Z-lineshape versus 4th Generation.

V. Novikov (ITEP)

Z-lineshape versus 4th generation masses.

S. S. Bulanov * V. A. Novikov † L. B. Okun † ITEP, Moscow, Russia

A. N. Rozanov §

CPPM, IN2P3, CNRS, Univ. Mediteranee, Marseilles, France and ITEP, Moscow, Russia

M. I. Vysotsky,

ITEP, Moscow, Russia.

Abstract

The dependence of the Z-resonance shape on the location of the threshold of the $N\bar{N}$ production (N is the 4th generation neutrino) is analyzed. The bounds on the existence of 4th generation are derived from the comparison of the theoretical expression for the Z-lineshape with the experimental data. The 4th generation is excluded at 95% C. L. for $m_N < 46.7 \pm 0.2$ GeV.

1 Introduction

The straightforward generalization of the Standard Model through the inclusion of extra chiral generations of heavy leptons (N, E) and quarks (U, D) was studied in a number of papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In [1, 2, 3] the analysis of deviations from the Standard Model due to 4th generation contribution was carried out in terms of S, T and U parameters for 4th generation particles being much heavier than m_Z . The case of new light physics

^{*}bulanov@heron.itep.ru

[†]n2ovikov@heron.itep.ru

tokun@heron.itep.ru

[§]rozanov@cppm.in2p3.fr

[¶]vysotsky@heron.itep.ru

4th Generation

$$\begin{pmatrix} U \\ D \end{pmatrix}_{L}$$
: U_{R} : D_{R} $\int SU(2)$

Hunting for 4th Generation

$$A = A^{SM} \left(1 + \Delta(m_u) \right)$$

$$\Delta (m_4) \rightarrow C \propto m_2$$

Non-decoupled
New
Physics!

Figure 1: Exclusion plot for heavy extra generations with the input: $m_D = m_E = 130$ GeV, $m_U = m_N$. χ^2 minimum shown by cross corresponds to $\chi^2/n_{d.o.f.} = 22.2/12$, $N_g = 0.4$, $\Delta m = 160$ GeV, $m_H = 116$ GeV. N_g is the number of extra generations. Borders of regions show domains allowed at the level 1σ , 2σ , etc.

Brief History of Hunting for Heavy Generation: my>>mz

2000 — Strongly forbidden

1 — forbidden

2 — as good as the SM

3 — ?

Partially heavy generation mn ~ 50 Ger

mz = 2 mn => Z (mixing NN

Conspiracy of New Physics

Large corrections due to "light" No compensates corrections dur to heavy U, D, E!

2 and more partially heavy generations are still allowed!

- (1) ete >7 NN
- 2 Z-peak shape

Z-peak shape

$$\Sigma(p) \sim \sqrt{s-4m_v^2} \Rightarrow W. f. \sim \sqrt{m_s^2-4m_v^2}$$

zenormalizatio

Limit my = "=/2=) w.f. -> 00

Theoretical ? Yes and No

Breakdown of Breit-Wigner approximation

Threshold NN mear mz can't be immitated by B.-W. pole

Casps

$$T = T_0 + i T_1 \sqrt{S - 4m_N^2}$$

$$S = 4m_N^2$$

Z-boson

Propegator G

For
$$4m_{N}^{2} = m_{2}^{2}$$

$$G(e^{2}e^{-3}2 \rightarrow hodrons) \sim \begin{cases} GSM(1-d_{N}^{2} + \frac{15-m_{2}^{2}}{\Gamma_{2}^{2}}) \\ GSM(1-d_{N}^{2} + \frac{15-m_{2}^{2}}{\Gamma_{2}^{2}}) \end{cases}$$

while horizontal one is st dashed fine crosses horizontal axis at the

Below we will consider the case when $R \equiv Z$.

Polarization operator.

section of a section of the Rect Vigner formula [21]

is the many to define the state of the state

Figure 2: Different cases of cross section behavior near threshold. Vertical axis is σ , while horizontal one is s; dashed line crosses horizontal axis at $4m_N^2$

Variations within $\Gamma_z \sim d_w m_z$ $\sqrt{S} = m_z + \alpha \Gamma_z \sim m_z (1 + d_w x)$ $S - m_z^2 = 2\alpha m_z \Gamma \sim 2\alpha m_z^2 d_w$ $\sqrt{S} \sim S^{SM} \left\{ 1 - \frac{d_w x}{d_w x} \sqrt{d_w x} \right\}^{Large!}$ $\sqrt{S} \sim S^{SM} \left\{ 1 - \frac{d_w x}{d_w x} \sqrt{d_w x} \right\}^{Large!}$

Acriations from B.-W. are large!

Figure 3: The dependence of relative departure of the $e^+e^- \to hadrons$ cross section in the presence of 4th generation from the SM prediction on the c.m. energy of e^+e^- for $m_N=45$ GeV (a) and $m_N=47$ GeV (b).

Comparison with LEP1.

O 1993-1997

35 points 15~ 89.4 - 93.04 Bev

@ E.-m. corrections to

Gr = [2-m2+iL2 + Σ, b) - 86 Σ, [m3] m2,

[2-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3] m3,

[3-m3+iL2 + Σ, b) - 86 Σ, [m3+iL2 +

ZFITTER

 $\Im \chi' = \sum_{s} \left(\frac{S_{som}}{S_{som}} \right)^{2}$

Valleys in MH, MU-MB!

MN-ME

Figure 4: The dependence of χ^2 on m_H , $|m_U - m_D|$ (a) and on m_H , $|m_E - m_N|$.

Figure 5: a) Exclusion plot on the plane m_H , $|m_U - m_D|$ for $m_N = 49$ GeV; $\chi^2_{min} = 0.85$ denoted by cross b) Exclusion plot on the plane m_H , m_N for $|m_U - m_D| = 10$ GeV; $\chi^2_{min} = 0.85$ denoted by cross. Solid lines represents the borders of 1σ , 2σ , 3σ , 4σ and 5σ regions.

Results

For ME = 100 Gev 1mu-mbl ~ 0 - 50 Gev

(mn < 46.7 Gev ± 0.2)

Excluded 95% C.L.

Summary

(3) B:W. mn>46.7 Ger

(2) ete-18. Nothing
mws 50 Gm.