Electroweak physics at LEP

Fabio Cossutti INFN Trieste

On behalf of the LEP Collaborations

Les Rencontres de Physique de la Vallée d'Aoste February 29 - March 6, 2004 - La Thuile (Italy)

Outlook

 LEP1 (+ SLD): final results for a while, possibly except for b asymmetries (no new number since Summer 2003)

LEP2:

- 2 fermion production above the Z
- 4 fermion production
- Gauge Couplings
- W mass and width
- Global electroweak fit: still the Summer 2003 one
- All the results are preliminary unless explicitly stated
- New results are explicitly marked

Fermion pair production at LEP2

Not in combination yet

Fermion pair production at LEP2

Limits on new physics: contact interactions:

$$\mathbf{L}_{eff} = \frac{\mathbf{g}^2}{(1+\delta)\Lambda^2} \sum_{i,j=L,R} \eta_{ij} \overline{\mathbf{e}}_i \gamma_{\mu} \mathbf{e}_i \overline{\mathbf{f}}_j \gamma^{\mu} \mathbf{f}_j$$

Scale lower limits for destructive (-) and constructive(+) interference with SM

La Thuile 2004 - 5/3/2004

W pair production cross section

Fabio Cossutti, INFN Trieste

$e+e- \rightarrow WW: EW O(\alpha)$ radiative corrections

- Double Pole Approximation:
 - YFSWW
 - RacoonWW
- Effect on σ_{WW} : 1.5-3%
 - Theoretical precision: 0.4%
- Effect on W mass: O(10 MeV)
- Effect on W polar angle: cTGC
 - Effect on λ_{γ} $g_1^Z \sim -0.015$
 - Effect on $\kappa_{\gamma} \sim -0.04$
 - Same magnitude as total error

Study of effects and systematics needed in real analyses frame

W angular distribution in CC03

LEP PRELIMINARY (DL)

- New LEP combination (DL)
- Very preliminary
- Use only semileptonic decays (e,µ)
- Tag the W sign with leptons
- Reconstruct the Ws with a constrained kinematic fit (E,p conservation)

W branching ratios and $|V_{cs}|$

11/07/2003 Summer 2003 - Preliminary - [161-207] GeV

Fabio Cossutti, INFN Trieste

La Thuile 2004 - 5/3/2004

11/07/2003

Single W production

LEP definition: t-channel only

- M(qq') > 45 GeV/c² , E₁ > 20 GeV
- If ever, $|\cos \theta_e| > 0.95$
- New LEP combination with final L results

All energies combined

$$\sigma_{Wev}^{meas} / \sigma_{Wev}^{Grace} = 0.958 \pm 0.067 (stat) \pm 0.040 (syst)$$

$$\sigma_{Wev}^{meas} / \sigma_{Wev}^{WPHACT} = 0.987 \pm 0.069 (stat) \pm 0.042 (syst)$$

Fabio Cossutti, INFN Trieste

Charged Triple Gauge Couplings

- In SU(2) ⊗ U(1), 3 and 4 bosons vertices
- Anomalous couplings search
 new physics
- Lorentz invariant parameterization of the WWV part of the Lagrangian: 14 complex parameters
 - Electromagnetic gauge invariance
 - C,P conservation
 - Imaginary parts fixed at 0
 - Use gauge constraints and reduce to 3 independent parameters

LEP combination:

$$g_1^z, \kappa_{\gamma}, \lambda_{\gamma}$$
 (1,1,0 in SM)

 $\kappa_{z} = g_{I}^{z} - (\kappa_{\gamma} - 1) \tan^{2} \theta_{W}$, $\lambda_{z} = \lambda_{\gamma}$

- Directly linked to:
 - Magnetic dipole moment

$$\mu_{\mathsf{W}} = \frac{\mathbf{e}}{2\mathbf{M}_{\mathsf{W}}} (1 + \kappa_{\gamma} + \lambda_{\gamma})$$

Electric quadrupole moment

$$\mathbf{Q}_{\mathsf{W}} = -\frac{\mathbf{e}}{\mathbf{M}_{\mathsf{W}}^{2}} (\kappa_{\gamma} - \lambda_{\gamma})$$

 No combination for limits on other parameters

Charged TGC measurement

- WW cross section
- W helicities combinations affect decay angles
 - Maximum likelihood
 - Optimal observables
- Single W cross section (κ_{γ})
- Single photon cross section ($\kappa_{\gamma} \quad \lambda_{\gamma}$)

 Single photon energy and angle spectra

ALEPH

La Thuile 2004 - 5/3/2004

Charged TGC measurement

Charged TGC LEP combination

LEP combination not updated LO new final results

La Thuile 2004 - 5/3/2004

W polarization

- Spin density matrix (DO)
 - Helicity states combinations
 - W boson longitudinal polarization in s channel

$$\sigma_{\rm L} = \int \rho_{\rm 00} (d\sigma / d\cos \theta_{\rm W}) \ d\cos \theta_{\rm W}$$

 From off diagonal elements limits on CP/CPT odd observables (O final):

CP odd	CPT odd
$\sigma_{+-}^{W^-} - \sigma_{-+}^{W^+} = 0.33 \pm 0.17 \pm 0.06$	$\sigma^{W^-}_{+-} + \sigma^{W^+}_{-+} = -0.10 \pm 0.17 \pm 0.06$
$\sigma_{+0}^{W^-} - \sigma_{-0}^{W^+} = 0.09 \pm 0.11 \pm 0.04$	$\sigma_{+0}^{W^-} + \sigma_{-0}^{W^+} = -0.10 \pm 0.11 \pm 0.04$
$\sigma_{-0}^{W^-} - \sigma_{+0}^{W^+} = 0.02 \pm 0.15 \pm 0.06$	$\sigma_{-0}^{W^-} + \sigma_{+0}^{W^+} = 0.07 \pm 0.15 \pm 0.06$

- Helicity components deconvolved from angular W distributions (L final)
 - Study of spin correlations

 $\sigma_L / \sigma = 0.239 \pm 0.021 \pm 0.011$ (OPAL, SM = 0.239) final $\sigma_L / \sigma = 0.218 \pm 0.027 \pm 0.016$ (L3, SM = 0.241) final $\sigma_L / \sigma = 0.249 \pm 0.033$ (DELPHI, SM=0.240)

WWy production

 Affected also by Quartic Gauge Couplings (but at LEP2 very small sensitivity):

- Signal definition:
 - Ε_γ > 5 GeV
 - $|\cos \theta_{\gamma}| < 0.95$
 - $\left|\cos\theta_{\gamma,f}\right| < 0.90$
 - $\mathbf{m}_{w} 2\Gamma_{w} < \mathbf{m}_{ff} < \mathbf{m}_{w} + 2\Gamma_{w}$
- Final LEP results (DLO)

Z pair production cross section

Fabio Cossutti, INFN Trieste

Neutral Triple Gauge Couplings

- 2 classes of nTGC:
 - ZZ γ , ZZZ in e⁺e- \rightarrow ZZ:
 - $f_i^V \quad , V=Z, \gamma, \quad i=4,5$
 - 4 conserved CP, 5 violated
 - ZZ cross section

Neutral Triple Gauge Couplings

• $Z\gamma\gamma, ZZ\gamma$ in e+e- $\rightarrow Z\gamma$:

$$h_i^V, V = Z, \gamma, i = 1, \dots, 4$$

- 1,2 violated CP, 3,4 conserved
- Cross section and distributions in

ννγ, **qq**γ

h ^γ	[-0.16 , 0.05]	<mark>h</mark> γ [-0.08 , 0.014]
h ^r ₂	[-0.11 , 0.02]	h_4^{γ} [-0.04 , 0.11]
h ^z	[-0.35 , 0.28]	<pre>h^z [-0.37 , 0.29]</pre>
h ^z	[-0.21 , 0.17]	h₄^z [- 0.19 , 0.21]

Neutral Quartic Gauge Couplings

 ZZyy vertex forbidden in the SM

- Search for anomalous contributions in
 - qqγγ
 - ννγγ
 - Total cross section and differential distributions

a_c /
$$\Lambda^2$$
 [-0.029,0.039]
a₀ / Λ^2 [-0.008,0.021]

Final results from L LEP combination not updated New final results from AO

Neutral Quartic Gauge Couplings

Single Z production

 LEP definition: NC48 diagrams set, search for 1 e scattered in the detector

- M(ff) > 60 GeV/c²
- θ_{unscattered} < 3°
- 12°< θ_{scattered} < 168°
- E_{scattered} > 3 GeV
- eeqq, eeµµ, eett considered
- Final eeqq results from L

Fabio Cossutti, INFN Trieste

W mass at LEP2: method

Direct measurement of m_W:

- Use W pair production (CC03)
- ~ 35000 W pairs selected at LEP2

• At the WW production threshold from $d\sigma/dm_W$:

m_W = 80.40 ± 0.20 (stat) ± 0.07 (syst) ± 0.03 (LEP En.) GeV/c²

- At higher energies: direct kinematic reconstruction of m_W
 - qqqq (BR 46%)
 - qqlv (BR 44%)
 - Ivlv (ALEPH E₁, OPAL E₁, pseudo mass), much smaller precision
- Improve mass resolution: constrained kinematic fit

$$\textbf{E}_{tot} = \sqrt{\textbf{s}}, \quad \vec{\textbf{p}}_{tot} = \vec{\textbf{0}}$$

- Jet pairing ambiguities in qqqq: pair selection or pair weighting
- m₁=m₂ or use both masses

W mass at LEP2: method

- Extract m_W from the reconstructed mass distribution (also Γ_W, small correlation with m_W)
 - Likelihood fit based on simulation reweighting as a function of m_W
 - Likelihood fit based on the convolution of the m_W theoretical distribution with an experimental resolution function

preliminary

86 88

 M_w (GeV/c²)

82

76

78 80

W mass and width at LEP2: results

 $\Delta m_W (qqqq - qqlv) = +22 \pm 43 \text{ MeV}$

W mass at LEP2: uncertainties

In the kinematic reconstruction direct measurement:

$O(\alpha)$ under study	Source Systematic Error on			or on n	n _w (MeV)
YFSWW/RacoonWW		$q\overline{q}\ell\overline{\nu}_{\ell}$	$q\overline{q}q\overline{q}$		Combined
$Full E V \ge IO W E V ?$	ISR/FSR	8	8		8
Fragmentation models Z peak data constraint	Hadronisation	19	18		18
	Detector Systematics	14	10		14
	LEP Beam Energy	17	17		17
Calibration on real Z data, mainly at peak	Colour Reconnection	—	90		9
	Bose-Einstein Correlations	—	35		3
	Other	4	5		4
	Total Systematic	31	101		31
	Statistical	32	35		29
Final LEP energy:	Total	44	107		43
δE~10-20 MeV					
Cross check with Z	Statistical in absence of Systematics	32	28		21
radiative return					

- Main systematic problem: Final State Interactions in qqqq...
 - qqqq weight in the combined fit: 0.10

Final State Interactions between Ws

- Hadronisation scale: ~ 1 fm
- W lifetime/decay length very short: ~ 0.1 fm
- If both $W \rightarrow qq$, independent hadronisation?

- Color reconnection: perturbative and non-perturbative cross talk between hadronising systems
- Bose Einstein correlations: between identical bosons from different Ws close in phase space
- Bias in reconstructed m_w?
- At present their uncertainty is the limiting factor for LEP2 measurement

Color reconnection

r=R(data)/R(no CR)

Fabio Cossutti, INFN Trieste

La Thuile 2004 - 5/3/2004

Color reconnection

Bose Einstein correlations

D(Q)

- Measurement of inter-W BE in data
- Reference sample from data: mix hadronic part of 2 WW \rightarrow gqlv

$$\Delta \rho(\mathbf{Q}) = \rho^{WW} - 2\rho^{W} - 2\rho_{mix}^{WW}$$
$$\mathbf{D}(\mathbf{Q}) = \frac{\rho^{WW}}{2\rho^{W} + 2\rho_{mix}^{WW}}$$

- If no inter-W BE: $\Delta \rho = 0 e D = 1$
- If LEP combined fraction used $\delta m_W \sim O(10 \text{ MeV})$

SM Higgs: direct search vs EW fit result

Fabio Cossutti, INFN Trieste

The global electroweak fit: constraints on SM Higgs

Fabio Cossutti, INFN Trieste

La Thuile 2004 - 5/3/2004

The global electroweak fit: problems

 When all available data (LEP + SLD + Tevatron + NuTev + APV) are included:

X²/dof = 25.4/15 (prob. 4.5%)

 $A_{FB}^{b}(LEP)$ vs $A_{LR}(SLD)$: a long standing unresolved problem ($\Delta \sin^{2} \theta_{W}^{eff} \sim 2.9 \sigma$) NuTev $\sin^{2} \theta_{W}$: big impact on the X² (16.7/14 if excluded) but a negligible influence on the Higgs mass

Conclusions

LEP1 electroweak physics (almost) closed

- LEP2 has still to provide lots of final numbers
 - But the overall picture looks defined
- No news in the global electroweak fits
 - the problems are known
- Although LEP has not yet said its final word, the moment is approaching for Tevatron to take over in feeding new results into the electroweak fit!

BACKUP TRANSPARENCIES

W pair production cross section

Single W production

Z pair production cross section

Measured σ^{22} / YFSZZ				
	PRELIMINARY			
183 GeV	0.857 ± 0.320			
189 GeV _	1.007 ± 0.111			
192 GeV	0.826 ± 0.224			
196 GeV	1.100 ± 0.133			
200 GeV	0.912 ± 0.124			
202 GeV	0.795 ± 0.173			
205 GeV	0.931 ± 0.120			
207 GeV	0.928 ± 0.090			
LEP combined	0.945 \pm 0.052 $\chi^2/ndf = 19.1/31$			
0.8 1. 1.2				

Single Z production

W mass: why do we measure it?

In the Standard Model (SM):

$$m_W^2 = \frac{\alpha \pi}{\sqrt{2} s_W^2 G_F} \frac{1}{1 - \Delta r(m_t, m_H)}$$
$$s_W^2 = 1 - m_W^2 / m_Z^2$$

- W mass direct measurement:
 - Comparison with the indirect determination from other measurements in (e+e- → Z, vN) ⇒ SM test
 - Higgs boson limits from electroweak fits

New ALEPH m_w result

Fabio Cossutti, INFN Trieste

La Thuile 2004 - 5/3/2004

m_w systematics at LEP2: LEP energy

Constrained kinematic fit:

 $\Delta \sqrt{s} / s = \Delta m_w / m_w$

- Main method:
 - Resonant depolarisation up to 60 GeV
 - NMR probes give local field in dipoles \Rightarrow extrapolate with $E_{beam} = a + bB_{NMR}$
 - Cross check integrated field with "Flux loop"

 $\delta E_b \cong 15 \text{ MeV}$

- Synchrotron tune Q_S vs V_{RF} : $\delta E_b \cong 20 \text{ MeV}$
- LEP Spectrometer (1999-2000)
 - = Energy from beam curvature in a known magnetic field at 0.001% $\delta E_b \cong$ 20 MeV

• Radiative return to Z peak in e+e- \rightarrow ff γ

$$\delta m_Z / m_{\text{--}} \cong 10^{-5}$$

 δE_b = -14 ± 21(stat.) ± 20(syst.) ± 20(LEP) MeV

m_w systematics at LEP2: hadronisation

- m_w kinematic reconstruction:
 - Jet characteristics
 - Particle assignment
- Hadronisation models tuned in
 - $Z \rightarrow q q$ on peak
 - High statistics
 - Detailed studies
- Compare JETSET/ARIADNE/HERWIG
- Different tunings/models imply differences at 10-50 MeV
 - Baryon/kaon rates relevant due to pion/γ mass assignment in analysis!
 - But when same tuning/model reasonable consistency between experiments

- Data/MC comparison
 - Exploit mainly Z on peak data
 - Check jets characteristics not well described by tunings
 - Both hadronisation and detector effects
- Mixed Lorentz Boosted Z (DELPHI):
 - Pseudo WW events from 2 Z peak hadronic events mixed and boosted
 - Constrained fit data/MC comparison (high statistics)
 - Result interpretation? (both hadronisation and detector effects)