

Time-dependent CP Violation Measurements from Belle

Tim Gershon IPNS, KEK

representing the Belle Collaboration

Les Rencontres de Physique de la Vallée d'Aoste March 4th 2004

Tim Gershon

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

where A, λ , ρ , η are Wolfenstein parameters

From unitarity ($V_{CKM}^* V_{CKM} = 1$):

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

The Unitarity Triangle

$$\begin{array}{c}
\phi_1 \leftrightarrow \beta \\
\phi_2 \leftrightarrow \alpha \\
\phi_3 \leftrightarrow \gamma
\end{array}$$

- Interference between different paths to a final state \Rightarrow time-dependent CP violation
- Consider B^0/\bar{B}^0 decaying to a CP eigenstate
- Define $\lambda_{CP} = \frac{q}{p} \frac{\bar{A}}{A}$
 - p, q from $B^0 \overline{B}^0$ mixing
 - Standard Model : $\frac{q}{p} \sim e^{-2\phi_1}$
- Simplest scenario:

$$-\left|\frac{q}{p}\right|=1, \left|\frac{\bar{A}}{A}\right|=1 \Rightarrow S_{CP}=\operatorname{Im}(\lambda_{CP})$$

• At *B* factories, measure Δt from decay time of other *B*

(tagged as
$$B^0$$
 ($q = +1$) or \overline{B}^0 ($q = -1$))

$$P_{CP}^{q}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left\{S_{CP}\sin(\Delta m \Delta t)\right\}\right]$$

(at an asymmetric energy *B* factory)

- 1. Collect a large sample of $B \overline{B}$ decays
- 2. Identify and select events containing relevant final state
- 3. Tag the flavour of the other ${\cal B}$
- 4. Measure Δt from $\Delta z = z_{CP} z_{tag} \approx (\beta \gamma) \gamma c \Delta t$
- 5. Fit the sample

Lots of *Bs*!

Results presented today use 140 fb⁻¹ on Υ (4*S*) $\stackrel{\sim}{\equiv}$ 150 \times 10⁶ $B\bar{B}$ pairs

- SVD 3 DSSD layers
 - $\sigma\sim$ 55 $\mu{
 m m}$ for 1 GeV/c @ 90°
- CDC 50 layers
 - $\sigma_p/p\sim$ 0.35% @ 1 GeV/c
 - $\sigma_{\pi}(dE/dx) \sim$ 7%
- TOF $\sigma_t \sim$ 95 ps
- ACC ($n = 1.01 \rightarrow 1.03$) K/π separation up to 3.5 GeV/c
- Csl $\sigma_E/E_\gamma \sim$ 1.8% @ 1 GeV
- KLM 14 RPC layers
- 1.5 T magnetic field

measure sin $(2\phi_1)$

- Flavour tagging
 - Use flavour specific, inclusive properties of decay products
 - Include correlations in a multi-dimensional likelihood
 - Assign $q = \pm 1$ & $r \in 0, 1$
 - Divide data in categories: 6 of r \times 2 of q
- Vertexing
 - Require SVD hits to obtain precise vertex
 - Use run-dependent interaction point profile
- Fitting
 - Use unbinned maximum likelihood fits
 - Wrong tag fraction for each q,r bin
 - Event-by-event signal probability based on ΔE , $M_{\rm bc}$
 - Event-by-event resolution function based on vertex errors

• If more than weak phase contributes, $A = A_1 + A_2$, $\bar{A} = \bar{A}_1 + \bar{A}_2 \Rightarrow \left|\frac{\bar{A}}{\bar{A}}\right| \neq 1$

• If $\left|\frac{q}{p}\right| = 1$, $A_{CP} = \frac{\Gamma_{\bar{B}} \circ_{\to f_{CP}} - \Gamma_{B} \circ_{\to f_{CP}}}{\Gamma_{\bar{B}} \circ_{\to f_{CP}} + \Gamma_{B} \circ_{\to f_{CP}}} \equiv \text{time-integrated (direct) CP asymmetry}$

$$P_{CP}^{q}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \left[1 + q \left\{S_{CP}\sin(\Delta m\Delta t) + A_{CP}\cos(\Delta m\Delta t)\right\}\right]$$

Contributions from tree and penguin amplitudes

Penguin contains $V_{td} \rightsquigarrow$ different phase

Tim Gershon

Contributions from tree and penguin amplitudes

- Small branching fraction ($\sim 4 \times 10^{-6}$)
- Large background from $e^+e^- \rightarrow q\bar{q}$ (q = u, d, s, c)
- Background from $B \to K^+ \pi^-$

Categorize candidates based on level of $q\bar{q}$ background

High quality

Low quality

- 1529 candidates
- $372 \pm 32 \pi^+\pi^-$ signal events

 $S_{\pi^+\pi^-} = -1.00 \pm 0.21 \pm 0.07$ $A_{\pi^+\pi^-} = +0.58 \pm 0.15 \pm 0.07$

- Many cross-checks performed
 - $K\pi$ control sample
 - $q\bar{q}$ control sample
 - Various subsamples
 - Toy Monte Carlo studies
 - Binned fit

Feldman-Cousins Analysis

• $S_{\pi^+\pi^-}$ & $A_{\pi^+\pi^-}$ can be written as functions of ϕ_1 , ϕ_2 , P/T & δ

M. Gronau & J.L. Rosner, PRD 65, 093012 (2002)

• Using measured ϕ_1 , translate contraint on $S_{\pi^+\pi^-}$ & $A_{\pi^+\pi^-} \rightarrow confidence \ volume \ in \ (\phi_2, P/T, \delta) \ space$

- Consider now B^0/\bar{B}^0 decaying to a non-CP eigenstate
- dominant and suppressed contributions
- Define $\rho = \frac{q}{p} \frac{\bar{A}_s}{A_d}$, $\bar{\rho} = \frac{p}{q} \frac{A_{\bar{s}}}{\bar{A}_{\bar{d}}}$
- Simple scenario:
 - $-\left|rac{q}{p}
 ight|=1,\left|rac{ar
 ho}{
 ho}
 ight|=1,\left|
 ho
 ight|\ll1$

$$P_f^q(\Delta t) = \frac{e^{-|\Delta t|/\tau_B 0}}{4\tau_B 0} \left[1 - q\left(\cos(\Delta m \Delta t) + 2\Im(\rho)\sin(\Delta m \Delta t)\right)\right]$$
$$P_{\bar{f}}^q(\Delta t) = \frac{e^{-|\Delta t|/\tau_B 0}}{4\tau_B 0} \left[1 + q\left(\cos(\Delta m \Delta t) + 2\Im(\bar{\rho})\sin(\Delta m \Delta t)\right)\right]$$

Can naively predict $\left|\frac{A_s}{A_d}\right| \sim 0.02$ Weak phase difference is $2\phi_1 + \phi_3$

For $B \to D^{(*)}\pi$

 $\Im(\rho) = (-1)^{L+1} R_{D^{(*)}\pi} \sin(2\phi_1 + \phi_3 - \delta_{D^{(*)}\pi}) \qquad \Im(\bar{\rho}) = (-1)^L R_{D^{(*)}\pi} \sin(2\phi_1 + \phi_3 + \delta_{D^{(*)}\pi})$

Data: best quality flavour tagging; Curves: Fit result for entire data

Tim Gershon

 $2R_{D^*\pi}\sin(2\phi_1 + \phi_3 + \delta_{D^*\pi}) = 0.109 \pm 0.057 \pm 0.019$ $2R_{D^*\pi}\sin(2\phi_1 + \phi_3 - \delta_{D^*\pi}) = 0.011 \pm 0.057 \pm 0.019$ $2R_{D\pi}\sin(2\phi_1 + \phi_3 + \delta_{D\pi}) = 0.087 \pm 0.054 \pm 0.018$ $2R_{D\pi}\sin(2\phi_1 + \phi_3 - \delta_{D\pi}) = 0.037 \pm 0.052 \pm 0.018$

Assume that $\delta_{D^{(*)}\pi} = 0$ or π :

 $|2R_{D^*\pi}\sin(2\phi_1 + \phi_3)| = 0.060 \pm 0.040 \pm 0.019$ $|2R_{D\pi}\sin(2\phi_1 + \phi_3)| = 0.061 \pm 0.037 \pm 0.018$

Much more data required to constrain $sin(2\phi_1 + \phi_3)$

- $b \rightarrow sq\bar{q}$ contains same weak phase as $b \rightarrow c\bar{c}s$ $\hookrightarrow -\xi_{sq\bar{q}}S_{sq\bar{q}}$ should also measure $sin(2\phi_1)$
- $S_{sq\bar{q}} \neq S_{c\bar{c}s}$ can be caused by <u>new physics</u> in $b \rightarrow s$ penguin
 - $B \rightarrow \phi K_S$: CP odd 106 candidates
 - $B \rightarrow K^+ K^- K_S$: *CP* even 361 candidates (ϕ contribution is vetoed)
 - $B \rightarrow \eta' K_S$: CP odd 421 candidates

 $-S_{K^+K^-K_s} = +0.51 \pm 0.26 \pm 0.05^{+0.18}_{-0.00}$

 $A_{K^+K^-K_S} = -0.17 \pm 0.16 \pm 0.04$

- $sin(2\phi_1)$ is the most constraining *CP* violation measurement
- *CP* violation in $B \rightarrow \pi^+\pi^-$ has been observed
- Evidence for direct *CP* violation in *B* decays
- Evidence for new physics in $B \to \phi K_S$
- Much more luminosity has been, is being, and will be accumulated
 ⇒ new and improved measurements are coming soon

BACKUP SLIDES

Mixing asymmetry:

$$\frac{OF - SF}{OF + SF} \propto (1 - 2w) \cos(\Delta m \Delta t)$$

TABLE I: The event fractions ϵ_l , wrong-tag fractions w_l , wrong-tag fraction differences Δw_l , and average effective tagging efficiencies $\epsilon_{\text{eff}}^l = \epsilon_l (1 - 2w_l)^2$ for each r interval. The errors include both statistical and systematic uncertainties. The event fractions are obtained from the $J/\psi K_S^0$ simulation.

l	r interval	ϵ_l	w_l	Δw_l	ϵ_{eff}^l
1	0.000 - 0.250	0.398	0.464 ± 0.006	-0.011 ± 0.006	0.002 ± 0.001
2	0.250 - 0.500	0.146	0.331 ± 0.008	$+0.004\pm0.010$	0.017 ± 0.002
3	0.500 - 0.625	0.104	0.231 ± 0.009	-0.011 ± 0.010	0.030 ± 0.002
4	0.625 - 0.750	0.122	0.163 ± 0.008	-0.007 ± 0.009	0.055 ± 0.003
5	0.750 - 0.875	0.094	0.109 ± 0.007	$+0.016 \pm 0.009$	0.057 ± 0.002
6	0.875 - 1.000	0.136	0.020 ± 0.005	$+0.003 \pm 0.006$	0.126 ± 0.003

Effective tagging efficiency $\approx 28.7\%$

TABLE II: The numbers of reconstructed $B \to f_{CP}$ candidates after flavor tagging and vertex reconstruction, $N_{\rm ev}$, and the estimated signal purity, p, in the signal region for each f_{CP} mode. J/ψ mesons are reconstructed in $J/\psi \to \mu^+\mu^-$ or e^+e^- decays. Candidate K_S^0 mesons are reconstructed in $K_S^0 \to \pi^+\pi^-$ decays unless otherwise written explicitly.

Mode	ξf	$N_{ m ev}$	p
$J/\psi K_S^0$	-1	1997	0.976 ± 0.001
$J/\psi K_S^0(\pi^0\pi^0)$	-1	288	$0.82\ \pm 0.02$
$\psi(2S)(\ell^+\ell^-)K_S^0$	-1	145	$0.93\ \pm 0.01$
$\psi(2S)(J/\psi\pi^+\pi^-)K_S^0$	-1	163	$0.88\ \pm 0.01$
$\chi_{c1}(J/\psi\gamma)K^0_S$	-1	101	$0.92\ \pm 0.01$
$\eta_c (K_S^0 K^- \pi^+) K_S^0$	-1	123	$0.72 \ \pm 0.03$
$\eta_c (K^+ K^- \pi^0) K_S^0$	$^{-1}$	74	$0.70\ \pm 0.04$
$\eta_c(p\overline{p})K_S^0$	-1	20	$0.91\ \pm 0.02$
All with $\xi_f = -1$	-1	2911	0.933 ± 0.002
$J/\psi K^{*0}(K^0_S \pi^0)$	+1(81%)	174	$0.93\ \pm 0.01$
$J/\psi K_L^0$	+1	2332	$0.60\ \pm 0.03$

(statistical errors only).				
Sample	$N_{ m ev}$	$\sin 2\phi_1$		
$J/\psi K^0_S(\pi^+\pi^-)$	1997	0.67 ± 0.08		
$J/\psi K^0_S(\pi^0\pi^0)$	288	0.72 ± 0.20		
$\psi(2S)K_S^0$	308	0.89 ± 0.20		
$\chi_{c1}K^0_S$	101	1.54 ± 0.49		
$\eta_c K_S^0$	217	1.32 ± 0.29		
All with $\xi_f = -1$	2911	0.73 ± 0.06		
$J/\psi K_L^0$	2332	0.80 ± 0.13		
$J/\psi K^{*0}(K^{0}_{S}\pi^{0})$	174	0.10 ± 0.45		
$f_{\text{tag}} = B^0 \ (q = +1)$	2717	0.72 ± 0.09		
$f_{\text{tag}} = \overline{B}^0 \ (q = -1)$	2700	0.74 ± 0.08		
$0 < r \le 0.5$	2985	0.95 ± 0.26		
$0.5 < r \leq 0.75$	1224	0.68 ± 0.11		
$0.75 < r \leq 1$	1208	0.74 ± 0.07		
data set I (78 fb^{-1})	3013	0.73 ± 0.07		
data set II (62 fb ^{-1})	2404	0.74 ± 0.09		
All	5417	0.733 ± 0.057		

TABLE III: The numbers of candidate events, $N_{\rm ev}$, and values of $\sin 2\phi_1$ for various subsamples (statistical errors only).

March 4th 2004

Systematic Uncertainties	A	5
Wrong tag fraction	0.009	0.009
Physics ($_{B}$, $m_{d'}$, A_{k})	0.024	0.007
Resolution function	0.010	0.020
Background shape	0.014	0.021
Background fractions	0.028	0.025
Fit bias	0.018	0.023
Vertexing	0.039	0.045
Tag side interference	0.027	0.011
Total	0.066	0.066

Systematic error < Statistical error

10⁷ pseudo-experiments generated with:

P (Belle result) $\sim 27\%$

- *CP* of $K^+K^-K_S$ depends on angular momentum of K^+K^-
 - spin-0 \Rightarrow CP = +1 eg. f_0K_S
 - spin-1 \Rightarrow CP = -1 eg. ϕK_S
- Determine CP = +1 fraction (α^2) using isospin relation between three kaon final states

$$\frac{1}{\tau_{B^0}} \mathcal{B} \left(B^0 \to K^+ K^- K^0 \right) = \frac{1}{\tau_{B^+}} \mathcal{B} \left(B^+ \to K^0 \bar{K}^0 K^+ \right)$$
$$K^0 \bar{K}^0 K^+ = \alpha \left(K_S K_S K^+ + K_L K_L K^+ \right) + \beta K_S K_L K^+$$
$$\mathcal{B} \left(B^+ \to K_S K_S K^+ \right) = \mathcal{B} \left(B^+ \to K_L K_L K^+ \right)$$
$$\alpha^2 = 2 \times \frac{\mathcal{B} \left(B^+ \to K_S K_S K^+ \right)}{\mathcal{B} \left(B^0 \to K^+ K^- K^0 \right)} \times \frac{\tau_{B^0}}{\tau_{B^+}}$$

• Measure $\alpha^2 = 1.03 \pm 0.15 \pm 0.05$

