CLIC A Multi-TeV e+e- Collider

Albert De Roeck CERN

A personal account of Status of the CLIC accelerator study
Its physics potential
CERN and Linear Colliders

Web Site http://clicphysics.web.cern.ch/CLICphysics/

La Thuile 3/3

1

CERN and Linear Colliders

 Priority of CERN: LHC (startup 2007) LHC financial constraints do not allow CERN to start/contribute to large new projects before 2011. If a TeV class LC (TESLA or NLC/JLC type) construction starts before that CERN (LAB) can not be a major contributer.

•The mandate of CERN allows it in principle to represent Europe in world wide discussions and committees on HEP/LC via CERN Council. Main proponents may have direct participation (Germany, UK,...)

 CERN has a LC accelerator R&D program: CLIC: Compact Linear Collider Aims for large accelerating gradients (150 MV/m) Active R&D program with several test facilities CTF1, CTF2 and now CTF3. CLIC/CERN budget 3.4 MCHF/Year, 30 FTE's involved

New: CERN DG will be requesting extra funding for CLIC/CTF3 such that before 2010 the full feasibility can be demonstrated (R1's and R2's) Concerns: ~ 17 MCHF material and 15 MCHF manpower

La Thuile 3/3

CLIC

• An e^+e^- linear collider optimized for a c.m. energy of 3 TeV with $\mathcal{L}\cong 10^{35}cm^{-2}s^{-1}$

• Construction can be staged without major modifications, starting an experimental program at lower energies, if useful.

• Aim: 3 TeV collisions, complementing LHC/TeV class LC and breaking new ground, with a final stage up to 5 (10?)TeV

To achieve this within reasonable cost (length \sim 35-40 km), and not too many active elements:

- ightarrow Accelerating gradient \sim 150 MV/m: Two Beam Acceleration (TBA)
- \rightarrow High beamstrahlungs regime to reach luminosity

 \rightarrow Challenging beam parameters and machine requirements (nm stability, strong final focus, 30 GHz accelerating structures,...)

 Status CTF2: 150-193 MV/m (15 ns pulses) CTF3: Under construction: 2002-2006 (drive beam test)

La Thuile 3/3

World Wide CLIC Collaboration

CLIC World Wide Collaboration: CERN +

- BERLIN Technical University (Germany) : Structure simulations GdfidL
- DESY (Germany): Ground motion studies, beam dynamics simulations
- INFN / LNF (Italy): Delay loop, transfer lines and RF deflectors for CTF3
- JINR and IAP (Russia): Surface heating tests using 30 GHz RF power source
- KEK (Japan): ATF and structure studies
- LAL (France): Electron guns and pre-buncher cavities for CTF3
- LLBL/LBL (USA): Laser-wire studies
- RAL (England): Lasers for CTF3 and CLIC photo-injectors
- SLAC (USA): HG testing, structure design, CTF3 drive beam injector design
- UPPSALA University (Sweden): Beam monitoring systems for CTF3
- North Western University (Illinois) Beam loss studies
- Finnish Industry Sponsorship of a mechanical engineer

CTF3 test facility collaboration: CERN +

- INFN, Frascati (Italy)
- LAL, Orsay (France)
- SLAC, San Francisco (USA)
- Uppsala University, Sweden
- North Western Univ, Chicago (USA)
- · RAL (UK)

The CLIC Test Facitility II

RF photo-injector 3 GHz linac Three 35 MW klystrons

Achieved performances 25 A 50 MV 1.25 GW 16 ns 2 J 200 MW, 30 GHz RFTwo-beam demonstration RF breakdown studies: \Rightarrow 110-193 MV/m (peak)

Switched off at the end of 2002

La Thuile 3/3

6

Construction CTF3 started in 2002 First tests started October 2003

CLIC LIST OF CRUCIAL CLIC-TECHNOLOGY-RELATED FEASIBILITY ITEMS

- Test of damped accelerating structure at design gradient and pulse length (TRC R1)
- 2. Validation of drive beam generation scheme (TRC R1)
- 3. Design and test of damped ON/OFF power extraction structure (TRC R1)
- 4. Validation of stability and losses of drive beam decelerator, and design of machine protection system (TRC R2)
- 5. Test of relevant linac sub-unit with beam (TRC R2)
- + R2 which are in common with other technologies

These will be addressed with CTF3

La Thuile 3/3

CLIC Tunnel & Parameters

	5	~		5	
E_{cm}	[TeV]	0.5	3	3	
\mathcal{L}	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	2.1	10.0	8.0	
$\mathcal{L}_{0.99}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.5	3.0	3.1	
f_r	[Hz]	200	100	100	
N_b		154	154	154	
Δ_b	[ns]	0.67	0.67	0.67	
N	$[10^{10}]$	0.4	0.4	0.4	
σ_{z}	$[\mu m]$	35	30	35	
ϵ_x	$[\mu { m m}]$	2	0.68	0.68	
ϵ_y	$[\mu { m m}]$	0.01	0.02	0.01	
σ^*_x	[nm]	202	43	pprox 60	
σ_y^*	[nm]	pprox 1.2	1	pprox 0.7	
δ	[%]	4.4	31	21	
n_{γ}		0.7	2.3	1.5	
N_{\perp}		7.2	60	43	
N_{Hadr}		0.07	4.05	2.3	
$N_{\rm MJ}$		0.003	4.05	1.5	

CLIC tunnel... not much material

Building CLIC at CERN?

It is possible!

Geological analyses show that there is a contineous stretch of 40 km parallel to the Jura and the lake, with good geological conditions.

Of course no budget till at least 2011

Physics Menu at CLIC

- Higgs sector: light and heavy Higgses, Higgs potential
- Supersymmetry: if exists, will be discovered at a hadron collider Role of CLIC: completing the particle spectra with precision measurements (masses < $\sqrt{s}/2$)
- Particle Factory: if new particles have been detected/predicted at the LHC/LC-500 in the range of 1-5 TeV (New Gauge bosons, Kaluza-Klein resonances, resonances in WW scattering...): CLIC will produce them directly, provide an accurate determination of their couplings and establish their Nature. Also exotic decays (such as $Z' \rightarrow$ heavy Majorana Neutrinos) can be detected.
- If NO new particles are observed directly, probe scales up to the O(100-800) TeV indirectly via precision measurements
- QCD measurements: BFKL, photon structure, α_{s} ,...
- The unexpected???

e+e- at $\sqrt{s} \approx 3-5$ TeV: Expect to break new grounds

Examples/overview of Physics Reach

Measurements at CLIC (5 TeV / 1 ab⁻¹)

Higgs (Light)	λ_{HHH} to $\sim 5-10\%$ (5 ab $^{-1}$
Higgs (Light)	$g_{H\mu\mu}$ to $\sim 3.5-10\%$ (5 ab $^{-1}$
Higgs (Heavy)	2.0 TeV (e^+e^-) 3.5 TeV $(\gamma\gamma)$
squarks	2.5 TeV
sleptons	2.5 TeV
Z' (direct)	5 TeV
Z' (indirect)	30 TeV
l^*, q^*	5 TeV
TGC (95%)	0.0008
Λ compos.	400 TeV
$W_L W_L$	> 5 TeV
ED (ADD)	30 TeV (e^+e^-)
	55 TeV $(\gamma\gamma)$
ED (RS)	18 TeV (c=0.2)
ED (TeV ^{-1})	80 TeV
Resonances	$\delta M/M, \delta \Gamma/\Gamma \sim 10^{-3}$
Black Holes	5 TeV

CLIC physics study CERN Yellow Report to appear

La Thuile 3/3

Albert De Roeck (CERN) 12

Questions by the Organizers

- Young people sufficiently interested?
 - Yes, even if we talk about 2015-2020
- Importance of the location
 - Generally: Infrastructure \rightarrow opt for existing lab/site
 - Location important mostly for instalation phase.
 - LHC/CMS experience:
 - meetings basically all via VRVS (time zone problems...)
 - There will be regional analysis centers (e.g. at FNAL)
 - There may be virtual control rooms (e.g at FNAL). Some components such as the HLT farm can be controlled from anywhere.
 - Future detector designs will be even more adapted to this option
- Accelerators: GAN?

Studies with new materials for the iris (15 ns tests)

Structure	Peak accelerating	Average accelerating	Peak surface
Copper	110 MV/m	100 MV/m	260 MV/m
Tungsten	150 MV/m	125 MV/m	340 MV/m
Molybdenum	193 MV/m	153 MV/m	426 MV/m

Drive beam generation

CLTC

MUCH UC RUCCH (CLNIN) 1.

Accelerating Gradient tests (CTF2)

Indicative Physics Reach

Ellis, Gianotti, ADR hep-ex/0112004+ updates

Units are TeV (except W_LW_L reach)

"Ldt correspond to <u>1 year of running</u> at nominal luminosity for <u>1 experiment</u>

PROCESS	LHC 14 TeV 100 fb ⁻¹	SLHC 14 TeV 1000 fb ⁻¹	28 TeV 100 fb ⁻¹	VLHC 40 TeV 100 fb ⁻¹	VLHC 200 TeV 100 fb ⁻¹	LC 0.8 TeV 500 fb ⁻¹	LC 5 TeV 1000 fb ⁻¹
Squarks	2.5	3	4	5	20	0.4	2.5
WLWL	2σ	4σ	4.5σ	7σ	18 σ		90 σ
Ζ'	5	6	8	11	35	8†	30†
Extra-dim (δ =2)	9	12	15	25	65	5-8.5†	30-55†
q*	6.5	7.5	9.5	13	75	0.8	5
Acompositeness	30	40	40	50	100	100	400
TGC (λ _γ)	0.0014	0.0006	0.0008		0.0003	0.0004	0.00008

† indirect reach
(from precision measurements)

Approximate mass reach machines: $\sqrt{s} = 14 \text{ TeV}$, L=10³⁴ (LHC) : up to \approx 6.5 TeV $\sqrt{s} = 14 \text{ TeV}$, L=10³⁵ (SLHC) : up to \approx 8 TeV $\sqrt{s} = 28 \text{ TeV}$, L=10³⁴ : up to \approx 10 TeV