# **GTeV:** Gluon Physics at the Tevatron

- A future experiment at the Tevatron
- 2009: CDF & D0 complete data taking
  - BTeV to run (if funded) 2009- ~ 2013 (?)
- Primary Goal of GTeV: QCD (perturbative & non-perturbative)
- Uses CDF or D0 detector as "core"
- Add precision forward and very forward tracking

**Primary Goal: Understand Strong Interactions** 

# Foci:

# **Gluon density g(x, Q2) at very low x**

saturation, unitarity, gluodynamics, non-perturbative frontier

## **Pure Gluon jets**

profiles, content, color connection, gg compared to q-qbar jets

## **Determine glueball spectrum**

Relates to pomeron trajectories, strings, lattice ...

# Measure exclusive $\chi_c^0, \chi_b^0$

Relates to SM Higgs study at LHC

## **Discover new exotic hadrons**

Hybrids, 4-quark, pentaquarks, ... Search for exotic fundamentals

CP-odd H, Radions, gluinoballs  $\tilde{g}\tilde{g}$  ...

**Use Tevatron as Tagged Gluon-Gluon Collider** 

$$\sqrt{s_{gg}} = \sim 1 \,\text{GeV} \Longrightarrow \sim 100 \,\text{GeV}$$
$$\sigma_{\sqrt{s}} \sim 100 \,\text{MeV} \quad \longleftarrow \text{ (Stretch Goal)}$$

Glueballs and Hybrids New Exotic Hadrons chi\_c and chi\_b states Hunting strange exotic animals (radions, ...?

Everywhere: Gluodynamics, perturbative and non-perturbative issues



# **The REAL Strong Interaction**



point-like, weak coupling perturbative



- → Lattice Gauge Theory Small volume, hadron size
- → Regge Theory: Analyticity + Unitarity + Crossing Symmetry + Complex angular momenta
- $\rightarrow$  String models

Want a complete understanding of S.I.

$$Q^2 = 0 \rightarrow \infty$$

#### **Non-perturbative – perturbative transition**

Mike Albrow

#### Some of proposed program could be done now, except:

- 1) Do not have 2-arm forward p-taggers (dipole spectrometer)
- 2) Small angle ( < 3 deg) region trackless
- 3) Limit on number of triggers
- 4) Bandwidth allocated small

## 60 Hz $\rightarrow$ 250 Hz $\rightarrow$ > 1 KHz for 2009 [10<sup>10</sup>/year]

CDF, D0: NP QCD  $<\sim 10\%$ , other  $\sim 90\%$ GTeV: NP QCD  $\sim 90\%$ , other  $<\sim 10\%$ 

& upgrade of forward and very forward detectors

Mike Albrow

GTeV

La Thuile March 2004 5

#### **Probing Very Small x Gluons**

High parton densities New phenomena (gluon saturation) HERA measures q(x) to ~ 10^-5 g(x) by evolution, charm GTeV : measure g(x) to ~ 10^-4 (also x >~ 0.5) more directly

$$\begin{aligned} \mathbf{x}_{1} &= \frac{p_{T}}{\sqrt{s}} \left( e^{y_{1}} + e^{y_{2}} \right) \quad ; \quad \mathbf{x}_{2} = \frac{p_{T}}{\sqrt{s}} \left( e^{-y_{1}} + e^{-y_{2}} \right) \\ \text{e.g.} \sqrt{s} &= 1960 \text{ GeV}, \ \mathbf{p}_{T} = 5 \text{ GeV}, \ \mathbf{y}_{1} &= \mathbf{y}_{2} = 4 \ (2.1^{0}) \\ \Rightarrow \qquad \mathbf{x}_{1} &= 0.56, \ \mathbf{x}_{2} = 10^{-4} \end{aligned}$$

Instrument  $0.5^{\circ} < \theta < 3^{\circ}$  region with tracking, calorimetry (em+had), muons,  $J/\psi$  jets, photons ...



#### Mike Albrow

## <u>Gluon Jets</u>

LEP(Z) ... ~  $10^7$  q-jets, detailed studies "Pure" g-jet sample: 439 events (OPAL), Delphi more but 80% "pure"

(2 jets and ~ nothing else)
> ~ 99% pure g-jets
q-jets suppressed by Jz = 0 rule

In pp  $\rightarrow$  p

 $e^+e^- \rightarrow Z \rightarrow b b g$ 

JJ

~10<sup>5</sup> pure g-jets

Fragmentation, scaling color singlet back-to-back gg jets: DPE unique

CDF Run II Preliminary SD\_ (Prescale 280) Prescale/0.05 DPE = SD\_ + GAP\_(5.5<η\_\_\_<7.5) (Prescale 5 DPE = SD<sub>n</sub> + GAP (3.6<η<sub>max</sub><7.5) (Prescale 5) 10 Energy Scale Uncertainty  $L = 26 \text{ pb}^{-1}$ Exclusive #Events Dijet Mass Fraction  $SD_{\overline{p}} : 0.03 \le \xi_{\overline{p}} \le 0.1$ 10 E<sup>jet2</sup> > 10 GeV 04 0.6 0.8  $R_{ii} = M_{ii}/M_{\chi}$ 

g-jet contaminated at low-x

 $\overline{p}$  with  $M_{MM} \approx M_{H}$ 

Mike Albrow

GTeV

La Thuile March 2004

#### **Central Exclusive Production**

... or, diffractive excitation of the vacuum

"IT IS CONTRARY TO REASON TO SAY THAT THERE IS A VACUUM OR A SPACE IN WHICH THERE IS ABSOLUTELY NOTHING." DESCARTES

→ Virtual states in the vacuum can be promoted to real states by the glancing passage of two particles.

Charged lepton (or q) pairs : 2-photon exchange Hadronic states : 2-pomeron exchange (DPE) dominates

Vacuum quantum number exchange. Central states' quantum numbers restricted. Measure forward p,pbar → missing mass, Q-nos.

Ideal for Glueball, Hybrid spectroscopy



8

## <u>Gluonia and Glueballs</u>

Hadrons **G** without valence quarks Allowed in QCD – or, if not, why not ? Some can mix with  $q\bar{q}$  mesons Some have exotic quantum numbers and cannot  $J^{PC} = 0^{--}$ , even<sup>+-</sup>, odd<sup>-+</sup> Glue-glue collider ideal for production (allowed states singly, others in association GG', G + mesons.) Forward  $p\bar{p}$  selects exclusive state, kinematics filters Q.Nos :

Forward protons:  $J^{P} = 2^{+}$  exclusive state cannot be non-relativistic  $q\overline{q}$  ( $J_{z}=0$  rule)

Exclusive central states e.g.  $\phi \phi \rightarrow 4K, \pi \pi KK, D\overline{D}^*, \Lambda \overline{\Lambda}$ , etc

| Other processes:       | $\pi p \rightarrow [\phi \phi] + n$                                       |
|------------------------|---------------------------------------------------------------------------|
|                        | $J/\psi \rightarrow \gamma + G$ $e^+e^- \rightarrow J/\psi, \Upsilon + G$ |
|                        | $p\overline{p} \ (low \ \sqrt{s}) \rightarrow G + anything$               |
| This one $\rightarrow$ | $gg \rightarrow G, GG, G+anything$                                        |

Mike Albrow

<u>**Central Exclusive Production**</u>

gg fusion: main channel for H production.

#### Another g-exchange can cancel color, even leave p intact. $p p \rightarrow p + H + p$

Theoretical uncertainties in cross section, involving skewed gluon distributions, gluon k\_T, gluon radiation, Sudakov form factors  $\rightarrow$  Probably  $\sigma(SMH) \sim 0.2$  fb at Tevatron, not detectable, but may be possible at LHC (higher L and  $\sigma \sim 3$  fb?)



Theory can be tested, low x gluonic features of proton measured with exclusive  $\chi_c^0$  and  $\chi_b^0$  production.

Khoze,Martin,Ryskin hep-ph/0111078 Lonnblad & Sjodahl hep-ph/0311252 and many others

La Thuile March 2004 10

## Exclusive $\chi_c$ search in CDF: $p \overline{p} \rightarrow p \quad \chi_c \quad \overline{p}$

(Angela Wyatt)

Predictions for Tevatron: Khoze, Martin, Ryskin ~ 600 nb Feng Yuan ~ 735 nb (20 Hz at Tevatron!)

In reality: BR( $\chi_c^o \rightarrow J/\psi \gamma$ ) ~ 10<sup>-2</sup>; BR( $J/\psi \rightarrow \mu^+\mu^-$ ) ~ 6.10<sup>-2</sup>

No other interaction ~ 0.25; acceptance(trig) ~  $10^{-2}$  $\Rightarrow$  few pb (1000's in 1 fb<sup>-1</sup>)

 $\sigma(p p \to p \quad \chi_b \quad p) \sim 120 \text{ pb (KMR)}$  $\times (BR \to \Upsilon\gamma) \times (BR \to \mu\mu\gamma) \Longrightarrow \sim 500/\text{fb}^{-1}$ 



Measuring forward  $p \rightarrow$  central quantum numbers  $J^{P}=0^{+}$ ; 2++ suppressed at t=0 for  $q\overline{q}$  state (Khoze,Martin,Ryskin hep-ph/0011393; F.Yuan hep-ph/0103213)

If MM resolution <~ 100 MeV, exclusive test, resolve states

Mike Albrow

#### **Beyond the Standard Model**

**<u>CP-odd Higgs</u>** : allowed  $20 \le M \le 60$  GeV Don't couple to W,Z ... produced by gg  $\rightarrow$  t-loop  $\rightarrow$  h But b-bbar b/g large too ... Mass resolution critical

Low  $\beta \Rightarrow$  Medium  $\beta \sigma_{MM} \approx 100 \text{ MeV}$ 

(z,t) correction  $\approx$ ?

**<u>Radions</u>**: Quantum fluctuations in 5<sup>th</sup> dimension: tensor + scalar 20 GeV and up allowed if parameters right. Like h but gg coupling high Width ~ keV, Decay  $\rightarrow$  b bbar

#### Light Gluinos and Gluinoballs

Gluino  $\tilde{g}$  could be lightest SUSY particle LSP Does not decay in detector --- forms heavy hadrons. Can form  $\tilde{g}\tilde{g}$  bound states "gluinoballs"  $\sigma(p\bar{p} \rightarrow p + \tilde{G}(60\text{GeV}) + \bar{p}) \approx 20\text{fb} (\text{Tevatron})$ 



Mike Albrow

#### <u>Missing Mass!</u>

$$MM_{central}^{2} = (p_{1}+p_{2} - p_{3} - p_{4})^{2} (4 - vectors)$$
$$MM_{invisible}^{2} = (p_{1}+p_{2} - p_{3} - p_{4} - \Sigma_{rest}p_{i})^{2}$$

Peak at 
$$M_{Z}$$
 for  $Z \rightarrow v\overline{v}$ 



Extreme case of rest of detector completely empty No MM peaks "expected" But threshold bump  $\rightarrow$  pair production of e.g. LSPs Needs measurement of all forward particles Tracking + dipoles (?) Background from double beam halo: Timing (<~30 ps) on pots, Luminosity dependence

#### Single Diffractive Excitation

$$\sigma_{inv} = \frac{m_0^2}{16\pi^2} \frac{1}{s} \sum_{iij} G_{iij}(t) \left(\frac{s}{M^2}\right)^{2\alpha_i(t)} \left(\frac{M^2}{m_0^2}\right)^{\alpha_j(0)} + \dots$$

s-dependence at various fixed t,  $M^2 \Rightarrow \alpha_i(t)$ 

System X can be soft (all low pT)
or hard (jets, W, Z).
HERA-Tevatron difference – universal screening?
Pomeron trajectory probably different for
hard and soft systems. Similar seen at HERA in



Single\_Diffractive (SD)

P

Φ

IF

 $\gamma^* p \rightarrow \rho \quad p \text{ (soft) and } \gamma^* p \rightarrow \psi/\Upsilon \quad p \text{ (hard)}$ 

Systematic study of trajectories, needs s-dependence  $\rightarrow$ run at sqrt{s} = 630, 900, 1300, 1960 GeV (~ log spacing, modest runs at lower sqrt{s})

## <u>BFKL and Mueller-Navelet Jets</u>

Color singlet (IP) exchange between quarks Enhancement over 1g exchange – multiRegge gluon ladder Jets with large y separation n minijets in between (inelastic case) large gap in between (elastic case)

Cross section enhanced  $\left(\frac{s}{t}\right)$ 

$$\omega_{BFKL} = \frac{4N_c \ln 2}{\pi} \alpha_{\rm S} \approx 0.5 \text{ for } \alpha_{\rm S} = 0.19$$
$$\overline{n} \sim \omega \ln \left(\frac{s}{t}\right) \sim 3 - 4$$





Fundamental empirical probe of new regime: non-perturbative QCD at short distances.

Mike Albrow

GTeV

Measure fn( $\eta$ ,  $p_T$ ,  $\sqrt{s}$ ,  $\Delta \eta$ )

#### Hadron Spectroscopy: an example

X(3872) discovered by Belle (2003) Seen soon after by BaBar and CDF Relatively narrow

$$M_{X(3872)}$$
 -  $M_{J/\psi}$  -  $2M_{\pi}$  = 495 MeV  
 $\Gamma < 3.5 \text{ MeV}$ 

What are its quantum numbers? Why so narrow? What is it?

 $D\overline{D}^*$  "molecule"? or  $[\{cd\} \Leftrightarrow \{\overline{cd}\}]$  state?



# If we see in exclusive DPE: $0^+ 0^{++} \Rightarrow$ favored $I^G J^{PC}$ (DPE) $0^+ 0^{-+}, 0^+ 1^{-+}, 0^+ 1^{++} \Rightarrow$ not at $0^\circ$ $0^+ 2^{++} \Rightarrow$ not $q\overline{q}$ Mike AlbrowGTeV

Also, cross-section depends on "size/structure" of state.

#### <u>Bjorken: Low pT is the frontier of QCD</u>

As pT drops from  $200 \rightarrow 100 \rightarrow 50$  MeV what happens? Larger distances: 1 f  $\rightarrow$  4 fm How do gluon fields in protons "cut off"?

Multiplicity distributions of very low pT particles, correlations, ... Low-pT cloud in special events

[Runs with reduced field, Si-only tracking, etc .....absorption and multiple scattering is limit]

Large impact parameter, b, collisions

RHIC AA can measure b, how can we? Diffraction at small t

#### <u>Detectors</u>



#### Add:

New pots very forward E&W: through quadrupoles + near (55m) + far (~160m?) Other forward detectors (tracking, upgrade calorimetry e.g.)  $\rightarrow$  "Cone Spectrometers" New DAQ and trigger system  $\rightarrow$  kHz Silicon (certainly want it) ... hope it's still good (COT also)

Mike Albrow

#### **CDF Silicon VerteX Detector SVX**



For beauty, charm, tau identification and measurement. ~ 720,000 strips, 25um with 50um readout L00 : ~ 1.5 cm from x, R-phi view SVXII: 3 double 90 deg layers + 2 double 1.2 deg layers ISL : 1 or 2 double 1.2 deg layers. Impact parameter resolution ~ 30 um @ 1 GeV/c

#### Mike Albrow

#### **CDF Central Outer Tracker (COT)**

Drift chamber 3.1m in z, 0.34-1.32m in R 96 layers → 30,240 s.wires 40 um gold-plated tungsten ADC & TDC each end 6 um Au-mylar field sheets

Resolution ~ 150 um/wire





 $J/\psi \gamma$ (probably  $\chi_c$ )

#### Mike Albrow

## <u>New Forward Region (0.5-3.0 deg): Cone Spectrometer?</u>

#### Now: 48 CLC counters + MiniPlugs



Can (remove Q1 and) push back ~ 2 m low-beta quads Tracking e.g. GEM layers (50 um, 15 ns) over large area Deeper Calorimeter (~8 int. lengths) high granularity, em/had Possibility of forward dipoles (?) or toroid fields on calo iron Upgrade motivation: Low-x with v.forward jets, J/psi (BFKL) J - minijets - J, J – gap – J and J + X + J ... etc "Cone Spectrometers" Jets,  $\mu$ , e,  $J/\psi$ ,  $\gamma$ ?

Mike Albrow

#### <u>Very Forward: Roman Pots</u>

D0 has 8+8 quadrupole spectrometer pots + 2 dipole spectrometer pots Scintillating fiber hodoscopes (~ 1mm)



CDF has 3 dipole spectrometer pots 0.8 mm x-y fibers

**GTeV**: Quads + near + far dipoles Silicon ustrips, pixels, trig scint Quartz Cerenkov for ~ 30 ps TOF



#### **Re-using D0 detector?**



#### Add: New/ungrade nots very forward E&W: guad + near

New/upgrade pots very forward E&W: quad + near (55 m) + far (160 m?)

Forward ("cone") region probably not instrumentable

Mike Albrow



Spaces for pots and their position: quad, near dipole, far dipole **Replace 3 dipoles with 2 High Field dipole(s)** → ~ 4 m spaces 6.5 Tesla, same current, temperature! (Tech.Div or outside) → critical path, ~ 4 years

Momentum and Missing mass resolution Limits? Medium-beta? p-z correlation? stability, drifts Instrumentation: precision (~ 10 um?) BPMs at pots

Co-existence with BTeV: Luminosity (~2-4 e31 also high?), Beam-beam tune shift, Long-range tune shift, Electrostatic separators, Luminosity lifetime, ...

#### Many Subjects not Covered

#### Just a few:

The cosmic ray connection: very forward particle production data needed

Jet – gap - X – gap - Jet (low mass X) different from p—X---p?

**Very soft photons** < 100 MeV, via conversions

**p** → **3 jet fragmentation:** 3 very forward jets, with & without gaps **Bose-Einstein correlations:** directional, event type, high statistics

Many other studies will be done, as happens in CDF & D0 now.

<u>GTeV plan</u>

Forming Working Groups, conveners. Workshop at Fermilab May 20-22 :

## <u>The Future of QCD at the Tevatron</u>

CDF & D0 now  $\rightarrow$  2009 HERA, BNL, JLab, etc BTeV, LHC beyond 2007 What is unique for GTeV beyond 2009?

Please come!

**Proposal** to PAC Spring 2005 (?)

| Working Groups  | Topics                                                                                                                                                                                                           |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physics         | Low Mass Double Pomeron<br>High Mass DPE & Higgs<br>Jet-Gap-Jet Studies+BFKL<br>Small-x g and g-jets<br>Hadron spectroscopy<br>Single Diffractive Excitation<br>Exotics<br>Cosmic Ray issues<br>Event Generators |
| Detectors       | Simulations with Detectors<br>Cone Spectrometers<br>Roman pots ("v.forward")<br>Central detector                                                                                                                 |
| (DAQ & Trigger) | Triggers L1 L2 L3<br>kHz DAQ<br>Computing on/off line, GRID                                                                                                                                                      |
| Tevatron        | High Field Dipoles<br>Orbit issues, beta, ES seps<br>Roman Pot insertions<br>BTeV-GTeV interaction                                                                                                               |

Mike Albrow

GTeV

La Thuile March 2004 26

#### **Concluding Remarks**

There will be a vast amount of QCD physics still to be done in 2009. Here I have only scratched the surface. Unknown territory: discoveries likely.

The CDF and D0 detectors are great central detectors for this program, suitably upgraded at modest cost: DAQ, trigger, forward (few deg) and very forward (pots) Not all ~1500 physicists on CDF and D0 want to go to LHC We hope physicists come from DESY, BNL, JLab etc expts.

Tevatron running anyway for BTeV, so it's great value.

# Let's do it!