomeron limit $\lambda \approx 0.09$ from energy dependence of hadronhadron total cross sections

Gluon at low $x ightarrow (\partial F_2/\partial \ln Q^2)_x$

no obvious sign of saturation

12

$F_L(x,Q^2)$

• $F_L \neq 0$

- *F_L* starts to discriminate predictions
- *F_L* measurement can be improved by varying *s* (proton energy)

•
$$F_L \propto \sigma_L^{\gamma^* p} = 0$$
 in QPM

•
$$F_L \propto \sigma_L^{\gamma^* p} \neq 0$$
 in QCD

•
$$F_L = Y_+ / y^2 \left(F_2^{\text{QCD-fit}} - \tilde{\sigma}_{NC} \right)$$

Inclusive Jet Production in γp

• Jets with $E_{T,jet} > 5$ GeV (H1) and > 17 GeV (ZEUS)

• QCD in NLO describes data over 4 to 6 decades within exp. and theo. uncertainties \Rightarrow extraction of α_s

Günter Grindhammer, MPI Munich

$lpha_s(M_Z)$ at HERA from F_2 and Jets

• Bethke 2002:
$$\alpha_s(M_Z) = 0.1183 \pm 0.0027$$

- good agreement between different measurements
- exp. uncertainties often smaller than theoretical ones
- NNLO calculations on the way

Forward Jets and Parton dynamics at low \boldsymbol{x}

Different approximations for multi-parton emissions:

- DGLAP: ordered in $p_{\rm t}$
- BFKL/CCFM: ordered in energy/angle

Mueller-Navelet: study forward jets \implies with $p_t^2 \approx Q^2$ and $x_{jet} >> x_{Bj}$ \rightarrow suppress DGLAP, enhance BFKL $5 < Q^{2} < 75 \text{ GeV}^{2}$ forward jet def. by incl. k_{t} algo. $7^{\circ} < \theta_{jet} < 20^{\circ}$ $x_{jet} > 0.035$ $0.5 < p_{t,jet}^{2}/Q^{2} < 2$ • H1 preliminary 200 175 150

 $\Rightarrow \textbf{DGLAP fails at low } x$ $\Rightarrow \textbf{CCFM ok, sensitive to } xg(x, Q^2, k_t)$

Parton Dynamics and Dijets at low x

CASCADE (not shown) can describe the data

Summary

- HERA provides rich inclusive data, covering 5 decades in Q^2 and x, with a precision reaching up to 2%
- pQCD (DGLAP evolution) very successful in describing it, allowing extraction of gluon & $\alpha_s(M_Z)$ and pdfs
- exploration of low $x \& Q^2$ region with not yet understood results:
 - abrupt break in energy dependence ($\sigma \propto W^{2\lambda}$) from $\lambda \propto \ln Q^2$ to flat at $Q^2 \approx 0.5~{\rm GeV}^2$
 - strange behavior of gluon (flat to even negative)
 - but no change in dynamics observed down to lowest $x \& Q^2$ in $(\partial F_2/\partial \ln Q^2)_x$ and $(\partial \ln F_2/\partial \ln x)_{Q^2}$
 - F_L starts to discriminate between models, but exp. errors large
 - observed signs of parton dynamics different from DGLAP expectations in jet physics

HERA and detectors have been upgraded; background limitations appear to have been overcome recently, lumi is climbing, ZEUS and H1 are on the way to take lots of data !

18