Top Studies at CDF

Tevatron, top and CDF >20 years

Why top is so interesting?

Heaviest quark known (~172.5 GeV/c²)

- > Due to its mass decays before hadronization
 - > No bound states («top mesons», «Upsilon-like»)
 - > «direct» access to production and decay vertex
 - > Couplings, CKM elements..
- Related to Higgs mass through loops
 - > Precision measurement of M_W , M_{top}
 - Stability of our Universe...
- > Yukawa coupling ~1
 - > Anything special about top and its relation to EWSB?
 - > Window to new physics?
- Two different production mechanisms
 - Ewk processes
 - > Strong interactions

What can we study?

Tools: physics objects

- Hight Pt lepton (e or mu)
 Isolated as coming from W
- 2 or 3 Jet with large E_T
 > 20 GeV at CDF
 > | η|<2.8 Tevatron
- Missing E_T (MET)
 25 GeV (CDF), 20/25 (D0)
- b-tagging of secondary vertices
 With a variety of tools (from tracks displaced from the primary to NN algorithms)

Production vertex

Top Pair production

- > ~85 % through qqbar annihilation
- > Calculated assuming BF ($t \rightarrow Wb$)~100%
- Classified through W decay path
 - Dilepton (both Ws decay leptonically)
 - > I+jets (in W decays into quarks)
 - >All-hadronic (both Ws decay into quarks
- > CDF does not exploit $W \rightarrow \tau v$ decays
 - ≻Dilepton (e,µ) ~5%: llvvbb
 - ≻l+jets (~30%): lv qqbb
 - > All-hadronic (~45%):qqqqbb

Inclusive cross section

Only dilepton analysis uses the whole dataset

Theoretical prediction accuracy:4.4% > σ=7.35^{+0.11}-0.21(scale)^{+0.17}-0.12(PDF)

CDF :7.63±0.5 pb (6.5%)

l+jet distribution $d\sigma/dcos\theta$

CDF studied θ_t angle between proton and top quark direction in ttbar ref frame

A_{FB} in ttbar events

$$A_{FB}$$
 is defined as $A_{FB} = \frac{N_{\Delta Y > 0} - N \Delta_{Y < 0}}{N_{\Delta Y > 0} + N_{\Delta Y < 0}}$

- Deviation from SM generated by
 - > Axial Vector, Z' exchange, W' interaction
 - BSM scenarios should -however- be consistent with measured

 $> \sigma_{tt}$, d σ /d M_{tt} , LHC results

Old and new results

New results: leptonic asymmetry in dilepton channel
 Combination of ttbar leptonic A_{FB}
 A_{FB} in bbar pairs (not covered here)

Leptonic asymmetry (l+j)

Leptonic asymmetry in dilepton channel

 Comparison of the number of leptons as a function of q_lη_l wrt SM (POWHEG) prediction

Asymmetric part of the distribution, with best fit and expectations Result:

 $A_{FB}^{I} = (7.2\pm5.2(stat)\pm3(syst))\%$ =(7.2±6.0)% SM Exp: (3.8±3)%

Combination of leptonic asymmetries

Two measurements are combined using BLUE **CDF** Combination > I+jets uses 3864 events, CDF Conf. Note 11035 72.8% purity: $> A_{FB} = 9.4^{+3.2}_{-2.9}\%$ CDF L+J (9.4 fb⁻¹) > Dilepton channel uses Phys. Rev. D 88, 072003 (2013) 569 events, 71.8% purity ≻ A_{FR}=7.2±6% CDF DIL (9.1 fb⁻¹) > Combined result CDF Conf. Note 11035 $> A_{FR} = 9.0^{+2.8}_{-2.6}\%$ (80%l+jets, 2.6% correlation) > Combined result is 0 Submitted to PRL $\sim 1.8\sigma$ from SM arXiv.1404.3698v1

|V_{tb}| and BF

Decay vertex is related to CKM element $|V_{tb}|$

- Direct studies of the decay vertex
 - > Measurement of branching fractions
- > Direct measurement of $|V_{tb}|$

Detection of single top events, measurement of cross section

Ratio BF(t→Wb)/BF(t→Wq) in ttbar dilepton sample

- > In the SM: $\sum |Vtd|^2 + |Vts|^2 + |Vtb|^2 = 1$
- Comparison between observed data and expectations in samples (ee,eµ,µµ) x(0,1,2) (leptons)(b-tags)
 Check:x-section:
 - σ=7.64±0.55(stat)±0.46(lum) pb

Parameter

 $R = \frac{BR(t \to Wb)}{BR(t \to Wq)}$

 $|V_{tb}|$

 \succ BR is measured fitting a ML

PRL

112, 221801

(2014)

$$R = \frac{\mathscr{B}(t \to Wb)}{\mathscr{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$$

R in l+jets

CDF measured R in the I+jets channel

Study the number of b-tagged jets in ttbarenriched sample:
2500

2000

CDF Data Background

R=1 R=0.5

What is single top?

Electroweak production of top quark

17.1%

tW

28.9%

s-channel difficult at the LHC

Why measure Single Top Production?

 $\sigma_{\text{single top}} \propto |V_{tb}|^2$ Access to the W-t-b vertex

- > probe V-A structure
- > access to top quark spin

Allows direct measurement of Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V_{tb}|:

- Is this Matrix 3x3?
 Is there a 4th generation?
- Does unitarity hold ?

$$|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 \stackrel{?}{=} 1$$

(V_{ud}	V_{us}	V_{ub}	$V_{uX}?$
	V_{cd}	V_{cs}	V_{cb}	V_{cX} ?
	V_{td}	V_{ts}	V_{tb}	V_{tX} ?
	V_{Yd} ?	V_{Ys} ?	V_{Yt} ?	V_{YX} ?

Precision electroweak measurements rule out "simple" fourth generation extensions, but see for example:

J. Alwall et. al., "Is |V_{tb}|~1?" Eur. Phys. J. C49 791-801 (2007).

Sensitivity to New Physics

Single top

The challenge is

- To measure a process with yield smaller than background fluctuations
- Separate the different (s,t) components

Strategy

- Combine several channels
- > ANN to identify the signal
- Extract CKM element:

 $|V_{tb}|^2 = |V^{SM}_{tb}|^2 \times \sigma^{obs} / \sigma^{SM}$

S+†:

- > I+jets analysis (Inbb)
 > s+t and s vs t
- Met-bb (forget I)
 s+t and s vs t
- s-optimized analysis
 - Evidence for single top in s-channel
 - >Eventually combined with DO
 - > s-channel observation
 - $> 6.3 \sigma$ (Tev combination)
 - > see Yvonne Peters's talk

Results (s+t channel)

8.4

0.5

0.6

0.7

0.8

0.9

 $|V_{tb}|^2$

Combining with the MET bb analysis: $|V_{tb}| > 0.84$ (95 % C.L.)

Result (s-channel)

W

1.12^{+0.61}

 $\sigma_{\rm s} =$

s-channel

> New I+jets and MET+jets optimized analyses

> > Innovative multivariate tagger (used in VH evidence)

> NN s-optimized

Conclusions

Top studies are still ongoing

- > Some channels are unique to the Tevatron
 - > At least «challenging» at the LHC
- A_{FB} still an open question
 Will it be solved?
- > Some measurements are real legacies
 - > Both in terms of results and of technical developments
 - CKM element V_{tb} deserves a closer look
- > Is the third generation the path to new physics?