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Quantum field theory

Quantum
Mechanics

+ Special
Relativity

→ Quantum Field Theories (QFT)

The fundamental variables are the fields φ̂(xµ) which are operator on an
Hilbert space.

QFT is an infinite dimensional generalization of QM: [x̂a, p̂b] = iδab
becomes [φ̂(xµ), π̂(yµ)] = iδ(4)(xµ − yµ).

The fundamental observables are the vacuum expectation values of the
operator products: O(x , y) = 〈0|T (φ̂†(x)φ̂(y))|0〉

The usual computation method for physical observables is perturbation
theory. In some cases perturbation theory is not reliable, since the coupling
constant is ≈ 1. Need for non-perturbative methods.
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Numerical quantum field theory

Starting point: path-integral quantization (aka Feynman integral) in the
Minkowski space-time

〈0|T (φ̂†(x)φ̂(y))|0〉 =
1

Z

∫

Dφ φ∗(x)φ(y)e iS[φ]

S [φ] =

∫

d4xL [φ, ∂µφ] Z =

∫

Dφe iS[φ]

Wick rotation: analytic continuation from real to imaginary time.
Path-integral in euclidean space-time.

〈φ∗(x)φ(y)〉 =
1

Z

∫

Dφ φ∗(x)φ(y)e−SE [φ] Z =

∫

Dφe−SE [φ]

Formally identical to expressions typical of statistical physics!
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Quantum Chromodynamics (QCD) in the continuum

Aµ ∈ su(3) Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ] Dµ = ∂µ − iAµ

γµ ∈ GL(4) {γµ, γν} = 2δµν

L =
1

2g2
Tr(FµνF

µν) +
∑

f

ψ̄a
f (γ

µDab
µ +mf δ

ab)ψb
f

Local gauge invariance: the Lagrangian density is invariant under the local
transformation

Aµ → ΩAµΩ
† − i [∂µΩ]Ω

† Fµν → ΩFµνΩ
† ψ → Ωψ

For practitioners: A is the connection 1−form on a principal SU(3)
bundle, F = dA+ A ∧ A is the curvature 2−form, D is the covariant
derivative and ψ is a section of the bundle, L = Tr(F ∧ ∗F ), second
Chern class C2 =

∫
Tr(F ∧ F ).
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Quantum Chromodynamics on the lattice (LQCD)
In order to maintain the gauge invariance in the lattice discretized theory
(hyper-cubic lattice) the elementary variables of the theory becomes the
parallel transports Uµ ≈ exp(iaAµ) (a =lattice spacing) and the action can
be written in the general form:

S =
2N

g2

∑

�

(

1−
1

N
ReTrΠµν

)

︸ ︷︷ ︸

gauge part

+

fermion part
︷ ︸︸ ︷

ψ̄iMijψj

Mij =Dirac matrix=sparse structured matrix, whose elements are special
unitary matrices of dimension 3× 3. The explicit form of M depends on
the used discretization (Wilson, staggered, domain-wall, overlap).

Problem: in the functional integrals the fermionic variables ψi are
Grassman variables, i.e. {ψi , ψj} = 0. How to perform a Monte Carlo on

these variables?
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The pseudofermions
The fermionic action is quadratic, so it can be formally integrated (by
using the rules of the Grassman algebra) and the result rewritten by using
ordinary (non grassmanian) variables (it can be shown that detM > 0)

Z =

∫

DUµDψ̄Dψe−Sg [U]−ψ̄M[U]ψ ∝

∫

DUµ detM[U]e−Sg [U] ∝

∝

∫

DUµDφ
∗
Dφe

−Sg [U]−φ∗ 1

M[U]†M[U]
φ
=

∫

DUµDφ
∗
Dφe−Seff [U,φ]

Starting from a local fermionic action we arrived to a non local action
written by using the bosons φ (pseudofermions).
The Metropolis algorithm requires the computation of ∆E and typically M

is a matrix of dimension O(106), so a local update (like the ones in
statistical physics) is not numerically convenient.

Problem: how to perform a global update with a reasonably large
acceptation probability.
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Hybrid Monte Carlo

Let’s start from the action S [φ] and introduce the momentum p

conjugated to φ, from which we build the new action S̃ [φ, p] as

S̃ [φ, p] = S [φ] +
1

2
p2

An Hybrid Monte Carlo update consists of the following steps:

1 the momentum p is generated with the distribution
PG (p) ∝ exp

(
−1

2p
2
)

2 starting from the state (φ, p) we get the trial state (φ′, p′) by
numerically solving the canonical equation of motion

PC

(
(φ, p) → (φ′, p′)

)
= δ

(
(φ(t), p(t))− (φ′, p′)

)

3 the trial state is accepted with probability
PA((φ, p) → (φ′, p′)) = min[1, exp(−∆S̃)]
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Hybrid Monte Carlo (proof)

The transition probability for φ→ φ′ is thus

PM(φ→ φ′) =

∫

dpdp′PG (p)PC

(
(φ, p) → (φ′, p′)

)
PA

(
(φ, p) → (φ′, p′)

)

From e−S(φ)PG (p) = e−S̃(φ,p), S̃(φ, p) = S̃(φ,−p) and

e−S̃(φ,p)min(1, e−∆S̃) = e−S̃(φ′,p′)min(e∆S̃ , 1)

we get

e−S(φ)PG (p)PA

(

(φ, p) → (φ′, p′)
)

=

(1)
= e−S(φ′)PG (p

′)PA

(

(φ′, p′) → (φ, p)
)

=

= e−S(φ′)PG (p
′)PA

(

(φ′,−p′) → (φ,−p)
)
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Hybrid Monte Carlo (proof)

By multiplying this equation by

PC

(

(φ, p) → (φ′, p′)
)

(2)
= PC

(

(φ′,−p′) → (φ,−p)
)

we get

e−S(φ)

∫

dpdp′PG (p)PC

(

(φ, p) → (φ′, p′)
)

PA

(

(φ, p) → (φ′, p′)
)

=

= e−S(φ′)

∫

dpdp′PG (p
′)PC

(

(φ′,−p′) → (φ,−p)
)

×

× PA

(

(φ′,−p′) → (φ,−p)
)

which after p → −p and p′ → −p′ becomes the detailed balance for φ:

e−S(φ)PM(φ→ φ′) = e−S(φ′)PM(φ′ → φ)
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Hybrid Monte Carlo requirements

We have shown that the Markov chain for φ obtained by using the HMC
satisfies the detailed balance if the following conditions hold true:

1 the temporal evolution does not change the measure on the phase
space: ∂(φ,p)

∂(φ′,p′) = 1

2 the time evolution is reversible: (φ, p) → (φ′, p′) if and only if
(φ′,−p′) → (φ,−p)

These properties are surely true in the continuum (Liouville theorem and
unicity theorems for differential equations), but have to be satisfied also by
the algorithm used to numerically integrate the equations of motion.

A large class of integrators exists that satisfies these conditions: the
symmetric symplectic integrators.
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The symmetric symplectic integrators

Let’s assume to have an action S = V (q) + T (p)

U(τ) = exp

(

τ
d

dt

)

= exp

(

τ

[

T ′(p)
∂

∂q
− V ′(q)

∂

∂p

])

Q = T ′(p)
∂

∂q
eτQf (q, p) = f (q + τT ′(p), p)

P = −V ′(q)
∂

∂p
eτP f (q, p) = f (q, p − τV ′(q))

Algorithms with errors O(τ2)

1 leapfrog (or Verlet): e
1
2
δτPeδτQe

1
2
δτP

2 second order minimum norm (or Omelyan):

eλδτPe
δτ

2
Qe(1−2λ)δτPe

δτ

2
QeλδτP with λ ≈ 0.1931833275
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Multistep integrators

Since the total action is V = Vg + Vf and the first term is “easy” while
the second term is “difficult”, it is convenient to use multistep integrators:

Q = T ′(p)
∂

∂q
eτQf (q, p) = f (q + τT ′(p), p)

Pg = −V ′
g (q)

∂

∂p
eτPg f (q, p) = f (q, p − τV ′

g (q))

Pf = −V ′
f (q)

∂

∂p
eτPf f (q, p) = f (q, p − τV ′

f (q))

For the leapfrog:

U0(δτ0) = e
1
2
δτ0Pg eδτ0Qe

1
2
δτ0Pg

U1(δτ1) = e
1
2
δτ1Pf

[

U0(δτ1/N)
]N

e
1
2
δτ1Pf
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The Dirac matrix
Sparse structured matrix (block SU(3)) of typical dimension at least

4V & 4× 204 = 6.4× 105 (×3 for block)

For the Wilson discretization ×4 more, for the domain-wall still ×30.
The main algebraic properties of M are different depending on the
discretization scheme used: For example

in the staggered case Mst = M
†
st and Mst is positive defined

in the Wislon case MW = γ5M
†
W γ5

Typically λmin = m (quark’s mass) and λmax ∼ O(1) and (very) often we
are interested in the so called “chiral limit” m → 0. Usual values for the
condition number are: χ ∼ 104 ÷ 106.

In the computation of the fermionic component of the force (and of ∆S)
we need to solve systems of the form Mx = b with b a random vector

(with gaussian distribution).
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Solution algorithms used

The algorithms used in order to solve Ax = b are the Krylov algorithm:

staggered case: conjugate gradient (CG)

other cases: typically bi-conjugate stabilized gradient (BiCGstab) or
generalized minimal residual (GMRES)

The basic scheme of all the Krylov algorithms is the following:

1 we start from a test solution x0 and its remainder r0
2 from the partial solution xj and its remainder rj we get some auxiliary

vectors p
(k)
j obtained by multiplying M or M† by xj or rj

3 we get xj+1 and rj+1 as a linear combination of xj , rj and of the

auxiliary vectors p
(k)
j

4 we iterate from point (2) until ‖rj+1‖ < ǫ (goal precision)
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An example: the CG algorithm

The simplest Krylov solver is the conjugate gradient algorithm, which can
be used to solve Ax = b when A is real, symmetric and positive definite
(i.e. (y ,Ay) > 0 if ‖y‖ > 0).

x0 arbitrary starting point, r0 = p0 = b − Ax0;
ǫ > 0 goal precision;
while ‖rn‖ > ǫ do

βn = −‖rn‖
2
/
(pn,Apn)

/* it can be shown that (pn,Apn) 6= 0 */

xn+1 = xn − βnpn

rn+1 = rn + βnApn

αn+1 = ‖rn+1‖
2
/
‖rn‖

2

pn+1 = rn+1 + αn+1pn

end
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Computational limits of Krylov space methods in LQCD

In LQCD all these methods are bandwidth-limited.
There are several ways to reduce the bandwidth-pressure:

Brute force: we store only the first two raws of the SU(3) matrices
and reconstruct the third on-fly when needed

Residual replacement (aka as reliable updates)

Idea of the residual replacement strategy: we perform the computation in
low precision, in this way the true residual diverges from the iteratively
computed residual1. Sometimes we perform a restarting of the algorithms,
with an accurate computation of the true residual2.
In this way most of the computations are performed in “low precision” but
the final result is in “high precision” (on GPUs also the half-precision is
used).

1A. Greenbaum, Estimating the attainable accuracy of recursively computed residual
methods, SIAM J. Matrix Anal. Appl. 18 (1997) 535.

2H. K. van der Vorst, Q. Ye, Residual replacement strategies for Krylov subspace
iterative methods for the convergence of true residuals, SIAM J. Sci. Comput. 22
(2000) 835.
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Rational Hybrid Monte Carlo
Some time (because it is needed by the discretization or in order to
speed-up the algorithm) we need to solve

Mαx = b α ∈ Q (let′s assume M = M†)

we compute a rational approximation R(x) of xα on [ǫ, 1] accurate
with given precision (possibly machine precision)

R(x) = a0 +
∑

i

ai

x + σi

if λmin/λmax > ǫ we can use

Mα ≈ R(M) =
a0

λαmax

+
∑

i

ai/λ
α+1
max

M + σi/λmax

so we need to solve (M + σi ) = x (luckily σi > 0)
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Shift-inverters

In order to solve k systems

(M + σi )x = b

with a Krilov solvers we would need typically ×O(k) matrix×vector
products with respect to the simple case Mx = b.
By using the shifted versions of the solvers we arrive to a O(1) difference,
see3.
No free lunch principle: the shift-solvers are much less versatile than the
original Krylov algorithms:

is much harder to use preconditioners

for the algorithm to converge all the starting residuals have to be
collinear, so we need to start from a vanishing test solution

In particular: it is not possible to restart the algorithm and to use the
residual replacement strategy.

3B. Jegerlehner “Krylov space solvers for shifted linear systems”
arXiv:hep-lat/9612014
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The overlap discretization

The “overlap” discretization of the Dirac equation is the best one from the
theoretical physics point of view (manifest chiral invariance at
non-vanishing lattice spacing4), but the discretized Dirac matrix is given by

DO = 1 +
DW −m

√

(DW −m)†(DW −m)

and thus requires two nested Krilov solver: the “standar one” (the outer)
and an inner one for the computation of the square root.

This discretization requires a number of computations ≈ O(102) higher
with respect to the others (less theoretically pleasant) discretizations. For
this reason its use is still extremely limited.

4D. B. Kaplan, Chiral Symmetry and Lattice Fermions, arXiv:0912.2560
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Computing power required

In order to generate enough data for a real simulation of LQCD
thermodynamics typically O(107 ÷ 108) linear system has to be solved.
(Each molecular dynamics trajectory ∼ 20, number of trajectories for fixed
β value ∼ 105, number of βs ∼ 10)
Need for dedicated massively parallel machines!

Past: APE machines (produced by INFN) since the late ‘80s up to a few
years ago.

Today:

PC clusters

Blue Gene or similar

Video Card (Graphic Processing Units, GPU)

Heterogeneous clusters mixing the above ingredients
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