

Measurements of the Unitarity Triangle by Belle

HIGUCHI, Takeo

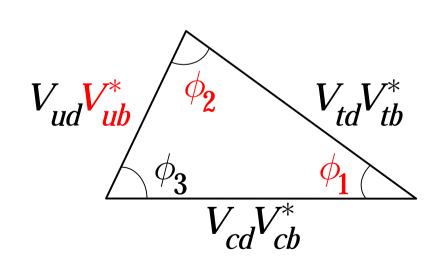
High Energy Accelerator Research Organization (KEK)

The unitarity triangle

XVII Rencontres de Physique de la Vallee d'Aoste

Today's Contents

- Introduction
 - Introduction to the unitarity triangle
- Interior angle measurements (measurements of time-dependent CP violation)


-
$$\phi_2$$
: $B^0 o \pi^+\pi^-$

-
$$\phi_1$$
: $b \rightarrow c\overline{c}s$, $b \rightarrow s\overline{s}s$

· Side measurement

-
$$/V_{ub}$$
|: $B^{\,0} o D_{\!\scriptscriptstyle S}^{\,+} \pi^-$

Conclusions

Introduction

Introduction to the Unitarity Triangle

• What is the unitarity triangle?

- It is a triangle formed by elements of quark-mixing-matrix of three generations.

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$V_{ud}V_{ub}^* \xrightarrow{\phi_2} V_{td}V_{tb}^*$$

$$V_{ud}V_{ub}^* \xrightarrow{\phi_3} V_{cd}V_{cb}^*$$

Which part of physics is the triangle related to?

- The quark-mixing-matrix of three generations is a key to describe *CP* violation.

- N.B: The three-generation $\Gamma(X \to f_{CP}) \neq \Gamma(\overline{X} \to f_{CP})$ matrix is proposed by Kobayashi and Maskawa in 1973 (KM-model).

Introduction — **Cont'd**

Predictions of the KM-model

- There are \geq 6 quarks.
 - \blacksquare Discovery of c-, b-, and t-quarks.
- *CP* violation in the *B* system.
 - $\leq \sin 2\phi_1$ measurement.
- The unitarity triangle is really a triangle.
 - \square Test by angles (ϕ_1, ϕ_2, ϕ_3) and sides (V_{nb}, ϕ_1) etc.) in B decays.

Measurement of the unitarity triangle is an important test of the Standard Model

Motivations for Belle

Time-Dependent CP Violation

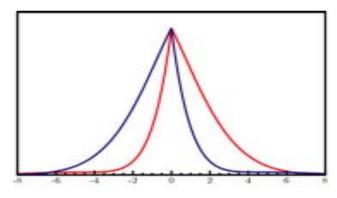
- Introduction to time-dependent CP violation
- ϕ_2 measurement with $B^{\,0}
 ightarrow \pi^+\pi^-$ decay
- ϕ_1 measurement with $b \to c \overline{c} s$, $s \overline{s} s$ transitions

Time-Dependent CP Violation

$$A_{CP}(\Delta t) \equiv \frac{\Gamma(\overline{B}^{0} \to f_{CP}; \Delta t) - \Gamma(B^{0} \to f_{CP}; \Delta t)}{\Gamma(\overline{B}^{0} \to f_{CP}; \Delta t) + \Gamma(B^{0} \to f_{CP}; \Delta t)}$$
$$= S \sin(\Delta m_{d} \Delta t) + A \cos(\Delta m_{d} \Delta t)$$

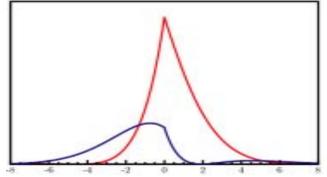
If either ${\mathcal S}$ or ${\mathcal A}$ is non-zero, ${m B} o {m f}_{CP}$ has ${m CP}$ asymmetry.

Note: Standard Model prediction $(\xi_f \equiv CP \text{ eigenvalue})$


	b → uūd	$m{b} ightarrow m{c} m{\overline{c}} m{s}$	$m{b} ightarrow m{s}m{ar{s}}m{s}$
${\mathcal S}$	$+\xi_{1}\sin 2\phi_{2}(?)$	$-\xi$ $\sin\!2\phi_1$	$-\xi_{I}\sin 2\phi_{1}$ (?)
${\cal A}$	0(?)	0	0(?)

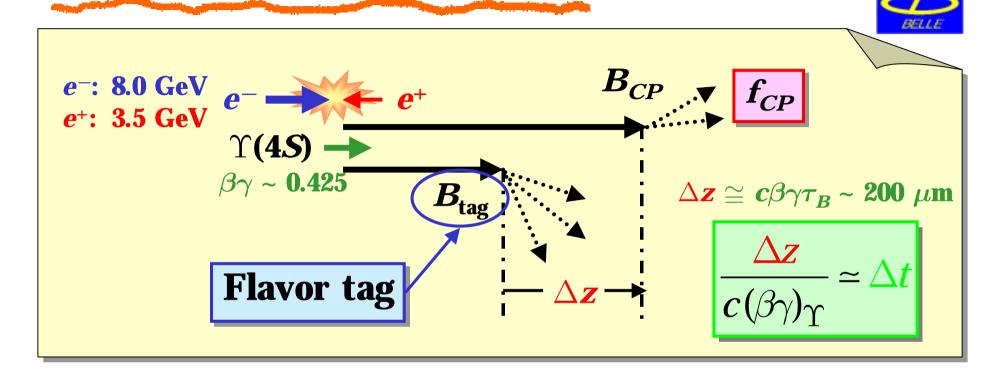
 \mathcal{S} and \mathcal{A} are related to the interior angle of the unitarity triangle.

Proper-Time Difference: Δt


$$f(\overline{B}^{0} \rightarrow f_{CP}; \Delta t) = e^{-\frac{\Delta t}{\tau_{B^{0}}}} \{1 + [S \sin(\Delta m_{d} \Delta t) + A \cos(\Delta m_{d} \Delta t)]\}$$

$$f(B^{0} \rightarrow f_{CP}; \Delta t) = e^{-\frac{\Delta t}{\tau_{B^{0}}}} \{1 - [S \sin(\Delta m_{d} \Delta t) + A \cos(\Delta m_{d} \Delta t)]\}$$

$$S = 0.8$$
$$A = 0.0$$


$$au_B = 1.542 ext{ ps}$$

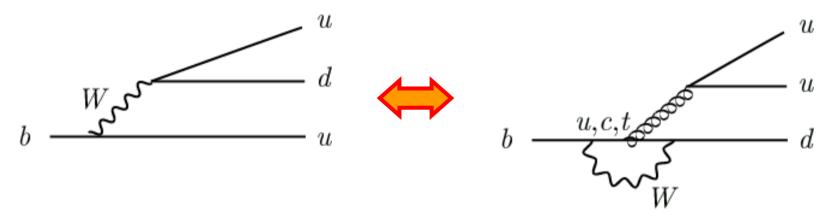
 $\Delta m_d = 0.489 ext{ ps}^{-1}$

$$S = 0.8$$

 $A = 0.6$

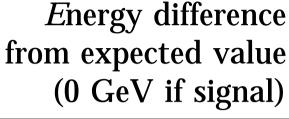
From **red/blue** asymmetry in the observed Δt distributions, we determine the CP-violating parameters, \mathcal{S} and \mathcal{A} .

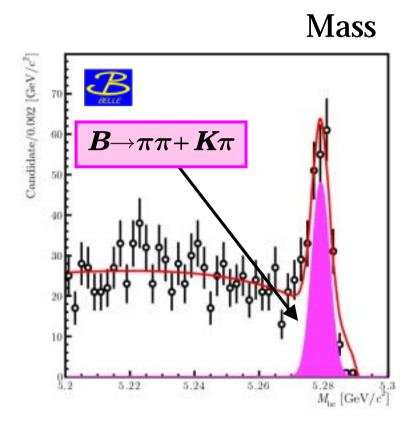
How Can We Measure *CP* **Violation?**

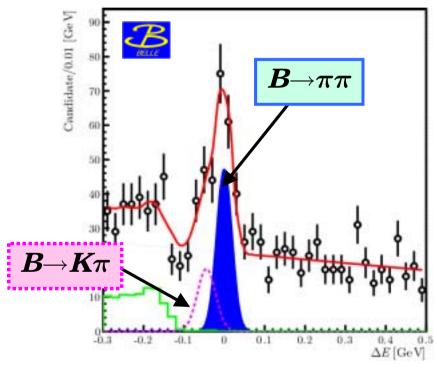

4 steps toward the CP violation measurement

- Reconstruct $m{B}
 ightarrow m{f_{CP}}$ decays
- Determine flavor of B_{tag}
- Measure proper-time difference: Δt
- Evaluate asymmetry from the obtained Δt distributions

ϕ_2 Measurement

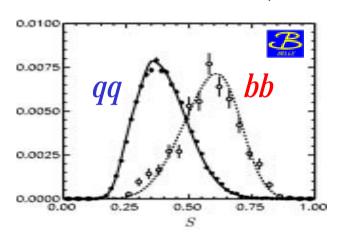

- ϕ_2 can be measured by $m{b}
 ightarrow m{u} m{u} m{d}$ transition
 - We use $B^{\,0} \to \pi^+\pi^-$ decay for ϕ_2 measurement.

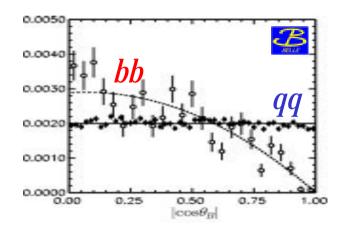

· "Direct" CP violation



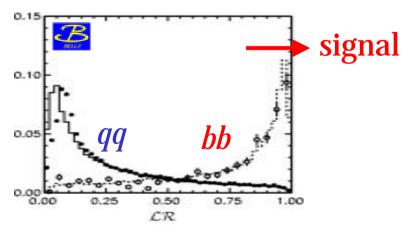
- Tree and penguin diagrams have amplitudes of the same order with different strong/weak phases. "Direct" CP violation $(A \neq 0)$ is expected.
- In explicit words: $\Gamma(B^0 \to \pi^+\pi^-) \neq \Gamma(\overline{B}^0 \to \pi^+\pi^-)$

$m{B^{\,0}} ightarrow \pi^+\pi^-$ Reconstruction

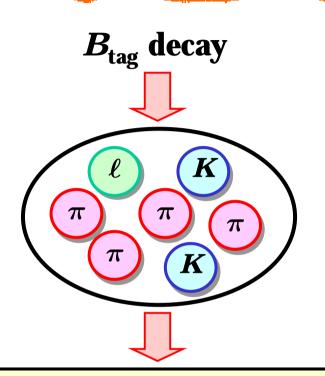



760 $B^0 o \pi^+\pi^-$ candidates in signal region Number of expected signal is 163^{+23}_{-24}

$e^+e^- o qar q$ Background Suppression

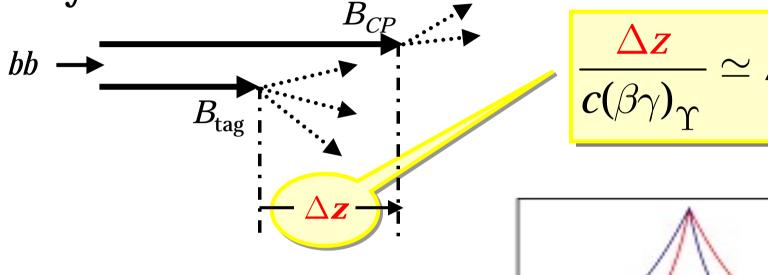

\cdot $b\overline{b}$ or $q\overline{q}$ likelihood

- Construct $b\overline{b}$ or $q\overline{q}$ likelihood with Fisher discriminant, reconstructed B momentum direction, etc.

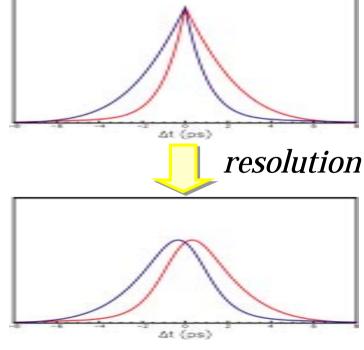


- Signal selection with likelihood ratio $\mathcal{L}_{bb}/(\mathcal{L}_{bb}+\mathcal{L}_{qq})$

Flavor Tagging


Examine B_{tag} decay products; type, charge, momentum, etc.

$$B_{\text{tag}} = B^0$$

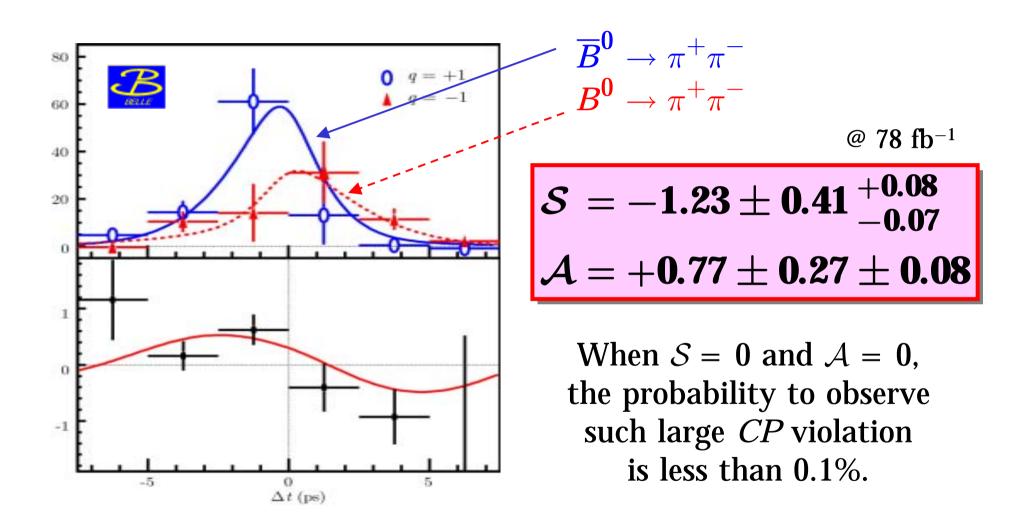

Proper-Time Difference Reconstruction

• Δt is calculated from distance between two B decay vertices

Detector resolution

- Due to limited vertex resolution sharp peaks are dulled.
- Don't be surprised if you see round peaks.

Fit for S and A Determination

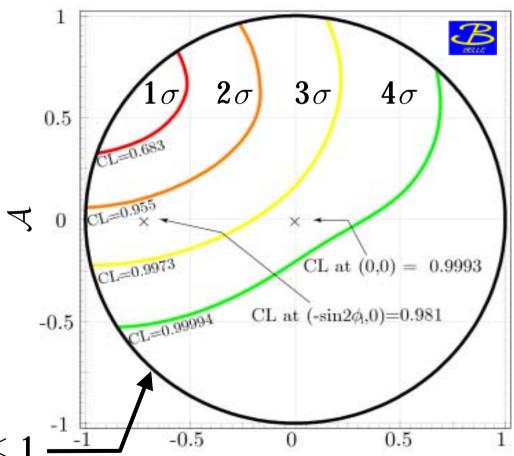

Maximum likelihood fit method

$$L(\mathcal{S}, \mathcal{A}) = \prod_{i=1}^{760} P(\Delta t_i; \mathcal{S}, \mathcal{A}) \quad \xrightarrow{maximize} \quad \frac{\partial^2 L}{\partial \mathcal{S} \, \partial \mathcal{A}} = \mathbf{0}$$

$$P(\Delta t_i; S, A) = \underbrace{f_{\text{sig}} \cdot \mathcal{P}_{\text{sig}}(\Delta t; S, A) \otimes R}_{\text{signal}} + \underbrace{(1 - f_{\text{sig}}) \cdot P_{\text{bkg}}(\Delta t)}_{\text{background}}$$

- 1. f_{sig} : event by event signal probability
- 2. $P_{\text{sig}}: \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B} \left\{ 1 + q(1-2w) \left[S \sin(\Delta m_d \Delta t) + A \cos(\Delta m_d \Delta t) \right] \right\}$
- 3. R: Δt resolution
- 4. P_{bkg} : Δt distribution for background events

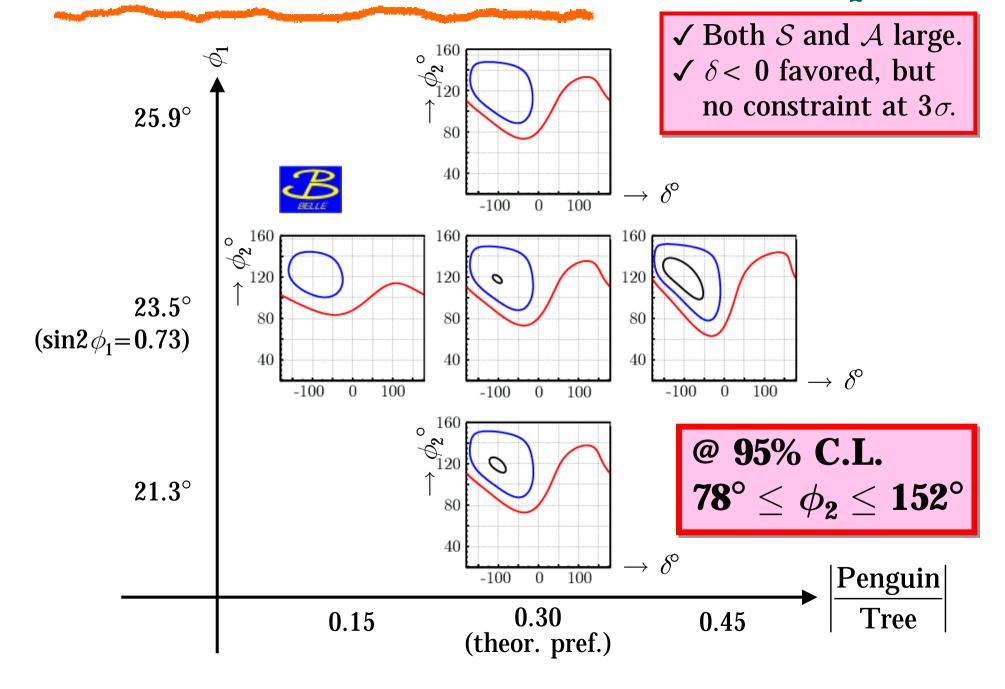
$C\!P$ Violation in $B^{\,0} o \pi^+\pi^-$ Decays



K. Abe et al. [Belle Collaboration], submitted to Phys. Rev. D, arXiv:hep-ex/0301032.

The Result Tells Us ...

$$egin{aligned} \mathcal{S} &= -1.23 \pm 0.41 \, ^{+0.08}_{-0.07} \ \mathcal{A} &= +0.77 \pm 0.27 \pm 0.08 \end{aligned}$$


- 1. CP conservation is ruled out at 3.4 σ confidence level.
- 2. $A \neq 0$ cannot be established yet.

Physical boundary: $S^2 + A^2 < 1$

5

The Result Tells Us ... – Constraint on ϕ_2

Consistency Checks

• B^0 - B^0 mixing fit on Δt distribution: OK

$$\checkmark B^0 \to K^+ \pi^-: \Delta m_d = 0.55^{+0.05}_{-0.07} \text{ ps}^{-1}$$

consistent with PDG2002 $0.489 \pm 0.008~ps^{-1}$

• Lifetime fit on Δt distributions: OK

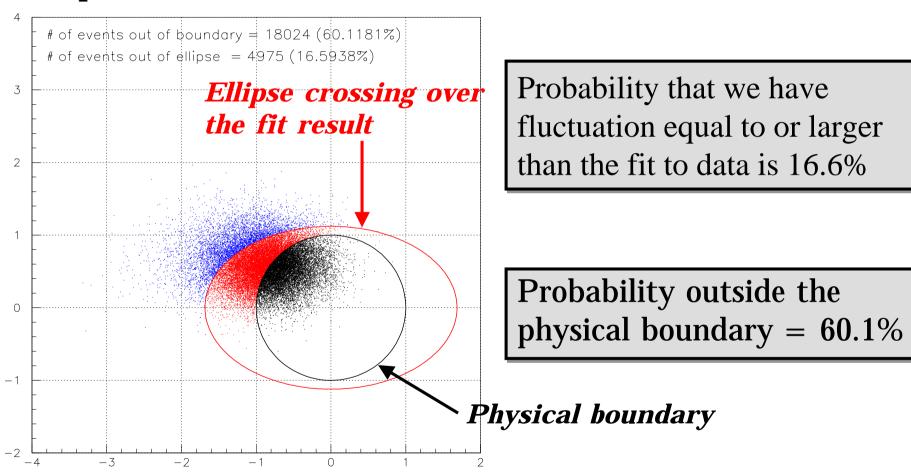
$$✓ B^0 → K^+ π^-$$
: $τ_B = 1.46 ± 0.08 ps$

consistent with PDG2002 1.542 ± 0.016 ps

Null asymmetry test: OK

consistent with zero

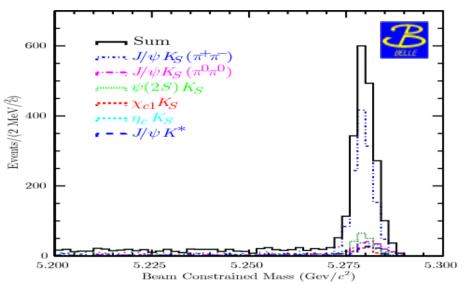
✓ Non-*CP* sample:
$$S = +0.045 \pm 0.033$$
, $A = -0.015 \pm 0.022$

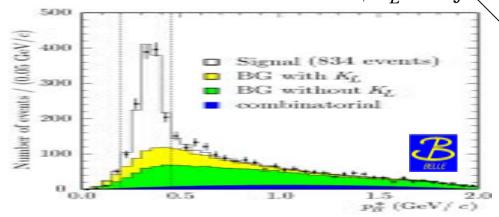

$$\checkmark B^0 \to K^+\pi^-$$
: $S = +0.08 \pm 0.16$, $A = -0.03 \pm 0.11$

A: consistent with counting method (\rightarrow A.Drutskoy's talk)

Consistency checks ... OK

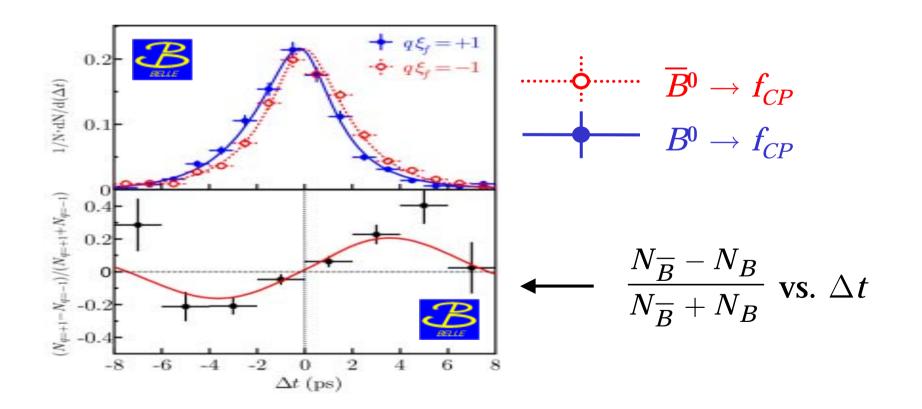
Probability to get result outside physical region


${\cal S}$ and ${\cal A}$ distribution obtained from parameterized MC (30k events)

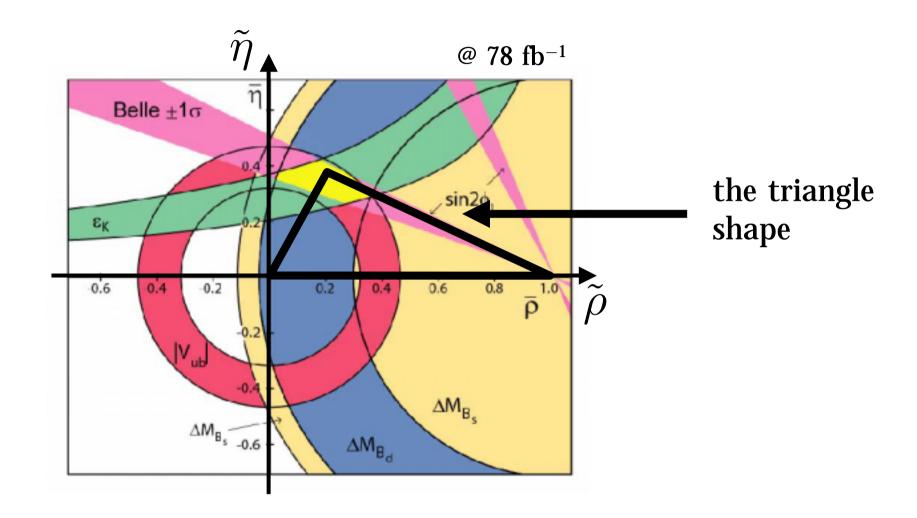

Input: S = -0.822, A = +0.569 (input values at the physical boundary)

$m{b} ightarrow c ar{c} s$ Reconstruction

Reconstructed	B^0 momentum
for B^0	$\rightarrow J/\psi K_L \text{ decay}$


@	78	fb-	-1
---	----	-----	----

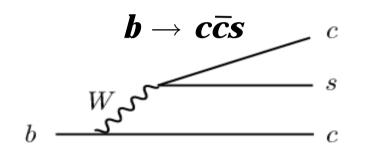
Decay	CP	#	p
$J/\psi K_{S}(\pi^{+}\pi^{-})$		1285	0.98
$J/\psi K_S(\pi^0\pi^0)$		188	0.82
ψ (2 <i>S</i>)($\ell^+\ell^-$) K_S		91	0.96
ψ (2 <i>S</i>)(<i>J</i> / ψ π ⁺ π ⁻) K_S	_1	112	0.91
$\chi_{c1}(J/\psi\gamma)K_S$	-1	77	0.96
$\overline{\eta_c(K_S\!K^+\pi^-)K_S}$		72	0.65
$\overline{\eta_c(K^+\mathrm{K}^-\pi^0)K_S}$		49	0.73
$\overline{\eta_c(pp)K_S}$		21	0.94
$J/\psi K_L$	+1	1330	0.63
$J/\psi K^{st0}(K_S\pi^0)$	mix	101	0.92
Total		3326	

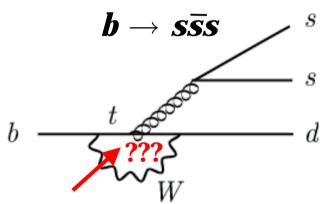

CP Violation in $b \rightarrow c\bar{c}s$ Transition

@ 78 fb⁻¹

$$\sin 2\phi_1 = 0.719 \pm 0.074 \text{(stat)} \pm 0.035 \text{(syst)}$$

Constraint on the Unitarity Triangle Shape




K. Abe et al. [Belle Collaboration], Phys. Rev. D 66, 071102 (2002)

CP Violation in $b \rightarrow s\overline{s}s$ Transition

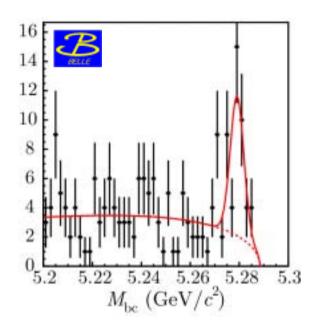
Standard model

- Same magnitude of *CP* violation in $b \to c\overline{c}s$ and $b \to s\overline{s}s$.

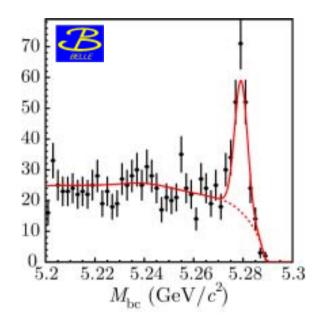
Unknown phase contributing to *CP* violation?

New physics

- New physics may be present in the penguin-loop, if we see different *CP* violation in tree and penguin.


$\boldsymbol{b} \rightarrow \boldsymbol{s} \boldsymbol{\overline{s}} \boldsymbol{s}$ Reconstruction

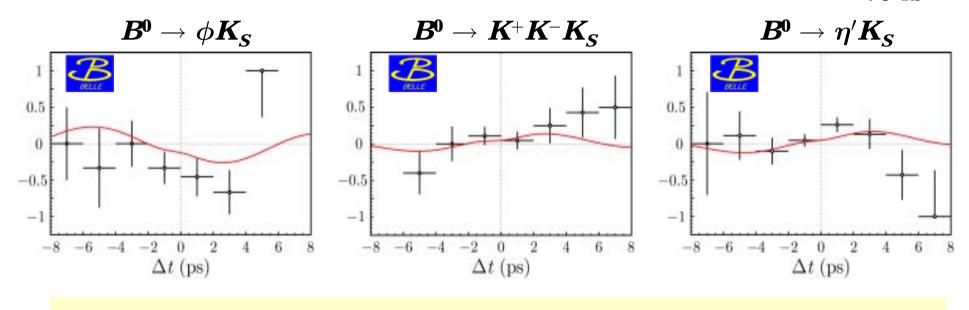
 $@ 78 \text{ fb}^{-1}$


$$m{B^0}
ightarrow \phi m{K_S} \ \phi
ightarrow m{K^+} m{K^-}$$

$$m{B^0}
ightarrow m{K^+}m{K^-}m{K_S} \ (m{K^+}m{K^-}
eq m{\phi})$$

$$egin{aligned} m{B^0} &
ightarrow m{\eta'} m{K_S} \ m{\eta'} &
ightarrow m{\pi^+}m{\pi^-}m{\eta}, \, m{
ho}m{\gamma} \ m{\eta'} &
ightarrow m{\gamma\gamma} \end{aligned}$$

16
14
12
10
8
6
4
2
0
5.2 5.22 5.24 5.26 5.28 5.3
$$M_{\rm bc}~({\rm GeV}/c^2)$$


$$N = 53$$
 $p = 0.67^{+0.07}_{-0.05}$

$$N = 191$$
 $p = 0.50^{+0.04}_{-0.03}$

$$N = 299$$
 $p = 0.49 \pm 0.05$

CP Violation in $b \rightarrow s\bar{s}s$ Transition

@ 78 fb⁻¹

mode

$$m{B^0}
ightarrow \phi m{K_S}$$

$$m{B^0}
ightarrow m{K^+} m{K^-} m{K_S} \hspace{1cm} m{B^0}
ightarrow \eta' m{K_S}$$

$$B^0 o \eta' K_S$$

$$-\xi_{f}S$$

$$-0.73 \pm 0.64 \pm 0.23$$

$$-0.73 \pm 0.64 \pm 0.22 \qquad +0.49 \pm 0.43 \pm 0.11^{+0.33}_{-0.00}$$

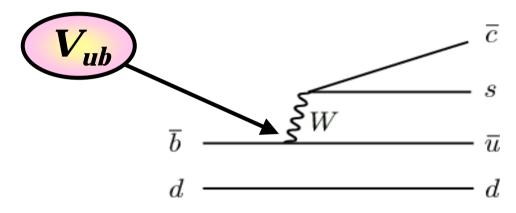
$$+0.71 \pm 0.37 \,\, ^{+0.05}_{-0.06}$$

$$-0.56 \pm 0.41 \pm 0.16$$

$$-0.40\pm0.33\pm0.10^{+0.00}_{-0.26}$$

$$+0.26 \pm 0.22 \pm 0.03$$

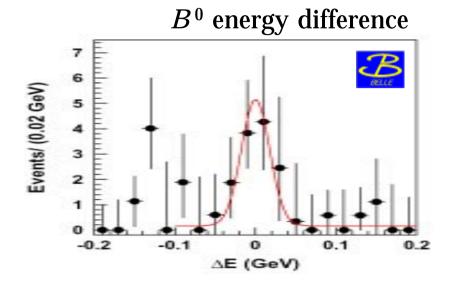
K. Abe et al. [Belle Collaboration], to be published in Phys. Rev. D.


The Results Tell Us ...

- $\cdot \sin 2\phi_1$ world average from $m{b}
 ightarrow car{c}s$ transition
 - $-\sin 2\phi_1 = +0.734 \pm 0.054$
- $m{\cdot}~ m{B^{\,0}}
 ightarrow m{K}^{\!+} m{K}^{\!-} m{K_S}$ and $m{B^{\,0}}
 ightarrow m{\eta}' m{K_S}$
 - Results consistent with the world average
- $m{\cdot} \, m{B^0}
 ightarrow \phi m{K_S}$
 - 2.1σ deviation from the world average.
 - A clue of new physics or just a statistical fluctuation?
 - \Rightarrow Need more data.

$|V_{ub}|$ Measurement

Hadronic B decays for $|V_{ub}|$


- $m \cdot m B^{\, 0}
 ightarrow m D_{\! s}^{\, +} \pi^- \; {
 m decay}$
 - The decay is dominated by $b \rightarrow u$ transition without penguin contribution.

• How do we determine $|V_{ub}|$?

- Reconstruct $B^{\,0} o D_{\!s}^{\,+} \pi^-$ decay.
- Determine branching fraction of the decay.
- Calculate $|V_{ub}|$ using the obtained fraction and other experimental results.

$m{B^{\,0}} ightarrow m{D_s^{\,+}}\pi^-$ Reconstruction

 D_{S}^{+} decay modes:

$$\phi\pi^+$$
, $K^0_SK^+$, $\overline{K}^{*0}K^+$

$$B^{\,0}
ightarrow D_s^{\,+}\pi^- \ \mathcal{B} = (2.4^{+1.0}_{-0.8} \pm 0.7) imes 10^{-5}$$

 3.6σ significance

$$\begin{array}{l} Prediction \\ \mathcal{B} = (2-6) \times 10^{-5} \end{array}$$

P. Krokovny et al. [Belle Collaboration], Phys. Rev. Lett. 89, 231804 (2002)

$|m{V_{ub}}/m{V_{cb}}|$ from $m{B^0} o m{D_s^+}\pi^-$

Another result by Belle
$$\mathcal{B}(B^0 \to D_s^+\pi^-) \times \mathcal{B}_{\phi\pi} = (8.6^{+3.7}_{-3.0} \pm 1.1) \times 10^{-7}$$

CLEO collab. PRD 53, 4734 (1996)

$${\cal B}(B^0 o D_s^+D^-) imes {\cal B}_{\phi\pi} = (3.0\pm 1.1) imes 10^{-4}$$

$$rac{\mathcal{B}(B^0 o D_S^+\pi^-)}{\mathcal{B}(B^0 o D_S^+D^-)} = (0.424\pm 0.041) imes \left|rac{V_{ub}}{V_{cb}}
ight|^2$$

$$igg|egin{array}{c|c} & |V_{ub}/V_{cb}| \ & (8.2^{+3.5}_{-2.9} \pm 3.4) imes 10^{-2} \ \end{array}$$

Using PDG2002 for V_{cb} , $\left|V_{cb}\right| = (41.2 \pm 2.0) \times 10^{-3}$

$$\left|V_{ub}\right| = (3.5^{+1.0}_{-0.9}) \times 10^{-3}$$

Conclusions

· CP violation measurement

$$\mathcal{S} = -1.23 \pm 0.41^{\,+0.08}_{\,-0.07}, \quad \mathcal{A} = +0.77 \pm 0.27 \pm 0.08$$

$$78^\circ \le \phi_2 \le 152^\circ \quad \text{@ 95\% C.L.}$$

$$- \phi_1 \ (b \rightarrow c\overline{c}s)$$
: $\sin 2\phi_1 = 0.719 \pm 0.074 \pm 0.035$

-
$$\phi_1$$
 ($b \to S\overline{SS}$): consistent to $\sin 2\phi_1$ for $K^+K^-K_S$ and $\eta'K_S$ while 2.1σ deviation is observed in ϕK_S

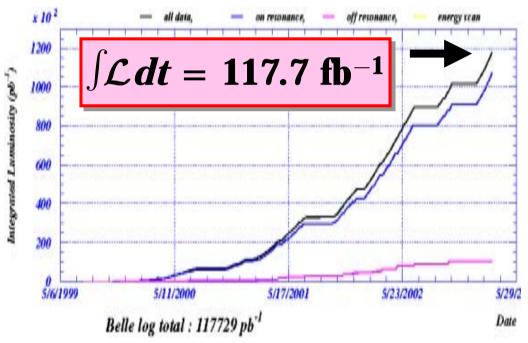
$\cdot |V_{nb}|$ measurement

-
$$\mathcal{B}r(B^0 \to D_s^+\pi^-) = (2.4^{+1.0}_{-0.8} \pm 0.7) \times 10^{-5}$$

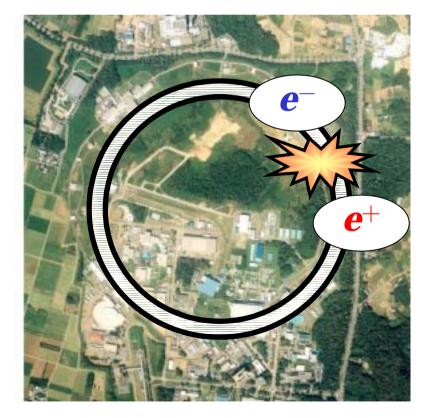
$$-\left|V_{ub}/V_{cb}\right| = (8.2^{+3.5}_{-2.9} \pm 3.4) \times 10^{-2}$$

$$- |V_{ub}| = (3.5^{+1.0}_{-0.9}) \times 10^{-3}$$

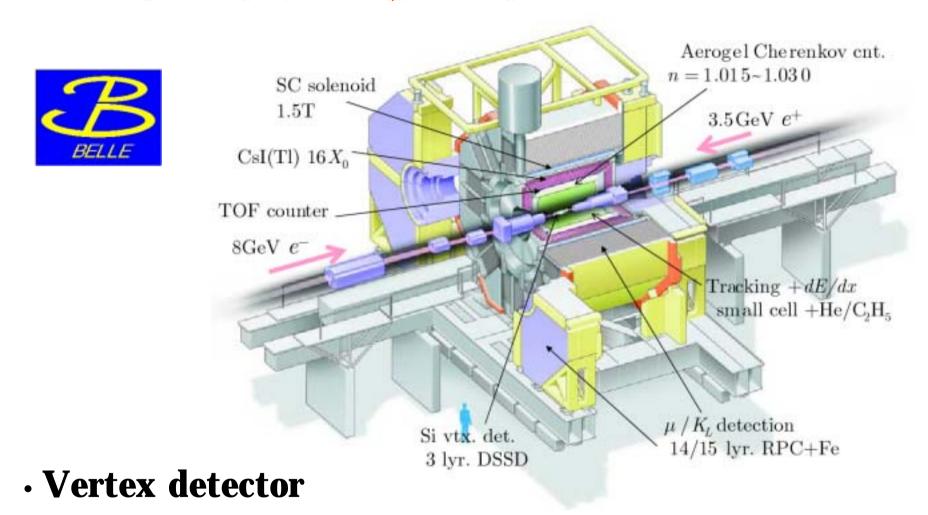
Backup Slides


The KEKB Accelerator

• e⁺e⁻ collider


World Record

 $\mathcal{L} = 8.26 \times 10^{33} \text{ fb}^{-1}$


KEKB history (2003/3/10)

The Belle Detector

- Momentum and energy detector
- Particle identification

Previous Results at Belle

@ 42
$$ext{fb}^{-1}: \mathcal{S} = -1.21 \, {}^{+0.38}_{-0.27} \, {}^{+0.16}_{-0.13}, \quad \mathcal{A} = +0.94 \, {}^{+0.25}_{-0.31} \pm \, 0.09$$

K. Abe et al. [Belle Collaboration], Phys. Rev. Lett, 89, 071801 (2002)

Results indicated large CP asymmetries \rightarrow Need more data.

Changes in new analysis

- More data = 78 fb^{-1} .
- Improvements to the analysis.
 - Better track reconstruction algorithm.
 - More sophisticated Δt resolution function.
 - Inclusion of additional signal candidates by optimizong event selection.
- Frequentist statistical analyses.
 - use of MC pseudo-experiments based on control samples.

Flavor Tagging

• Determine flavor of B_{CP}

- We can never know the B_{CP} 's flavor from its decay products, because the final state is CP eigenstate.

Knack of flavor tagging

We can know B_{CP} 's flavor from examination of its partner B's flavor

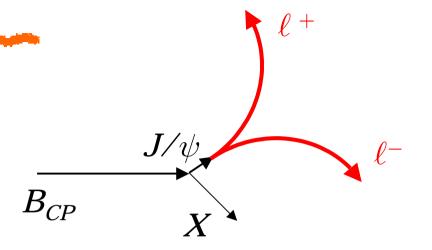
Bose statistics

- A wave function of a same particle pair, B^0 or B^0 , originates from bb resonance (S=1) is symmetric due to Bose statistics. S=1

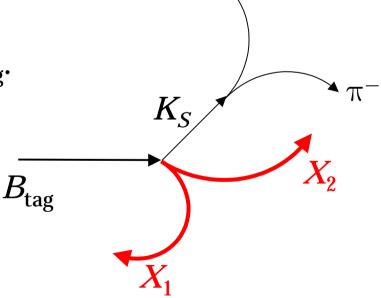
- However, same particle pair has L=1 and it is forbidden because the wave function gets anti-symmetric.

- Flavor of B_{CP} is always opposite to its partner B's flavor.

$$S = 1$$


$$B^{0}$$

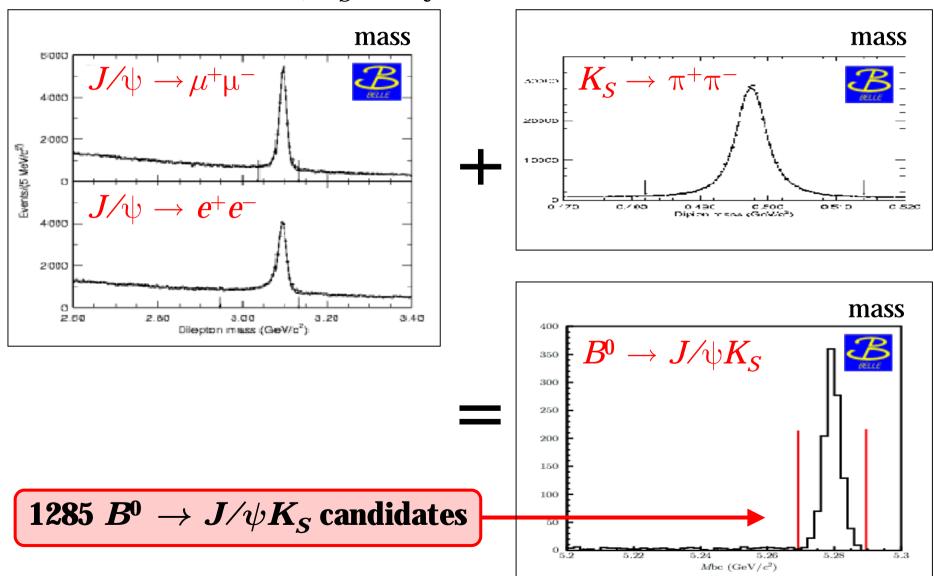
$$L = 1$$


$$B^{0}$$

Vertex Reconstruction

- B_{CP} vertex: Z_{CP}
 - Use 2 tracks from J/ψ of $B_{CP} \rightarrow J/\psi X$ decay.

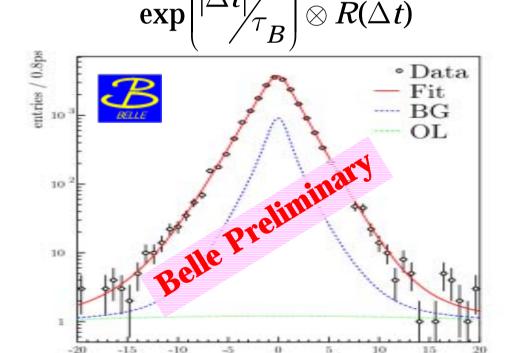
- B_{tag} vertex: Z_{tag}
 - Use all decay products from B_{tag} .
 - Except long secondary particles originates from lived particles: charmed meson, K_S , etc.


Vertex resolution: $\sim 100 \mu m$

Systematic uncertainties

Source	${\mathcal S}$		\mathcal{A}	
Source	+error	-error	+error	-error
Background fractions	+0.044	-0.055	+0.058	-0.048
Vertexing	+0.037	-0.012	+0.044	-0.054
Fit bias	+0.052	-0.020	+0.016	-0.021
Wrong tag fraction	+0.015	-0.016	+0.026	-0.021
τ_{B} , Δm_{d} , $\mathcal{A}_{K\pi}$	+0.022	-0.022	+0.021	-0.014
Resolution function	+0.010	-0.013	+0.019	-0.020
Background shape	+0.007	-0.002	+0.003	-0.015
Total	+0.08	-0.07	+0.08	-0.08

$m{b} ightarrow car{c}s$ Reconstruction


In case of $B^0 o J/\psi K_S$ decay

Δt Resolution Function $\equiv R(\Delta t)$

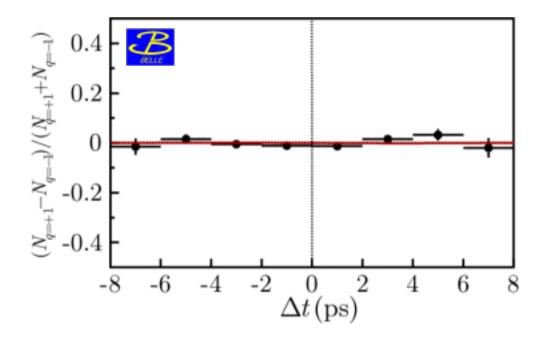
- 1. Detector resolution for z_{CP} , z_{tag}
- 2. Secondary track effect for z_{tag} reconstruction
- 3. Kinematic approximation

$$\Delta t \simeq \frac{\Delta z}{c(\beta \gamma)_{\gamma}}$$

 Δt (ps)

$$au_B = 1.551 \pm 0.018 \text{ ps}$$

World average


$$au_B = 1.542 \pm 0.016 \; \mathrm{ps}$$

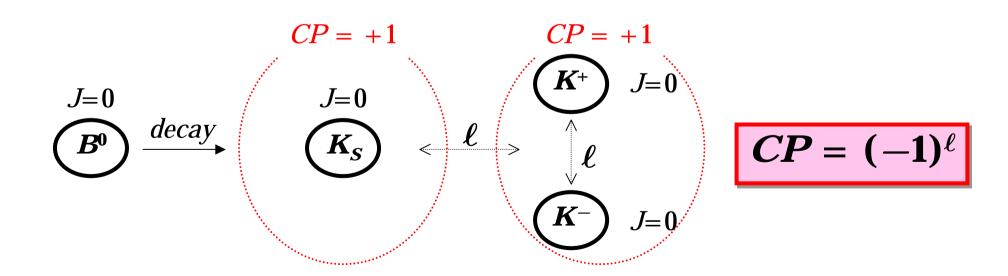
Consistent to world average

Fit Bias in $b \rightarrow c\bar{c}s$

• "sin2 ϕ_1 " of non-CP final state should be 0

$$\textbf{``f}_{CP}\textbf{''} = \textbf{\textit{B}}^{0} \rightarrow \textbf{\textit{D}}^{*\pm}\pi^{\mp}, \ \textbf{\textit{B}}^{0} \rightarrow \textbf{\textit{J}}/\psi \textbf{\textit{K}}^{*0}(\textbf{\textit{K}}^{+}\pi^{-}), \ \textbf{\textit{B}}^{0} \rightarrow \textbf{\textit{D}}^{*-}\ell^{+}\nu$$

"
$$\sin 2\phi_1$$
" = +0.005 ± 0.015(stat)


No bias

$B^0 \rightarrow K^+K^-K_S$: $CP = \pm 1$ Mixture

Since $B^0 \to K^+K^-K_S$ is 3-body decay, the final state is a mixture of $CP = \pm 1$. How can we determine the mixing fraction?

 $CP = \pm 1$ fraction is equal to that of ℓ =even/odd

$B^0 \rightarrow K^+K^-K_S$: $CP = \pm 1$ Mixture — Cont'd

 ℓ -even fraction in $|K^0K^0>$ can be determined by $|K_SK_S>$ system

$$\frac{\left|K^{0}\overline{K}^{0}\right\rangle}{CP} = \frac{\alpha}{\sqrt{2}} \left(\left|K_{S}K_{S}\right\rangle + \left|K_{L}K_{L}\right\rangle\right) + \beta \left|K_{S}K_{L}\right\rangle \\
CP = +1 \qquad \ell = \text{even} \qquad \ell = \text{odd}$$

Add K^+ to above kets

$$\begin{aligned} \left| K^{+}K^{0}\overline{K}^{0} \right\rangle &= \frac{\alpha}{\sqrt{2}} \left(\left| K^{+}K_{S}K_{S} \right\rangle + \left| K^{+}K_{L}K_{L} \right\rangle \right) \\ &+ \beta \left| K^{+}K_{S}K_{L} \right\rangle \end{aligned}$$

Using isospin symmetry

$$egin{align} \mathcal{B}(B^+
ightarrow K^+ K^0 \overline{K}^0) &= \mathcal{B}(B^0
ightarrow K^0 K^+ K^-) imes rac{ au_{B^+}}{ au_{B^0}} \ &= rac{\mathcal{B}(B^0
ightarrow K_S K^+ K^-)}{2} imes rac{ au_{B^+}}{ au_{B^0}} \end{split}$$

$$lpha^{2} = 2 rac{\mathcal{B}(B^{+} o K^{+} K_{S} K_{S})}{\mathcal{B}(B^{0} o K^{0} K^{+} K^{-})} imes rac{ au_{B^{0}}}{ au_{B^{+}}}$$

$$= rac{\mathcal{B}(B^{+} o K^{+} K_{S} K_{S})}{\mathcal{B}(B^{0} o K_{S} K^{+} K^{-})} imes rac{ au_{B^{0}}}{ au_{B^{+}}}$$

$$= 1.04 \pm 0.19 (\text{stat}) \pm 0.06 (\text{syst})$$

 $100^{+0}_{-20}\%$ *CP* even