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Introduction

“No matter how powerful computers
become, physicists will always want to
study problems that are too difficult
for the computers at hand.” [1]

In these notes we discuss the topics covered in the following three modules of the “Numerical
Methods for Physics” course:

• Introduction to Markov Chain Monte-Carlo and applications in statistical mechanics
• Application of Monte-Carlo methods to the study of the path-integral in quantum mechanics
• Path-integral simulations for quantum field theories

With respect to the material discussed in class more details are present in these notes, mainly
to investigate some technical points or to provide complete proofs whose analysis would take too
much time (or would be at least partially off topic) during the lectures.

After introducing some general features of the Monte Carlo algorithms, in Part I we discuss quite
in detail the approach known as Markov Chain Monte Carlo (MCMC), which is the Monte Carlo
technique that is most commonly adopted in nontrivial applications. To put on firm ground the
foundations of the MCMC method same basic facts about Markov chains are presented, together
with the data analysis techniques needed to reliably estimate (functions of) average values in
MCMC simulations, and to asses their statistical accuracy.

Statistical mechanics will be often used to motivate some of the requirements that a good
Monte Carlo algorithm has to satisfy, and in Part II the MCMC technique is applied to the study of
phase transitions in simple lattice systems. While virtually any problem in (equilibrium) statistical
mechanics can be tackled by using Monte Carlo methods, there are several reasons to focus on
phase transitions in classical lattice models of ferromagnets. From the algorithmic point of view
these models are quite simple to investigate by Monte Carlo methods, and thus constitute an ideal
testbed for the application of the techniques introduced in Part I. Given their extreme simplicity,
one might expect these models to provide only some very general qualitative information of minor
physical interest. This is however not the case for continuous phase transitions: the phenomenon
of universality ensures that even the simplest models capture quantitative features (the universal
ones) of real world continuous phase transitions. The peculiar behavior that emerges in a system
close to a continuous phase transition also presents some challenges for the Monte Carlo method,
whose computational efficiency typically decreases as the size of the system is increased (critical
slowing down).

In Part III Monte Carlo methods are applied to study quantum mechanical systems, and in
particular equilibrium quantum statistical mechanics. The starting point is the Euclidean path-
integral technique, by which quantum thermal averages can be rewritten in a way which makes them
amenable of being estimated by Monte Carlo methods. Indeed, once a regularization of the path-
integral is introduced, the computation of quantum thermal averages becomes formally equivalent
to the estimation of thermal averages in a one dimensional classical lattice system. Information
on the energy spectrum of the quantum model can be obtained by studying correlators in the
corresponding classical statistical system for different Euclidean time separations; using this fact
it becomes clear that the process of removing the path-integral regulator is equivalent to the study
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of critical phenomena in classical one dimensional systems. Although all the techniques introduced
are valid for generic systems, the case of the one dimensional harmonic oscillator is often used to
exemplify them in a simple setting in which analytical computations can also be performed.

In Part IV Monte Carlo methods are applied to the numerical investigation of some properties
of quantum field theories. Although the general ideas are analogous to those already introduced
in Part III, some more difficulties arises, that are discussed in the simplest setting, that of the
free bosonic field. Numerical simulations of fermion fields are significantly more challenging than
their bosonic counterparts, and some of the difficulties encountered can be easily understood. The
fermionic case is used to motivate the introduction of the Hybrid Monte Carlo algorithm for the
simulation of non-local actions. Quantum field theories are not only more difficult to simulate
than elementary quantum mechanical systems, they also present a richer phenomenology. In order
to present a glimpse of this phenomenology, we discuss several aspects of two dimensional lattice
gauge theories, which are relatively easy to simulate and for which we have complete analytic
control.

This course is thought to be attended in parallel with other courses, more focused on the
physics of the systems under investigation, like, e. g., statistical mechanics and quantum field
theory courses. For this reason a short summary of the main physical features is provided whenever
a deeper physical understanding is needed, e. g., to decide which observable to measure, to plan
the simulations or to interpret the numerical results.

The other natural possibility is to attend this course when already acquainted with the physical
side of the problem. It is quite obvious that there are positive aspects also in this second possibility,
however one should not underestimate the physical insight that can be gained by numerically
simulating a system. Indeed, sometimes, the mathematical subtleties that in a theoretical setting
could seem futilely abstruse, or maybe even useless, become quite reasonable after directly verifying
what happens by neglecting them. Spontaneous symmetry breaking (especially in gauge field
theories) is a typical example of a phenomenon which require some care to be investigated, both
from the mathematical point of view and in numerical simulations.

All the numerical results presented have been obtained by using the codes publicly available at

https://github.com/claudio-bonati/NumericalMethods/

and the run times reported refer to a single core Intel(R) Xeon(R) Gold 5218 CPU 2.30GHz, with
the code compiled using the GCC compiler (version 9.4.0).

To report typo, oversights, inaccuracies, errors or whatever else, please write to

claudio.bonati@unipi.it
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List of abbreviations

GCD: greatest common divisor
iid: independent and identical distributed
MC: Monte Carlo
MCMC: Markov Chain Monte Carlo
pdf: probability distribution function
QFT: quantum field theory
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Part I

The Markov Chain Monte-Carlo
method
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Chapter 1

Basics of Monte Carlo methods

Monte Carlo methods constitute a class of numerical methods which use a stochastic approach to
evaluate expressions of the form

〈F 〉 =

∫
C

F (x)p(x)dx , (1.0.1)

where dx denotes a measure on the set C, p(x) is a probability density function on C (pdf for
short), thus

p(x) ≥ 0 ,

∫
C

p(x)dx = 1 , (1.0.2)

and F (x) is a function of x. In some cases the quantity to be investigated already has a natural
probabilistic interpretation (this is typically the case in statistical mechanics), in other cases some
work is needed to rewrite it in the form Eq. (1.0.1), selecting an appropriate ensemble C, an
appropriate pdf p(x) and an appropriate function F (x).

Several approaches can be used to evaluate the right hand side of Eq. (1.0.1), and this is the
reason for the plural in “Monte Carlo methods”: in some cases it is possible to directly sample
the pdf, in most of the cases this is however not numerically feasible, and the less direct Markov
Chain Monte Carlo approach has to be used; also in this case there is however much freedom on
how to construct the appropriate Markov Chain.

Whatever method is used, in the end all Monte Carlo approaches produce “in some way” a sam-
ple of N draws x1, . . . , xN from the pdf p(x), from which we get the quantities F (x1), . . . , F (xN ),
whose sample average F is an estimator of 〈F 〉. The values xi are always identically distributed but
non necessarily independent, and a fundamental point is to determine the statistical uncertainty
to be associated with F .

1.1 Sample statistics

In this section we recall some basic facts about sample statistics that will be of fundamental
importance in the following, considering only the case of independent and identically distributed
(iid for short) samples {xi}i=1,...,N . As usual we denote by 〈F 〉 the average of F computed with
respect to the pdf p(x), and by F the sample average of the quantities Fi = F (xi). The overline
will be used more generally to denote sample estimators.

It is simple to verify that the sample average

F =
1

N

∑
i

Fi (1.1.1)

is an unbiased estimator of 〈F 〉, i. e., 〈F 〉 = 〈F 〉: since the draws xis are sampled from the same
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pdf p(x) we have for each i

〈Fi〉 = 〈F (xi)〉 =

∫
F (xi)p(xi)dxi = 〈F 〉 , (1.1.2)

and by linearity

〈F 〉 =
1

N

N∑
i=1

〈Fi〉 = 〈F 〉 . (1.1.3)

To get an unbiased estimator of the variance σ2
F = 〈F 2〉−〈F 〉2 is only slightly more complicated:

we have

〈F 2 − F 2〉 =

〈
1

N

∑
i

F 2
i −

(
1

N

∑
i

Fi

)2〉
=

1

N

∑
i

〈F 2
i 〉 −

1

N2

∑
ij

〈FiFj〉 . (1.1.4)

Moreover, since Fi = F (xi) and the xis are identically distributed, we have 〈F 2
i 〉 = 〈F 2〉, and since

the xis are also independent of each other

〈FiFj〉 =

{
〈F 2〉 if i = j
〈F 〉2 if i 6= j

, (1.1.5)

hence

〈F 2 − F 2〉 = 〈F 2〉 − 1

N2

[
N(N − 1)〈F 〉2 +N〈F 2〉

]
=

=
N − 1

N

(
〈F 2〉 − 〈F 〉2

)
=
N − 1

N
σ2
F .

(1.1.6)

An unbiased estimator of σ2
F is thus

σ2
F =

N

N − 1

(
F 2 − F 2

)
, (1.1.7)

and the bias correcting factor N
N−1 is obviously irrelevant in the large sample limit N � 1.

We can now compute the variance of the stochastic variable defined by the sample average F .
We have (using once again the fact that the xi are iid)

σ2
F

= 〈F 2〉 − 〈F 〉2 =
1

N2

〈(∑
i

Fi

)2〉
− 〈F 〉2 =

=
1

N2

[
N〈F 2〉+N(N − 1)〈F 〉2

]
− 〈F 〉2 =

1

N

[
〈F 2〉 − 〈F 〉

]
=

1

N
σ2
F .

(1.1.8)

Using the sample estimator of the variance σ2
F we immediately obtain the sample estimator of the

variance of the sample average:

σ2
F

=
1

N − 1

(
F 2 − F 2)

. (1.1.9)

To appreciate the importance of these results it is useful to recall a simple fact known as
Chebyshev’s inequality: if X is random variable with finite variance σ2

X and average 〈X〉, the
probability of observing a value of X whose distance from 〈X〉 is larger than kσX is smaller than
1/k2:

P (|X − 〈X〉| ≥ kσX) ≤ 1

k2
(1.1.10)

From the definition of variance and the positivity of (X − 〈X〉)2 we have indeed

σ2
X =

∫
(X − 〈X〉)2p(X)dX ≥

∫
|X−〈X〉|≥kσX

(X − 〈X〉)2p(X)dX

≥ k2σ2
X

∫
|X−〈X〉|≥kσX

p(X)dX = k2σ2
XP (|X − 〈X〉| ≥ kσX) ,

(1.1.11)
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from which Chebyshev’s inequality follows. The meaning of the Chebyshev’s inequality is that the
standard deviation σX is a measure of how much a probability distribution is peaked around 〈X〉.
From (1.1.8) we can thus conclude that in the large sample limit N →∞ it is very unlikely to find
a value of the sample average which is far from the true average. This result is nothing but the
law of large numbers in its weak form: for any ε > 0 the probability of finding a value X which
differs from 〈X〉 by more than ε goes to zero in the large sample limit N →∞:

lim
N→∞

P (|X − 〈X〉| > ε) = 0 . (1.1.12)

The proof of this result is an immediate consequence of (1.1.8) and Chebyshev’s inequality if σ2
X

is finite, but the result is true also without this assumption (see e. g. [2] §X.2 and [3] §VII.7 or [4]
§1.1 and 1.6).

The bound in Chebyshev’s inequality (1.1.10) is typically far from optimal and can not be used
to precisely assess the uncertainty associated to F . For distributions with finite variance we have a
much more precise statement, the Central Limit Theorem, that will be of fundamental importance
in everything that follows: if the quantities {Xi}i=1,...,N are iid variables with average 〈X〉 and
finite variance σ2

X , in the large N limit the pdf ρ(X) of the stochastic variable X converges to a
Gaussian with average 〈X〉 and variance1 σ2

X/N :

ρ(X)→ 1√
2πσ2

X/N
exp

(
− (X − 〈X〉)2

2σ2
X/N

)
. (1.1.13)

A proof of this and of more general statements can be found in [3] §VIII.4 and [4] §5.27, while a
proof under quite restrictive hypotheses but with an estimate of the accuracy of the convergence
is presented in the appendix of [5].

From the Central Limit Theorem we thus know that, for large enough N , the value F has
a probability ≈ 68.3% of being closer to 〈F 〉 than σF , a probability ≈ 95.5% of being closer to
〈F 〉 than 2σF , and a probability ≈ 99.7% of being closer to 〈F 〉 than 3σF . Moreover σF can be

computed by using its sample estimator σF in Eq. (1.1.9) and scales ∝ 1/
√
N for large N . The

scaling 1/
√
N of statical errors is a consequence of the Central Limit Theorem, is universal in

Monte Carlo methods and constitutes their main limitation or advantage, depending on the point
of view.

1.2 Integration methods

The results of the previous section can be used to build simple Monte Carlo integrators and estimate
their statistical accuracy. We consider for the sake of the simplicity an integral of the form

I =

∫ 1

0

f(x)dx , (1.2.1)

where f(x) is a non negative regular function with 0 ≤ f(x) ≤M for x ∈ [0, 1], see Fig. (1.1) (left).
Several MC approaches can be devised to estimate I. A simple possibility is to think of I as

〈f〉, where the average is computed with respect to the uniform pdf p(x) = 1 on [0, 1]. We can
thus proceed as follow:

1. generate N numbers xi ∈ [0, 1] iid with pdf p(x) = 1

2. estimate I as f = 1
N

∑N
i=1 f(xi) .

A different possibility is to write f(x) =
∫ f(x)

0
dy and thus

I =

∫ 1

0

dx

∫ f(x)

0

dy =

∫
[0,1]×[0,M ]

F (x, y)dxdy = M

∫
[0,1]×[0,M ]

F (x, y)
dxdy

M
, (1.2.2)

1Note the consistency with Eq. (1.1.8).
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Figure 1.1: (left) The geometry considered for the integration in Sec. 1.2. (right) The basic step
of the rectangle integration scheme.

where

F (x, y) =

{
1 if y ≤ f(x)
0 else

. (1.2.3)

We thus have I = M〈F 〉, where the average is computed with respect to the uniform pdf p(x, y) =
1/M , and 〈F 〉 is just the probability that a randomly chosen point in [0, 1]× [0,M ] falls below the
curve f(x). To estimate I we can now proceed as follows:

1. generate N points (xi, yi) in the rectangle [0, 1]× [0,M ] iid with pdf p(x, y) = 1/M

2. estimate I as MF = M
N

∑N
i=1 F (xi, yi), which is equal to M/N times the number of points

below the curve f(x) .

The error of the MC estimates of I scales to zero as 1/
√
N in both the approaches, as dictated

by the Central Limit Theorem. To understand which of the two method is more efficient we have
to estimate the numerical factor multiplying 1/

√
N in the error, i.e. the standard deviation of the

single extraction (multiplied by M in the second case). Using the first method we have

σ2
f = 〈f2〉 − 〈f〉2 =

∫ 1

0

f2(x)dx−
(∫ 1

0

f(x)dx

)2

; (1.2.4)

using the second method we have instead (using F 2(x, y) = F (x, y))

σ2
F = 〈F 2〉 − 〈F 〉2 =

∫
[0,1]×[0,M ]

F (x, y)2 dxdy

M
−

(∫
[0,1]×[0,M ]

F (x, y)
dxdy

M

)2

=

=

∫
[0,1]×[0,M ]

F (x, y)
dxdy

M
−

(∫
[0,1]×[0,M ]

F (x, y)
dxdy

M

)2

=
I

M
−
(
I

M

)2

,

(1.2.5)

Note that in the second approach I = M〈F 〉, thus the relevant factor is MσF =
√
MI − I2, which

is a monotonically increasing function of M ≥ I. It is thus convenient to chose M as small as
possible, hence M = max f(x).

If we consider for example the case f(x) =
√

1− x2, in which case I = π/4, we have (with
M = 1)

σf =

(∫ 1

0

(1− x2)dx−
(∫ 1

0

√
1− x2dx

)2
)1/2

=

(
1− 1

3
−
(π

4

)2
)1/2

' 0.22

MσF =

(
π

4
−
(π

4

)2
)1/2

' 0.41 ,

(1.2.6)
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hence the error scales for large N as ' 0.22/
√
N and as ' 0.41/

√
N for the first and the second

method, respectively. To achieve a given target precision, the second method thus requires a sample
approximately four times larger than that of the first approach.

We can now compare these results with those that can be obtained by using deterministic
approaches for the computation of I. The simplest deterministic integration method is the rectangle
method (see Fig. (1.1) (right)):

1. divide the unit interval [0, 1] in N intervals of size ∆ = 1/N .
2. select xi in the i-th interval (e.g. xi = i/N or xi = (i+ 1/2)/N , with i = 0, . . . , N − 1)
3. estimate the integral by IR = ∆

∑
i f(xi)

The error of this estimate is bounded by

|I − IR| ≤
∑
i

∆(max
i
f −min

i
f) = ∆× (total variation of f) , (1.2.7)

where maxi f denotes the maximum of f(x) on the i-th interval and mini f the corresponding
minimum. For the case f(x) =

√
1− x2 considered above we have (using the fact that f is

monotonic)

|I − IR| ≤ ∆(max f −min f) =
1

N
. (1.2.8)

The scaling with N is thus much more favorable in the rectangle discretization scheme than in the
MC approach. Had we used the trapezoidal rule, in which the function is locally approximated by
a linear function, we would have obtained an error scaling as 1/N2. Using a generic integration
algorithm of order k (e.g. using spline interpolation of order k) we get an error which scales as
O(N−k).

If instead of considering a simple one-dimensional integral we consider a D-dimensional integral
on [0, 1]D, things change drastically. Denoting by ∆ the linear separation of the grid to be used in a
deterministic estimation of the integral, we need to evaluate the integrand function in 1/∆D points.
If we indicate the typical number of operations to be performed by N , we thus have N ' ∆−D,
and the error of an integration scheme of order k scales as

∆k ' N−k/D . (1.2.9)

On the contrary, the error of any Monte Carlo approach always scales as 1/
√
N , independently of

the dimensionality. For large enough D Monte Carlo becomes the best choice.
We have thus seen that the scaling of Monte Carlo errors is typically quite bad compared to

the scaling of errors that can be obtained by using deterministic approaches. However, there are
particular situations in which Monte Carlo methods are the most effective ones, the paradigmatic
example being that of integration in spaces of very large dimensionality, which is relevant both for
statistical mechanics and path-integration. To summarize [6]:

Monte Carlo methods should be used only when all alternative methods are worse.
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Chapter 2

Sampling a probability
distribution function

2.1 Pseudo-random number generators

The output of a standard pseudo-random number generator is typically an integer number in the
interval [0,M) (or open or closed interval) with uniform pdf, which becomes a real number with
pdf approximately uniform in [0, 1) when dividing by M .

Pseudo-random number generator are usually based on iterative algorithms like xi+1 = f(xi) or
xi+k = f(xi, . . . , xi+k−1), where x0 (or x0, . . . , xk−1) is the seed of the generator. It should be clear
that the numbers xi obtained using such an iterative algorithm are neither random nor independent
from each other, but for many practical applications everything works “as if” these numbers were
truly iid random quantities. Problems that are present in any pseudo-random number generator
are

• finite period: a value imax exists such that the sequence xi repeats itself if i > imax
• correlations: xi clearly depends on the xj with j < i, although this correlation can be quite

nontrivial to highlight.

Whether a given random number generator is “good enough” for this cheat to be trustworthy
is a nontrivial problem, and several tests are available to verify the quality of the randomness of
the sequence xi. For this reason it is good practice to use pseudo-random number generators that
are known to be of high quality, although this is sometimes not sufficient, since what is thought
to be a high quality generator is not time independent (see later in this section for an example).
Note that, in the context of MC applications, the quality of pseudo-random number generator is
typically non correlated with the generator being cryptographically secure.

Simple and very well studied pseudo-random number generators are linear congruential gener-
ators [7], in which natural numbers in [0,m) are generated by iterating1

xn+1 = (axn + c) mod m , (2.1.1)

where 0 ≤ x0 < m is the random seed, 0 < m is the modulus, 0 < a < m is the multiplier, and
0 ≤ c < m is the increment. Clearly 0 ≤ xn < m, thus yi = xi/m is a pseudo-random real number
in [0, 1), and there are at most m different values that can be obtained by iterating Eq. (2.1.1).

Since xn+1 is obtained from xi in a deterministic way, the sequence of numbers repeats itself
once a number xn is extracted which is equal to xi for some i < n; the period of a linear congruential
generator is thus surely not larger then the modulus m. Necessary and sufficient conditions for
a linear congruential generator to have period m are provided by the Hull-Dobell theorem (for a
proof see, e. g., [8] §3.2.1.2).

1we remind the reader that the notation x mod y denotes the remainder of the integer division of x by y.
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Theorem 2.1.1 (Hull-Dobell). A linear congruential generator has period m if and only if the
following requirements are satisfied:

1. c is relatively prime to m,
2. a− 1 is a multiple of p, for every prime number p dividing m,
3. if m is a multiple of 4, then a− 1 is a multiple of 4

A combination of parameters which satisfies these constraint is for example m = 2b, a = 4n+1,
and c = 1. Note however that a large period is not enough for a pseudo-random number generator
to be a good one: a linear congruential generator with a = 1 and c = 1 clearly has period m, with
m that can be arbitrarily large, still this is a terrible pseudo-random number generator.

All linear congruential generators with c = 0 (often called Lehmer generators) have a known
weakness: if we define the numbers yk = xk/m ∈ [0, 1) and we interpret k consecutive yis (i.e.
{yi, yi+1, . . . , yi+k−1}) as the coordinates of a point in k-dimensional space, then all these points lie
in at most (k!m)1/k parallel hyperplanes [9]. Note however that in some cases the actual number
of parallel hyperplanes on which these numbers lie is much smaller.

A famous example of such a failure is provided by the RANDU generator, which was the
standard IBM pseudo-random generator in the ’60s-’70s. This generator is defined by the recursion
relation

xj+1 = (65539xj) mod 231 , with x0 odd. (2.1.2)

From the fact that x0 is odd it immediately follows that xj is always odd, thus yi = xi/2
31 is a

number in (0, 1). This pseudo-random number generator comes with the disclaimer “its very name
RANDU is enough to bring dismay into the eyes and stomachs of many computer scientists!” ([8]
p. 107), which is motivated by the ridiculously small number of parallel planes on which consecutive
triples of numbers lie. According to the previously stated theorem this number is smaller than
(3!231)1/3 ' 2344, however the actual number is 15.

To show that the parameters choice used in RANDU is a very bad one we start by noting that 65539 = 216 + 3,
thus

xj+2 = (216 + 3)xj+1 = (216 + 3)2xj , (2.1.3)

where all equalities hold modulo 231. Now we use

(216 + 3)2 = 232 + 6× 216 + 9 = 232 + 6(216 + 3)− 9 (2.1.4)

to rewrite the previous equation as (again all equalities hold modulo 231)

xj+2 = [6(216 + 3)− 9]xj = 6xj+1 − 9xj . (2.1.5)

We thus have xj+2 − 6xj+1 + 9xj = k231, where k is an integer number, and finally

yj+2 − 6yj+1 + 9yj = k . (2.1.6)

This equation, with integer k, describes a family of parallel planes in R3, and it is simple to understand that of

these planes at most 1+6+9=16 intersect the cube [0, 1]3: 1 plane intersect the j + 2 axis, 6 planes intersect the

j + 1 axis, and 9 planes intersect the j axis. The actual number of planes intersecting the cube [0, 1]3 is in fact 15.

A less spectacular failure, but in some way a much more disturbing one, was reported in [10],
where it was shown that a supposedly high quality pseudo-random number generator failed to
reproduce the exact solution of the two dimensional Ising model when used in a MC simulation.

Simulations reported in the following of these notes have been performed by using the permuted
congruential generator pcg32, in the minimal C implementation available at

https://www.pcg-random.org/download.html

It is good practice to write MC simulation codes in a way that makes it easy to change the pseudo-
random number generator; this can be done, e. g., by introducing a wrapper function for the
pseudo-random number generator.
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2.2 Simple sampling, importance sampling, reweighting

We have seen in the previous section that algorithms are available to generate real pseudo-random
numbers in the interval [0, 1), and it is trivial to modify these algorithms to produce numbers
in the interval [0,M), with M arbitrary. Using these pseudo-random number generators we can
thus sample a constant (eventually multidimensional) pdf, and we have seen in Sec. 1.2 that this
is enough to estimate by Monte Carlo methods definite integrals. This approach goes under the
name of simple sampling.

For many practical uses, and in particular for statistical mechanics applications, simple sampling
is however very inefficient. In the large volume limit the Boltzmann distribution gets extremely
peaked around the most probable configuration, which is the one with the largest entropy in the
microcanonical ensamble or the one with the smallest free energy in the canonical ensamble. By
uniformly sampling the configuration space we are thus almost surely selecting configurations which
give negligible contribution to the physical result, so we are basically accumulating a lot of noise.

To make this argument more quantitative we can consider the average value

〈O〉p =

∫
O(x)p(x)dx , (2.2.1)

where O(x) is an observable which depends smoothly on x, while p(x) is a probability distribution
function that is extremely peaked close to x̄, so for example

p(x) '
{

1/δ x ∈ A
0 x /∈ A , (2.2.2)

with x̄ ∈ A, A a set of measure δ, and we are interested to the case δ → 0.
In simple sampling we uniformly sample the configuration space, so we use

〈O〉p = V 〈Op〉1 , (2.2.3)

where V is the total measure of the configuration space (the “volume”), and we denote by 〈 〉1
the average with respect to the uniform pdf 1/V . As in Sec. 1.2, to understand the effectiveness
of the approach we have to study the standard deviation of the quantity we are averaging, and for
simple sampling we get

V

(∫
O2(x)p2(x)

dx

V
−
[∫

O(x)p(x)
dx

V

]2
)1/2

'

'
(
V

δ
O2(x̄)−O2(x̄)

)1/2

= O(x̄)

√
V

δ
− 1 ,

(2.2.4)

which is both proportional to the (large) volume and divergent for δ → 0.
If in a Monte Carlo we instead generate points according to the distribution p(x), the standard

distribution which governs the error is for δ → 0(∫
O2(x)p(x)dx−

[∫
O(x)p(x)dx

]2
)1/2

'
(
O(x̄)2 −O(x̄)2

)1/2
= 0 . (2.2.5)

It is clear that this second approach, known as importance sampling is more effective in statistical
physics than simple sampling, and to use it we need methods to sample a generic distribution p(x).

In the rest of this chapter we discuss the basic approaches to this problem, which are however
typically quite (very) inefficient if the distribution p(x) depends on many variables, as in statistical
mechanics. In the next chapter we will discuss this more complicated case, introducing the Markov
Chain Monte Carlo approach. Note however that the techniques developed in Secs. (2.3)-(2.4) will
turns out to be useful also in the context of Markov Chain Monte Carlo, so it is worth to take
them seriously.
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〈x〉 x
0 0.0000(10)
0.25 0.2495(11)
0.5 0.4974(15)
0.75 0.7487(23)
1.0 0.9993(35)
1.5 1.492(10)
2.0 1.970(25)
2.5 2.474(69)
3 2.78(19)
4 2.60(32)
5 1.73(34)

Table 2.1: Values of x for a Gaussian pdf with average 〈x〉 and variance 1, obtained by sampling
a Gaussian with zero average and variance 1 and reweighting the results. In all the cases 106

independent draws have been used.

With a reasoning similar to the one just used it is simple to understand the problems related to
the technique commonly referred to as “reweighting”. In some cases it is not possible to generate
points according to the pdf p(x), for example when p(x) is not a pdf because it is not positive
definite (we will see one occurrence of this problem when discussing identical fermionic particles).
In these cases one possibility is to generate points according to the pdf g(x) and then use

〈O〉p =

∫
O(x)p(x)dx =

∫
O(x)

p(x)

g(x)
g(x)dx =

〈
O
p

g

〉
g

. (2.2.6)

The variance of the original distribution (i. e. the one obtained by sampling p(x)) is

σ2
(p) =

∫
O2(x)p(x)dx−

(∫
O(x)p(x)dx

)2

(2.2.7)

while the variance of the reweighted problem is

σ2
(g) =

∫
O2(x)

p2(x)

g(x)
dx−

(∫
O(x)p(x)dx

)2

. (2.2.8)

If O(x) is a smooth function and in some points p(x)/g(x) � 1 then σ2
(g) � σ2

(p). This means
that reweighting works well only for distributions that are at least qualitatively similar, and this
problem is usually known as the “overlap problem”.

To have an explicit example of the overlap problem we can try to estimate numerically the
average of a Gaussian pdf with average 〈x〉 and variance 1 by sampling a Gaussian pdf with zero
average and variance 1, then reweighting the results (as we will see in the next section Gaussian pdf
can be easily sampled). The results of this numerical experiment are shown in Tab. (2.1), where
the estimate x obtained by reweighting a sample of 106 independent draws is reported together
with the true average 〈x〉. It is clear that when 〈x〉 is larger than 1, and the two distributions
become significantly different from each other, the reweighting method becomes very inefficient.
It is important to explicitly note that, when the original and the reweighted distributions are very
different from each other, 〈x〉 and x are not even compatible with each other: huge statistics would
be required to even estimate reliably the variance of the average.

2.3 The change of variable method

The simplest method, at least from a theoretical point of view, to generate a non-uniform proba-
bility distribution function from a uniform pdf is the change of variable method.

16



Let us assume that the variable x is a random variable with pdf p(x), that f(x) is a smooth
invertible function and let us denote by p̃(y) the pdf of the random variable y = f(x). Values of x
in the interval [x, dx] correspond to values of y between f(x) and f(x+ dx) ' y+ df

dxdx, thus their
probability is the same, thus the transformation law of the probability density functions is (using
dy = |df/dx|dx)

p(x)dx = p̃(y)dy , p̃(y) =
p(x)

|df/dx|
. (2.3.1)

In the expression of p̃(y) there is obviously a slight abuse of notation: this function depends on y
but in the right hand side of the equation we left the dependence on y implicit, since x = f−1(y).

Using the general transformation law for pdfs just obtained it is possible to sample nonuniform
distributions; the nontrivial part of this task is to find the appropriate change of variable. If x is
a random variable with uniform pdf on [0, 1] and y0 = f(0), then∫ y

y0

p̃(y′)dy′ =

∫ x

0

dx′ = x , (2.3.2)

and we can analytically find the change of variable needed to sample p̃(y) if

1. we know the primitive of p̃(y)
2. we can invert the primitive of p̃(y) .

The simplest case in which both these requirements are satisfied is that of the uniform distri-
bution function: if p̃(y) is a uniform distribution function in [a, a+M ], we can for example assume
y0 = a, then the previous equation becomes (y−a)/M = x and finally y = a+Mx. A slightly less
trivial example is that of the exponential distribution function. If we want to sample the stochastic
variable y in [0,∞) whose pdf is p̃(y) = µe−µy, we can assume y0 = 0 and from Eq. (2.3.2) we get

x =

∫ y

0

µe−µy
′
dy′ = −e−µy

′
∣∣∣y
0

= 1− e−µy , (2.3.3)

from which y = − 1
µ log(1− x). If we use instead y0 =∞ we get

x =

∫ ∞
y

µe−µy
′
dy′ = −e−µy

′
∣∣∣∞
y

= e−µy , (2.3.4)

hence y = − 1
µ log(x). Both the changes of variables can be used, since they differ only for the

order in which one interval is mapped to the other. Indeed we can switch from one to the other
using x→ 1− x, which leaves invariant the uniform pdf on [0, 1].

Probably the most famous and used application of the change of variable method is the genera-
tion of random numbers distributed with Gaussian pdf. If we need to sample the normal Gaussian
pdf p̃(y) = 1√

2π
e−

1
2y

2

we can not use the simplest strategy, since the primitive of the Gaussian is

a non-elementary trascendental function, however we can follow a strategy that is similar to the
one adopted to compute Gaussian integrals. If y1 and y2 are two independent stochastic variables,
both with normal Gaussian pdf, their joint pdf is

p(y1, y2)dy1dy2 =
1

2π
e−

1
2 (y21+y22)dy1dy2 . (2.3.5)

Passing to polar coordinates y1 = r cosφ, y2 = r sinφ the joint distribution function of the stochas-
tic variables r and φ is

p(r, φ)drdφ =
1

2π
e−

1
2 r

2

rdrdφ =

(
dφ

2π

)(
e−

1
2 r

2

rdr
)
, (2.3.6)

hence φ and r are stochastically independent, with φ uniformly distributed on [0, 2π) and r dis-

tributed with pdf p̃(r) = re−
1
2 r

2

dr. Since we know the primitive of this pdf, we can use Eq. (2.3.2)
with r0 = 0, to get

x =

∫ r

0

r′e−
1
2 r
′2

dr′ = 1− e− 1
2 r

2

, (2.3.7)
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Algorithm 1 Box-Muller algorithm to generate two independent normal Gaussian random num-
bers starting from random numbers distributed with uniform pdf in (0, 1).

Require: x, z sampled from uniform pdf in (0, 1)
y1 =

√
−2 log(x) cos(2πz)

y2 =
√
−2 log(x) sin(2πz)

Algorithm 2 Polar form of the Box-Muller algorithm to generate two independent normal Gaus-
sian random numbers starting from random numbers distributed with uniform pdf in (0, 1).

Require: r1, r2 sampled from uniform pdf in (0, 1)
repeat

x = 1− 2r1

y = 1− 2r2

S = x2 + y2

until 0 < S < 1
y1 = x√

S

√
−2 log(S)

y2 = y√
S

√
−2 log(S)

from which r =
√
−2 log(1− x). If we use instead r0 = ∞ we get the slightly simpler expression

r =
√
−2 log x. We have thus shown that, given two random number x, z ∈ (0, 1) with uniform

pdf, the two numbers y1 and y2 given by

y1 =
√
−2 log(x) cos(2πz) , y2 =

√
−2 log(x) sin(2πz) (2.3.8)

are sampled from two independent normal Gaussian distributions. This is the Box-Muller algorithm
to generate normal Gaussian random numbers, summarized in Alg. (1).

This basic form of the Box-Muller algorithm is typically (i. e., on standard CPUs) not the most
effective one, since the evaluation of the trigonometric functions is quite a slow operation. To
increase the computational efficiency of the algorithm it is however possible to completely avoid
the use of trigonometric functions: the pdf associated to the uniform probability inside the circle
of unit radius is (in polar coordinates)

rdrdφ

π
= dr2 dφ

2π
, (2.3.9)

hence by selecting with uniform probability a point inside the unit circle we are effectively selecting
an angle φ with uniform probability on [0, 2π) and the number r2 with uniform probability on [0, 1).
To select a point inside the unit circle with uniform pdf we can select a point inside [−1, 1]× [−1, 1]
with uniform pdf, which is equivalent to generate two numbers x, y with uniform pdf in [−1, 1],
keeping only the selections for which the square distance S = x2 + y2 from the origin is smaller
than 1. Using the points generated in this way we thus have the following facts

1. S = x2 + y2 is uniformly distributed in [0, 1)
2. the angle φ such that x =

√
S cosφ, y =

√
S sinφ is uniformly distributed in [0, 2π)

3. cosφ = x/
√
S and sinφ = y/

√
S.

In this way we obtain the polar form of the Box-Muller algorithm (see Alg. (2)), which requires
on average 4

π ' 1.27 iteration to exit from the first cycle, but does not use any trigonometric
function. The time required to generate 5×108 random Gaussian numbers using the polar form of
the Box-Muller algorithm is ' 21.58s, while it is ' 27.30s using the basic version of the Box-Muller
algorithm.

We close this section by explicitly noting that to sample a Gaussian pdf with average µ and
standard deviation σ one can use y = µ + σx, where x is a normal Gaussian random variable, as
can be easily seen by using Eq. (2.3.1). Several other algorithms which generate normal Gaussian
pdf samples are discussed, e. g., in [8] §3.4.1.
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p(x)

cg(x)

Figure 2.1: von Neumann accept/reject method: example with p(x) = xe−x, g(x) = 1
2e
−x/2 and

c = 2.

Algorithm 3 von Neuman accept reject method to sample the pdf p(x) using samples drawn from
the pdf g(x) such that cg(x) ≥ p(x).

repeat
generate xt with pdf g(xt)
generate y in [0, cg(xt)] with uniform pdf

until p(xt) < y

2.4 The von Neumann accept/reject method

This method can be applied whenever we want to sample a pdf p(x) and we know how to sample
the pdf g(x) with cg(x) ≥ p(x), see Fig. (2.1); note that by integrating the inequality cg(x) ≥ p(x)
and using the normalization condition for a pdf we imediately get c ≥ 1.

The strategy to sample p(x) using samples drawn from g(x) is the following:

1. select a value xt according to the pdf g(x)
2. select a number y in [0, cg(xt)] using the uniform pdf
3. if y ≤ p(xt) the trial number is accepted, else it is rejected and we go back to point 1.

Points 2. and 3. could be stated in a different but equivalent way by saying that we accept xt with
probability p(xt)/[cg(xt)].

It is simple to verify that the numbers generated using this algorithm are distributed with pdf
p(x), indeed the average probability of accepting the trial state generated in point 1. is given by
(remember that c ≥ 1)

〈Pacc〉 =

∫
P (selecting x)P (accepting x)dx =

∫
g(x)

p(x)

cg(x)
dx =

1

c
, (2.4.1)

and the distribution of the accepted values is

P (selecting x)P (accepting x)∫
P (selecting y)P (accepting y)dy

=
g(x) p(x)

cg(x)

1/c
= p(x) . (2.4.2)

Since 1/c is the average probability of accepting the trial state, c is the average number of iterations
required by the algorithm to accept a trial state, and measures the efficiency of the algorithm: the
closer c is to 1 the more efficient the algorithm is.

As a nontrivial example of application of the accept/reject method we discuss how to sample a
variable x ∈ [−1, 1] with pdf p(x) = A

√
1− x2eγx, where γ is a parameter and A is a normalization

constant whose value is fixed by imposing
∫ 1

−1
p(x)dx = 1. A possible algorithm to sample this

distribution uses the accept/reject method starting from an exponential distribution [11]. The
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distribution on [−1, 1] with pdf g(x) = Beγx, with B = γ/(eγ−e−γ), can indeed be easily sampled
by the change of variable method: assuming z to be a variable with uniform pdf in [0, 1] and using
x(z = 0) = −1 we get

B

∫ x

−1

eγx
′
dx′ = z , (2.4.3)

hence

x =
1

γ
log
(
e−γ +

γ

B
z
)

=
1

γ
log
(
e−γ + [eγ − e−γ ]z

)
. (2.4.4)

To apply the accept/reject method we now have to find a value c such that cg(x) ≥ p(x) for all
x values in [−1, 1]. Since

√
1− x2 ≤ 1, it is sufficient to use c = A/B and we can thus use the

following algorithm

1. generate xt with pdf g(xt) using the change of variable method

2. accept xt with probability p(xt)
cg(xt)

=
√

1− x2
t , i.e. generate a random number r in [0, 1] with

uniform probability and accept xt if r <
√

1− x2
t .

It should be intuitively clear that this algorithm becomes inefficient when γ � 1, since in this case
g(x) is very peaked close to x = 1 but p(1) = 0, and it is thus very difficult for the trial state to
be accepted.

To be more quantitative we have to estimate A and thus c. We have

1

A
=

∫ 1

−1

√
1− x2 eγxdx

(1)
=

∫ π

0
sin2 θeγ cos θ (2)

=
2
√
π

γ
Γ

(
3

2

)
I1(γ)

(3)
=

π

γ
I1(γ) , (2.4.5)

where in the step (1) we used the change of variable x = cos θ and in the step (2) we used the integral representation
of the modified Bessel functions of first kind (see Eq. 9.6.18 of [12])

Iν(z) =

(
1
2
z
)ν

√
πΓ
(
ν + 1

2

) ∫ π

0
ez cos θ sin2ν θdθ , (2.4.6)

which is valid for <ν > −1/2. Finally in step (3) we used Γ(3/2) =
√
π/2 (see Eq. 6.1.9 of [12]). For γ � 1 we can

use the approximate expression (see Eq. 9.7.1 of [12])

I1(γ) '
eγ
√

2πγ
, (2.4.7)

hence for γ � 1 we find

c =
A

B
'
√

2γ

π
� 1 . (2.4.8)

A more efficient algorithm to sample p(x) when γ � 1 is discussed in [13].
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Chapter 3

Markov Chain Monte Carlo

3.1 Markov chains: general properties

A Markov chain is a discrete time stochastic process, in which the probability of passing from the
state x at time t = n to the state y at time t = n+ 1 depends only on x, y, and n. In the following
we consider only stationary chains, in which case the transition probability is independent of time.
We denote by Ω the set of all the possible states of the Markov chain, and in the following we will
assume Ω to be a finite set; for an analysis of the countably infinite case see, e. g., [2] §XV or [4]
§1.8, for the most general case see, e. g., [14] §5.8.

In a stationary Markov chain, we denote by Wab = P (b→ a) the probability for the system to
pass from the state b to the state a at any given time1. Some obvious properties of the matrix W ,
which completely characterize the Markov chain, are the following:

1. 0 ≤Wab,
2.
∑
aWab = 1 for every state b

The second property means that every state b will surely go somewhere in Ω at any step, and can
be rephrased by saying that any column of W must sum up to 1. A matrix that satisfies these two
requirements is usually called stochastic matrix. It is also convenient to introduce the probability
of passing from state b to state a in k steps of the Markov chain, which is given by

P (b→ a in k steps) =
∑

c1,...,ck−1

Wac1Wc1c2 · · ·Wck−1b = (W k)ab . (3.1.1)

We note that it is simple to show that any power of a stochastic matrix is again a stochastic matrix:
if W is a stochastic matrix it is immediate to see that the elements of Wn are non negative, and
if we assume W k to be a stochastic matrix we have∑

i

(W k+1)ij =
∑
iα

Wiα(W k)αj =
∑
α

(W k)αj = 1 , (3.1.2)

hence also W k+1 is a stochastic matrix.
A Markov chain is said to be irreducible if for every couple of states a, b ∈ Ω a k ∈ N exists such

that (W k)ab > 0; if this is not the case the Markov chain is said to be reducible. It is possible to
represent any Markov chain by a graph: the states are the vertices of the graph, and two vertices
b and a are connected by an oriented edge going from b to a if Wab > 0. The Markov chain
is irreducible if and only if, starting from any given vertex, we can reach any vertex (included
the starting one) by traveling along the graph following the oriented edges. If a Markov chain is
reducible then (at least) two disjoint subsets A and B of Ω exists such that all the states of A will

1Note that in the mathematical literature the different convention Wba = P (b→ a) is typically used.
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Figure 3.1: Examples of graphs associated to Markov chains.

never reach B during the evolution, hence we can order the states in such a way that the matrix
W has the block form

W =

(
# #
0 #

)
. (3.1.3)

A sufficient condition for a Markov chain to be irreducible is obviously Wab > 0 for any a, b.
For any state a of a Markov chain we define the set of its recurrence times by

Ra = {k ∈ N \ {0}|(W k)aa > 0} . (3.1.4)

The meaning of this definition is the following: if at time t0 = n the state of the Markov chain is
a, then the state at time t1 = n+ s > t0 can be again a only if s ∈ Ra. The period of the state a,
denoted by Ta, is the greatest common divisor of Ra:

Ta = GCD(Ra) , (3.1.5)

so if k is not a multiple of Ta we surely have (W k)aa = 0; note however that not all the multiples
of Ta are necessarily in Ra. If all the states of a Markov chain have period equal to one, then the
chain is said to be aperiodic. A sufficient condition for a chain to be aperiodic is Waa > 0 for any
a, since in this case 1 ∈ Ra and thus 1 = GCD(Ra) for any a.

Let us consider some examples of simple Markov chains.

• The matrix

W =

(
1 1/2
0 1/2

)
(3.1.6)

is associated to the graph in Fig. (3.1a), and the corresponding Markov chain is reducible,
since there is no way of passing from the state 1 to the state 2 in the evolution. Moreover
R1 = R2 = {1, 2, 3, . . .}, and T1 = T2 = 1, hence the Markov chain is aperiodic, which follow
also from the fact that Wii > 0

• The matrix

W =

(
0 1/2
1 1/2

)
(3.1.7)

is associated to the graph in Fig. (3.1b), and the corresponding Markov chain is irreducible,
since W12 = 1/2 > 0 and W21 = 1 > 0 (alternatively, it is always possible to pass from 1 to
2 and viceversa in the graph). R1 = {2, 3, 4, . . .} and R2 = {1, 2, 3, . . .}, hence T1 = T2 = 1
and the Markov chain is aperiodic (although W11 = 0).

• The matrix

W =

(
0 1
1 0

)
(3.1.8)
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is associated to the graph in Fig. (3.1c), and the corresponding Markov chain is irreducible,
since W12 = 1 > 0 and W21 = 1 > 0 (alternatively, it is always possible to pass from 1 to
2 and viceversa in the graph). R1 = R2 = {2, 4, 6, . . .} and T1 = T2 = 2, hence the Markov
chain is not aperiodic.

• The matrix

W =


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 (3.1.9)

is associated to the graph in Fig. (3.1d), and the corresponding Markov chain is reducible,
since the graph is disconnected and there is, e. g., no way of passing from site 1 to site 4
in any number of steps. R1 = R2 = R3 = {3, 6, 9, . . .} and R4 = R5 = {2, 4, 6, . . .}, hence
T1 = T2 = T3 = 3, T4 = T5 = 2, and the Markov chain is not aperiodic.

Theorem 3.1.1. In an irreducible Markov chain all the states have the same period.

Proof. Let a, b ∈ Ω be states with period Ta and Tb, respectively. Since the Markov chain is
irreducible, positive k1 and k2 exist such that (W k1)ab > 0 and (W k2)ba > 0, hence in k̄ = k1 + k2

steps it is possible to start from a, reach b and go back to a. In particular k̄ ∈ Ra, hence k̄ is
divisible by Ta.

We can go from a to a also in other ways: in k2 steps we go from a to b, then in n steps we go
from b to b and, finally, in k1 steps we go from b to a:

a
k2−→ b

n−→ b
k1−→ a . (3.1.10)

Since k̄+ n ∈ Ra, k̄+ n is divisible by Ta, but we have seen before that k̄ is divisible by Ta, hence
also n has to be divisible by Ta. Since n is the length of a generic b→ b path, if follows that Tb is
divisible by Ta. By switching the roles of a and b we obtain analogously that Ta is divisible by Tb,
hence Ta = Tb.

Theorem 3.1.2. In an irreducible Markov chain of period T it is possible to decompose the con-
figuration space as Ω = A0 ∪ · · · ∪AT−1, where An ∩Am = ∅ if n 6= m and if i ∈ An and Wji > 0,
then j ∈ A(n+1) mod T .

Proof. Let us define the sets An, with n ∈ {0, . . . , T − 1}, as follows2:

An = {j ∈ Ω | ∃k such that k ≡ n mod T and (W k)j1 > 0} . (3.1.11)

An is thus the set of those states that can be reached, starting from the state 1, in a number of
steps that is congruent to n modulo T . Since the Markov chain is irreducible we have Ω = ∪nAn,
moreover we can show that if n 6= m the intersection An ∩Am is empty. If this were not the case,
a j should exist such that (W k1)j1 > 0, (W k2)j1 > 0, with k1 6≡ k2 mod T ; however, since the
Markov chain is irreducible, a q exists such that (W q)1j > 0, hence k1 + q ∈ R1 and k2 + q ∈ R1,
hence k1 + q and k2 + q are both divisible by T , from which it follows that k1 − k2 is divisible by
T , contradicting k1 6≡ k2 mod T .

We have thus shown that the T sets An form a disjoint cover of Ω. Let us now assume that
i ∈ An and Wji > 0. Then, by the definition of An, a k exists such that k ≡ n mod T and
(W k)i1 > 0, but then

(W k+1)j1 =
∑
m

Wjm(W k)m1 ≥Wji(W
k)i1 > 0 , (3.1.12)

hence j ∈ A(n+1) mod T since (k + 1) ≡ (n+ 1) mod T .

2We remind the reader that the notation a ≡ b mod c means that a− b is divisible by c.
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Corollary 3.1.1. If W is the matrix associated to an irreducible Markov chain of period T > 1,
then the Markov chain with matrix WT is reducible.

Proof. Using the decomposition of the previous theorem we immediately see that applying WT to
an element of An we can only obtain an element of An, hence the corresponding Markov chain is
reducible.

Using the matrix

W =

(
0 1
1 0

)
(3.1.13)

we get an example of application of the previous corollary: the Markov chain associated to W
is irreducible and of period 2. The matrix W 2 is the identity, which corresponds to a reducible
Markov chain.

We now recall some elementary facts about greatest common divisors which are needed to prove the following
theorem.

Lemma 3.1.1. If a ≡ c mod b then GCD(a, b) = GCD(b, c).

Proof. By hypothesis we have a = c + nb for some n ∈ Z, hence if d divides b and c it also divides a. Moreover,
from c = a− nb we see that if d divides a and b it also divides c. Hence

{divisors of a, b} = {divisors of b, c} , (3.1.14)

and in particular GCD(a, b) = GCD(b, c).

Using the previous lemma we get Eulcid’s algorithm for the computation of GCD(a, b). Let us assume that
a > b, then we can write a = bq1 + r1, with 0 ≤ r1 < b, hence a ≡ r1 mod b and by Lemma 3.1.1 we have
GCD(a, b) = GCD(b, r1). We can now go on by writing b = r1q2 + r2, with 0 ≤ r2 < r1, hence b ≡ r1 mod r2 and
GCD(b, r1) = GCD(r1, r2), and so on, until we find rk = 0. In this way we get

GCD(a, b) = GCD(b, r1) = GCD(r1, r2) = · · · = GCD(rk−1, 0) = rk−1 . (3.1.15)

At each iteration of the Euclid’s algorithm the remainder is a linear combination with integer coefficients of a, b:
in the first iteration r1 = a − bq1, in the second iteration r2 = b − r1q2 = b − (a − bq1)q2, and using the general
relation rn+2 = rn − qn+1rn+1 it is immediate to prove the result by induction. From this fact it follows that
GCD(a, b) can be written as a linear combination with integer coefficients of a and b, a fact that is known under
the name of Bezout identity.

Using the fact that GCD(a, b, c) = GCD(a,GCD(b, c)) it is possible to prove by induction that the Bezout
identity can be generalized: given a set S ⊂ N, the greatest common divisor of S, GCD(S), can be written as a
linear combination with integer coefficients of a finite number r of elements of S, i. e.

GCD(S) =

r∑
i=1

tisi , si ∈ S , ti ∈ Z . (3.1.16)

Lemma 3.1.2. Let A ⊂ N be a set such that GCD(A) = 1 and if α, β ∈ A then α + β ∈ A. Then a number N
exists such that if n ∈ N and n ≥ N then n ∈ A.

Proof. By the Bezout identity we know that we can chose r elements ai ∈ A and r integer numbers ti such that

r∑
i=1

aiti = 1 . (3.1.17)

Let us define t̄ = max |ti| and ā =
∑r
i=1 ai. A generic integer number n can then be written in the form n = kā+ s,

with 0 ≤ s ≤ ā, and we can rewrite n as follows

n = kā+ s =
r∑
i=1

kai + s =
r∑
i=1

kai + s
r∑
i=1

aiti =
r∑
i=1

(k + sti)ai . (3.1.18)

From this expression we see that, if k ≥ āt̄, the number n is a linear combination with integer and non negative
coefficients of the numbers ai, hence by the properties of A we have n ∈ A if n ≥ ā2 t̄.

Theorem 3.1.3. For an irreducible aperiodic Markov chain a value N exists such that (Wn)ij > 0 for every
i, j ∈ Ω if n > N .
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Proof. It is sufficient to show that if m ≥ m̄ then (Wm)ii > 0 for every i ∈ Ω, since from the fact that the Markov
chain is irreducible it follows that for every i, j ∈ Ω a kij exists such that (Wkij )ij > 0, and hence

(Wm+kij )ij =
∑
α

(Wm)iα(Wkij )αj ≥ (Wm)ii(W
kij )ij > 0 . (3.1.19)

We can thus choose N = m̄+ maxij kij (we are obviously using the fact that Ω is a finite set).
Let us now show that for large enough m we have (Wm)ii > 0 for every i. For this purpose it is sufficient to

show that the set Ri of the return times of i ∈ Ω satisfies the hypotheses of the Lemma 3.1.2: if n,m ∈ Ri then

(Wn+m)ii =
∑
α

(Wn)iα(Wm)αi ≥ (Wn)ii(W
m)ii > 0 , (3.1.20)

hence n + m ∈ Ri, moreover GCD(Ri) = 1 since the Markov chain is aperiodic. Using once again the fact that Ω
is a finite set we can thus find a m̄ such that (Wm)ii > 0 for every i if m ≥ m̄.

3.2 Markov chains: spectral and ergodic properties

If we consider an ensemble of Markov chains we can introduce the probability pa to be, at a given
time, in the state a ∈ Ω, and study how this probability depends on the time of the Markov chain.

If p
(k)
a is the probability of finding the state a at time k, we have the evolution equation

p
(k+1)
b =

∑
a

Wbap
(k)
a , (3.2.1)

and it is meaningful to investigate what happens when k →∞. In particular, we want to investigate

whether a pdf πa exists such that πa = limk→∞ p
(k)
a . If such a pdf exists, by performing the limit

for k → ∞ in Eq. (3.2.1) we get πb =
∑
aWbaπa, hence πa has to be an eigenvector of W with

eigenvalue 1. To study this topic it is thus useful to investigate the spectrum of the matrix W
associated to the Markov chain, and we will obtain a particular case of the Perron-Frobenius
theorem (for the general case, which is valid for general non negative matrices, see [15] §XIII).

Theorem 3.2.1. A stochastic matrix W has λ = 1 as one of its eigenvalues.

Proof. The condition
∑
aWab = 1 of the stochastic matrix can be rewritten as

∑
a(Wab− δab) = 0

for every b, hence the rows of the matrix W − I are linearly dependent, thus det(W − I) = 0 and
λ = 1 is an eigenvalue of W .

Theorem 3.2.2. If λ is an eigenvalue of a stochastic matrix then |λ| ≤ 1.

Proof. Let va be the eigenvector corresponding to the eigenvalue λ, hence
∑
bWabvb = λva. Since

Wab ≥ 0 we have

|λ||va| = |λva| =

∣∣∣∣∣∑
b

Wabvb

∣∣∣∣∣ ≤∑
b

|Wabvb| =
∑
b

Wab|vb| , (3.2.2)

and using
∑
aWab = 1 we get

|λ|
∑
a

|va| ≤
∑
ab

Wab|vb| =
∑
b

|vb| , (3.2.3)

thus finally |λ| < 1.

Theorem 3.2.3. If va is an eigenvector with eigenvalue λ 6= 1 of a stochastic matrix then we have∑
a va = 0.

Proof. From λva =
∑
bWabvb and

∑
aWab = 1 we get λ

∑
a va =

∑
b vb, and since λ 6= 1 we

conclude that
∑
a va = 0.
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Theorem 3.2.4. If W is the stochastic matrix associated to an irreducible Markov chain and va
is an eigenvector of W with eigenvalue 1, then all the components of va have the same sign (i. e.,
va > 0 for every a ∈ Ω or va < 0 for every a ∈ Ω).

Proof. Since Wab ∈ R we can assume without loss of generality that va ∈ R, moreover it is
convenient to introduce the operator M defined by

M =
1

n
(W +W 2 + · · ·+Wn) . (3.2.4)

Obviously Mij ≥ 0, and we have seen before that the power of a stochastic matrix is a stochastic
matrix, hence also M is a stochastic matrix, and since the Markov chain associated to W is
irreducible (and Ω is finite), we can assume n to be large enough for Mij to be strictly positive for
any i, j: Mij ≥ δ > 0. Since va =

∑
bWbavb we also have va =

∑
bMabvb.

Let us now introduce the notations

v+
a = max{va, 0} , v−a = max{−va, 0} , α = min

{∑
i

v+
i ,
∑
i

v−i

}
. (3.2.5)

Obviously va = v+
a − v−a and we have

(Mv+)i =
∑
j

Mijv
+
j ≥ δ

∑
j

v+
j ≥ αδ , (3.2.6)

and analogously (Mv−)i ≥ αδ, so∑
i

|vi| =
∑
i

|(Mv)i| =
∑
i

|(Mv+)i − (Mv−)i| =
∑
i

|(Mv+)i − αδ + αδ − (Mv−)i| ≤

≤
∑
i

|(Mv+)i − αδ|+
∑
i

|(Mv−)i − αδ| =
∑
i

(Mv+)i +
∑
i

(Mv−)i − 2Nαδ ,
(3.2.7)

where the last equality follows from the fact (Mv±)i ≥ αδ, and we denoted by N the number of
elements of Ω. Using

∑
iMij = 1 we thus get∑
i

|vi| ≤
∑
ij

Mijv
+
j +

∑
ij

Mijv
−
j − 2Nαδ =

=
∑
j

v+
j +

∑
j

v−j − 2Nαδ =
∑
j

|vj | − 2Nαδ ,
(3.2.8)

from which we conclude that α = 0 and we can thus assume (up to a global sign) va ≥ 0 for any
a ∈ Ω. We conclude by noting that

va = (Mv)a =
∑
j

Majvj ≥ δ
∑
j

vj > 0 (3.2.9)

since δ > 0, and
∑
j vj = 0 would imply vj = 0 for every j ∈ Ω, since va ≥ 0.

Theorem 3.2.5. If W is the stochastic matrix associated to an irreducible Markov chain the
eigenvalue λ = 1 of W is non degenerate.

Proof. Let us assume that v and v′ are two different eigenvectors of W with eigenvalue 1. By the
previous theorem we can assume va > 0 and v′a > 0 for every a ∈ Ω, and we can normalize them
in such a way that

∑
a va =

∑
a v
′
a = 1. We now introduce wa = va − v′a, which is still another

eigenvector of W with eigenvalue 1. By the previous theorem we have wa > 0 for all a ∈ Ω or
wa < 0 for all a ∈ Ω, but this is in contradiction with

∑
a wa =

∑
a va −

∑
a v
′
a = 0.
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The previous two theorems are finite dimensional analogues of the fact that in quantum me-
chanics the ground state is always non degenerate and its wave function can be chosen to be
positive definite, see, e. g., [16] §15.4 for a sketch of the proof, or [17] §3.3.3, [18] §10.5 for more
details.

Theorem 3.2.6. If W is the stochastic matrix associated to an irreducible and aperiodic Markov
chain and λ 6= 1 is an eigenvector of W , then |λ| < 1.

Proof. We know from Theorem. 3.2.2 that |λ| ≤ 1 and let us assume that |λ| = 1, i. e., λ = eiθ for
some θ ∈ R. If we denote by wa the eigenvector associated to λ, we can write wa = rae

iθa , with
ra ≥ 0 and

∑
a ra = 1, and the eigenvalue equation λwa =

∑
bWabwb becomes

rae
iθ+θa =

∑
b

Wab rb e
iθb . (3.2.10)

Multiplying this equation by e−i(θ+θa) and summing on a we get∑
ab

Wab rb e
i(θb−θa−θ) = 1 . (3.2.11)

SinceWabrb ≥ 0 and
∑
abWabrb =

∑
b rb = 1, the previous equation implies that ei(θb−θa−θ) = 1

for every a, b ∈ Ω such that Wabrb > 0. If rb = 0 we can chose arbitrarily the angle θb, hence we
can assume the stronger condition

ei(θb−θa−θ) = 1 for every a, b such that Wab > 0 . (3.2.12)

When used in Eq. (3.2.10) this relation shows that the vector ra is an eigenvector of W with
eigenvalue 1, hence, in particular, ra > 0 for any a ∈ Ω by Theorem 3.2.4, since the Markov chain
is irreducible. Due to the irreducibility, Eq. (3.2.12) determines all the θa values once θ1 = 0 has
been arbitrarily fixed.

For any k such that (W k)11 > 0 (i. e., k ∈ R1, and R1 6= ∅ since the Markov chain is irreducible),
k elements a1, . . . , ak ∈ Ω exist such that

W1a1Wa1a2 · · ·Wak1 > 0 , (3.2.13)

and Eq. (3.2.12) implies

1 = ei(θa1−θ1−θ)ei(θa2−θa1−θ) · · · ei(θ1−θak
−θ) = e−ikθ , (3.2.14)

hence kθ is an integer multiple of 2π, and we can assume θ = 2πα for some α = n
d , with n and

d positive, relatively prime, and n < d. Since the previous property is true for any k ∈ R1, we
must have kiα ∈ Z for any ki ∈ R1, hence d must be a divisor of any ki ∈ R1. Since the chain is
aperiodic we have GCD(R1) = 1, thus d = 1 and θ = 0, which gives λ = 1.

Summarizing, we have shown that for the stochastic matrix W corresponding to an aperiodic
and irreducible Markov chain the following fundamental facts are true

1) all the eigenvalues λ 6= 1 satisfy |λ| < 1
2) λ = 1 is a non degenerate eigenvalue and, with an appropriate choice of sign, all the compo-

nents of the corresponding eigenvector are strictly positive

These points can be rephrased by saying that any aperiodic and irreducible Markov chain has a
unique invariant probability density function, that we will denote by πa, and πa is strictly positive
for any a ∈ Ω. These fundamental facts will now be used to discuss the large-k behavior of the
quantity (W kp), where pa is pdf on Ω.
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Note that we have investigated the spectrum of the stochastic matrix W associated to a Markov
chain, but in general stochastic matrices are not diagonalizable (even for irreducible and aperiodic
Markov chains). An explicit example is provided by

M =
1

5

 2 2 1
1 2 1
2 1 3

 . (3.2.15)

It is easily seen that this matrix has eigenvalues 1 and 1/5, with algebraic degeneration 1 and 2,
respectively, but a single eigenvector corresponds to the eigenvalue 1/5 (the vector 1√

2
(1, 0,−1)),

hence this matrix is nondiagonalizable, and its Jordan canonical form is

MJ =

 1 0 0
0 1/5 1
0 0 1/5

 . (3.2.16)

To study the large-k behavior of (W kp)a =
∑
b(W

k)abpb, where W is associated to an irre-
ducible and aperiodic Markov chain, let us start by considering the simpler case in which the
matrix W can be diagonalized. In this case we can expand the vector pa on an eigenbasis of W ,
hence

pa = c1πa +
∑
j>1

cjv
(j)
a , (3.2.17)

where πa is the unique invariant pdf of the Markov chain and v
(j)
a is the j-th eigenvector with

j > 1, associated to an eigenvalue of absolute value smaller than 1. The pdf pa and the invariant

pdf πa are normalized by
∑
a va =

∑
a πa = 1, while for the eigenvectors v

(j)
a with j > 0 we have∑

a v
(j)
a = 0 due to Theorem 3.2.3, and we can assume

∑
a |v

(j)
a | = 1. We thus get

1 =
∑
a

pa = c1
∑
a

πa +
∑
j>1

∑
a

v(j)
a = c1 , (3.2.18)

and thus
pa = πa +

∑
j>1

cjv
(j)
a . (3.2.19)

Applying W k to this equation we get

(W kp)a = πa +
∑
j>1

cjλ
k
j v

(j)
a , (3.2.20)

and we can introduce 0 ≤ Λ = maxj>1 |λj | < 1 to estimate the convergence rate of (W kp)a to πa
as follows ∑

a

|(W kp)a − πa| =
∑
a

∣∣∣∣∣∣
∑
j>1

cjλ
k
j v

(j)
a

∣∣∣∣∣∣ ≤
∑
a

∑
j>1

|λj |k|cj ||v(j)
a | ≤

≤ Λk
∑
j>1

|cj |
∑
a

|v(j)
a | = Λk

∑
j>1

|cj | ,
(3.2.21)

where in the last step we used the normalization
∑
a |v

(j)
a | = 1. Introducing the notation A =∑

j>1 |cj | we have thus ∑
a

|(W kp)a − πa| ≤ AΛk = Aek log(Λ) , (3.2.22)

which, by introducing the exponential autocorrelation time τexp > 0 defined by

τexp = − 1

log(Λ)
= − 1

log maxj>1 |λj |
, (3.2.23)
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can finally be written in the form∑
a

|(W kp)a − πa| ≤ Ae−k/τexp . (3.2.24)

The quantities (W kp)a thus converge exponentially fast in k to πa, and the typical timescale is set
by the largest value of |λj | smaller than 1.

If the matrix W associated to the irreducible and aperiodic Markov chain is non diagonalizable
we need to slightly modify the previous discussion. A possible way to investigate the problem in
this case is to use the basis in which W assumes its Jordan canonical form. In this basis W is a
block diagonal matrix, with a single unidimensional block with 1 on its diagonal, and blocks with
|λ| < 1, which can be of the following two forms:

Bλ =


λ 1 0 0 0
0 λ 1 0 0

0 0
. . .

. . . 0
0 0 0 λ 1
0 0 0 0 λ

 , Dλ =


λ 0 0 0 0
0 λ 0 0 0

0 0
. . . 0 0

0 0 0 λ 0
0 0 0 0 λ

 . (3.2.25)

It is immediate to verify by induction that

Bkλ = λk−1


λ k 0 0 0
0 λ k 0 0

0 0
. . .

. . . 0
0 0 0 λ k
0 0 0 0 λ

 , (3.2.26)

hence limk→∞Bkλ → 0 and obviously also limk→∞Dk
λ → 0. We thus see that limk→∞W k = P1,

where P1 is the projector on the eigenspace corresponding to the eigenvalue λ = 1. Given any
pdf pa on Ω we thus have limk→∞(W kp)a = απa, and by summing on a we see that α = 1.
The estimate of the convergence rate of (W kp)a to πa changes in the nondiagonalizable case only
(possibly) by logarithmic corrections3, becoming∑

a

|(W kp)a − πa| ≤ CΛk−1(k + Λ) , (3.2.27)

where Λ has the same meaning as before, hence (using Λ < 1)∑
a

|(W kp)a − πa| ≤ C(k + 1)e−(k−1)/τexp . (3.2.28)

Note that for large k we have asymptotically

e−k/τexp ≤ (k + 1)e−(k−1)/τexp ≤ e−k/(τexp+ε) (3.2.29)

for any ε > 0, so the nondiagonalizability of W does not significantly affects the asymptotic
convergence rate.

3.3 Sampling a pdf using Markov chains

We have seen in the previous section that in an irreducible and aperiodic Markov chain, given any
initial pdf pa, the late time distribution (W kp)a approaches the unique invariant pdf πa of the
Markov chain. In particular, we can start from the completely deterministic initial distribution

3This happens if the largest value of |λj | smaller then 1 corresponds to a non-diagonal Jordan block.
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pa = δab, which means that at time t = 0 the state of the Markov chain is b, and generate
new states according to the transition probabilities of the Markov chain: the states in Ω will be
asymptotically visited, during the evolution, with pdf πa. This method to sample the pdf πa is
known as the Markov Chain Monte Carlo method (MCMC for short). Note that this method
differs in an important aspect from the methods discussed in Chap. 2: in this case the draws are
not independent.

In the present section we address the following problem: given a probability distribution func-
tion πa, can we build an aperiodic and irreducible Markov chain whose invariant pdf is πa? We
thus want to find a way of constructing an aperiodic and irreducible Markov chain whose associated
stochastic matrix W satisfies

πa =
∑
b

Wabπb , (3.3.1)

where now πa is a preassigned pdf, and the unknowns are the matrix elements Wab. In this context
the previous equation is usually known as the “balance equation”, and it should be clear that, in
general, this equation does not uniquely determine the matrix W : a stochastic N × N matrix
has N2 − N independent elements (since there are N constraints

∑
aWab = 1) and the balance

equation adds N constraints, thus leaving N2 − 2N degrees of freedom.
The balance equation can be rewritten, using

∑
bWba = 1, in the form∑

b

Wbaπa =
∑
b

Wabπb (3.3.2)

and by subtracting Waaπa on both the sides we get∑
b 6=a

Wbaπa =
∑
b 6=a

Wabπb . (3.3.3)

The left hand side of this equation gives the average probability of leaving the state a: if at time
t we have a probability πa of being in the state a, the probability that the state at time t + 1
is different from a is

∑
b 6=aWbaπa. The right hand side of the previous equation is instead the

average probability of reaching the site a: if we have a probability πb of being in b 6= a at time t,
the probability that the state at time t + 1 is a is

∑
b 6=aWabπb. The balance equation can thus

be interpreted as an equilibrium condition between the probabilities of leaving and of reaching the
generic state a.

The balance equation is the necessary condition that must be satisfied for πa to be the invariant
pdf of the Markov chain associated to the stochastic matrix W . Since this condition leaves much
freedom in the choice of W , it is customary to impose a much stronger requirement, known as the
“detailed balance condition”:

Wbaπa = Wabπb for any a, b ∈ Ω . (3.3.4)

By summing on b the detailed balance condition, and using
∑
bWba = 1, we immediately recover

the balance condition. The balance condition ensures that, for any state a ∈ Ω, the average
probability of leaving the state a is the same as the average probability of reaching the state a.
The detailed balance condition ensures instead that the average probability of the transition a→ b
is the same as the average probability of the transition b→ a for any a, b ∈ Ω.

Lemma 3.3.1. If the matrix W is associated to an irreducible Markov chain and satisfies the detailed balance
condition, then W is diagonalizable.

Proof. if πa is the invariant distribution of an irreducible Markov chain we have seen in Theorem 3.2.4 that πa > 0
for any a ∈ Ω, hence we can introduce the scalar product

(v, u) =
∑
a

πavaua , (3.3.5)

and we have
(v, tWu) =

∑
ab

πavaWbaub =
∑
ab

πbWabvaub = (tWv, u) , (3.3.6)

hence tW is Hermitian with respect to the scalar product ( , ), and thus diagonalizable. As a consequence also W
is diagonalizable.
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Algorithm 4 Metropolis algorithm to generate a Markov chain which satisfies the detailed balance
condition with pdf πa (F (x) = min(1, x) or F (x) = x/(1 + x)).

loop
a is the present state of the Markov chain
select b with probability Aba = Aab
select a random number in [0, 1) with uniform pdf
if r ≤ F (πb/πa) then

the next state of the Markov chain is b
else

the next state of the Markov chain is a
end if

end loop

In the following subsections we discuss two algorithms to build a Markov chain which satisfies
the detailed balance condition with respect to a given pdf πa.

3.3.1 The Metropolis(-Hastings) algorithm

The idea of the Metropolis algorithm [19] is somehow similar to that of the von Neumann ac-
cept/reject method discussed in Sec. 2.4: we start from a Markov chain with transition matrix
Aba, which does not have πa as invariant pdf, and introduce a correction step to generate a
Markov chain for which πa is an invariant distribution. Note that the final Markov chain is not
automatically irreducible and aperiodic; these properties has to be verified a posteriori.

The starting point is thus the stochastic matrix Aba, which is used to generate a trial state
b starting from the state a at time t, and it is assumed to be a symmetric matrix (Aab = Aba).
The state b is then accepted or rejected with an acceptance probability of the form F (πb/πa) if
b 6= a, where 0 ≤ F (x) ≤ 1 is a function to be determined, while it is always accepted if b = a. If
b is accepted, the state at time t+ 1 is b, otherwise the state remains a. The complete transition
probabilities are thus

Wba = AbaF

(
πb
πa

)
if b 6= a ,

Waa = Aaa +
∑
z 6=a

Aza

(
1− F

(
πz
πa

))
.

(3.3.7)

Note that the state at time t + 1 can be a for two different reasons: either the state a has been
selected by the Markov chain associated to the matrix A, and thus surely accepted, or a state z 6= a
has been selected and rejected. It is immediate to show that W is a stochastic matrix: clearly
Wba ≥ 0, moreover∑

b

Wba =
∑
b6=a

AbaF

(
πb
πa

)
+Aaa +

∑
z 6=a

Aza

(
1− F

(
πz
πa

))
=
∑
b

Aba = 1 . (3.3.8)

The detailed balance condition Wabπb = Wbaπa is trivially satisfied if b = a, while for b 6= a it
becomes

AabF

(
πa
πb

)
πb = AbaF

(
πb
πa

)
πa . (3.3.9)

Using the symmetry of A we thus obtain for F (x) the functional equation

F (x) = xF (1/x) . (3.3.10)

This equation has infinite solutions, but the two that are most commonly used are F1(x) =
min(1, x) and F2(x) = x

1+x . These functions can be easily shown to be solutions of the above
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Algorithm 5 Metropolis-Hastings algorithm to generate a Markov chain which satisfies the de-
tailed balance condition with pdf πa (F (x) = min(1, x) or F (x) = x/(1 + x)).

loop
a is the present state of the Markov chain
select b with probability Aba
select a random number in [0, 1) with uniform pdf
if r ≤ F [(Aabπb)/(Abaπa)] then

the next state of the Markov chain is b
else

the next state of the Markov chain is a
end if

end loop

functional equation, indeed

xF1

(
1

x

)
= xmin

(
1,

1

x

)
=

{
if x ≥ 1 : x · (1/x) = min(1, x) = F1(x)
if x < 1 : x · 1 = min(1, x) = F1(x)

, (3.3.11)

and

xF2

(
1

x

)
= x

1/x

1 + 1/x
=

1

1 + x
= F2(x) . (3.3.12)

Putting everything together we thus obtain the algorithm Alg. (4), and the accept/reject step
is often called Metropolis step or Metropolis filter. As already noted, the Metropolis algorithm
generates a Markov chain which leaves invariant the pdf πa, however we also have to check (using
the specific form of the matrix Aab and of the function F ) that the Markov chain generated in
this way is irreducible and aperiodic, in order to be sure that (W kp)a converges to πa for large k
values.

Nonsymmetric selection probabilities Aba can also be used, however in this case the previous
algorithm has to be slightly modified: the acceptance probability to be used in the accept/reject
step becomes

F

(
Aabπb
Abaπa

)
(3.3.13)

instead of F (πb/πa). In this case the algorithm is called Metropolis-Hastings algorithm [20], and
it is summarized in Alg. (5).

It is worth noting a peculiarity of the Metropolis(-Hastings) algorithm: the acceptance prob-
ability depends only on the ratio πb/πa, hence it is independent of the normalization of the pdf
πa. If this were not the case, this algorithm would be useless in statistical mechanics, since the
computation of the normalization of the Gibbs distribution (i. e., the partition function) is as
difficult as any other computation.

We now consider a simple example to illustrate the use of the Metropolis algorithm. Let f(x)
be a strictly positive (f(x) > 0 for any x) and integrable function, like, e. g., a Gaussian, and
define the pdf π(x) by

π(x) =
f(x)∫ +∞

−∞ f(y)dy
. (3.3.14)

If we want to sample the pdf π(x) a possible strategy is the following: given an arbitrary x0 (the
initial state of the Markov chain) and a value δ > 0, we can build a Markov chain as follows:

loop
xk is the present state of the Markov chain
select x̄ ∈ (xk − δ, xk + δ) with uniform pdf
select r ∈ [0, 1) with uniform pdf
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if r ≤ min[1, f(x̄)/f(xk)] then
xk+1 = x̄

else
xk+1 = xk

end if
end loop

The selection probability is

Ayx =

{
1/(2δ) if |x− y| < δ
0 elsewhere

, (3.3.15)

and is clearly symmetric. Since f(x) > 0 it is possible to reach any point in a finite number of
steps, hence the chain is irreducible, moreover it is possible to select x̄ = xk, hence the chain is
aperiodic4. In this way, after a number of iterations that is large with respect to τexp, this algorithm
asymptotically sample the pdf π(x). This is true for any value of the parameter δ, however the
numerical efficiency of the algorithm is not independent of δ, as we will discuss in Chap. 4. In
particular τexp does depend on δ.

It is possible to slightly improve the algorithm to sample π(x) which we have just seen, in order
to make it faster on typical CPUs. For this purpose we can substitute the block

select r ∈ [0, 1) with uniform pdf
if r ≤ min[1, f(x̄)/f(xk)] then

xk+1 = x̄
else

xk+1 = xk
end if

with the theoretically equivalent

y = f(x̄)/f(xk)
if y ≥ 1 then

xk+1 = x̄
else

select r ∈ [0, 1) with uniform pdf
if r ≤ min[1, y] then

xk+1 = x̄
else

xk+1 = xk
end if

end if

which is generically faster, since if y ≥ 1 we do not need to extract a random number, an operation
that is typically much slower than an if-else control.

3.3.2 The heat-bath algorithm

We now discuss a different way of generating a Markov chain with preassigned invariant pdf, which
can be applied whenever the state of the system is itself a set of several independent numbers which
characterize some properties of the system (natural examples are positions and momenta of the
particles in classical statistical mechanics). For reason that will become obvious this method is
called heat-bath in the physics literature, or Gibbs sampler in mathematics and statistics.

Let us denote the state of the system by the couple (a, α), where a is one of the numbers which
characterize the state (e. g. the position of one of the particles) and α collectively denotes all the

4These sentences would obviously require more care, since single points have zero measure. From the operative
point of view, R is represented on any physical CPU by a large but finite number of points, so this problem does
not exist.
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other numbers needed to uniquely specify the state. The conditional probability of a given α is

P (a|α) =
π(a,α)∑
a′ π(a′,α)

, (3.3.16)

which is independent of the absolute normalization of the pdf π(a, α). The elementary step of the
heath-bath algorithm consists in generating the new state (b, β) with probability

W(b,β)(a,α) = δαβP (b|α) , (3.3.17)

hence only the variable a is modified, sampling the conditional probability at fixed α, something
that is assumed to be feasible. The name of the algorithm is due to the fact that the part α of the
state acts as a heat-bath for the single variable a. Note that the heat-bath algorithm differs from
the Metropolis(-Hastings) in one important aspect: there is no rejection.

Let us verify that the transition probability W defined in this way satisfies the detailed balance
principle with respect to π(a,α). We have indeed

W(b,β)(a,α)π(a,α) = δαβP (b|α)π(a,α) = δαβ
π(b,α)π(a,α)∑

b′ π(b′,α)
,

W(a,α)(b,β)π(b,β) = δβαP (a|β)π(b,β) = δβα
π(a,β)π(b,β)∑

a′ π(a′,β)
= W(b,β)(a,α)π(a,α) ,

(3.3.18)

where the last equality is due to the presence of δαβ .
The Markov chain generated by the heat-bath algorithm is aperiodic since there is a nontrivial

possibility of remaining in the same state5. By randomly selecting at each iteration the number a
to be updated, the Markov chain also becomes irreducible, and still satisfies the detailed balance
condition (see the next subsection for more details on this point).

As a simple example of application of the heat-bath method let us consider a system whose
state is a vector of N real numbers x1, . . . , xN , and suppose that we want to sample the pdf

π(x1, . . . , xN ) ∝ exp

(
−
∏
i

x2
i

)
. (3.3.19)

If we denote by x
(k)
1 , . . . , x

(k)
N the state of the system at the k-th iteration, a MCMC heat-bath

algorithm to sample π(x1, . . . , xN ) is the following

1. select i ∈ {1, . . . , N} with uniform pdf

2. x
(k+1)
j = x

(k)
j if j 6= i, while x

(k+1)
i is generated by using the Box-Muller method (see Sec. 2.3)

to sample the Gaussian √
π

A
e−Ax

2

, A =
∏
j 6=i

(x
(k)
j )2 . (3.3.20)

3.3.3 Composition of Markov chains

Let us assume to have two different Markov chains, associated to the matrices W (1) and W (2). For
any 0 ≤ α ≤ 1 we can define the new matrix W by

Wab = αW
(1)
ab + (1− α)W

(2)
ab . (3.3.21)

Clearly Wab ≥ 0, moreover∑
a

Wab = α
∑
a

W
(1)
ab + (1− α)

∑
a

W
(2)
ab = α+ 1− α = 1 , (3.3.22)

hence W defined in this way is a stochastic matrix, which corresponds to the Markov chain whose
elementary step is given by the following two operations

5Once again, for continuous distribution this would require more care.

34



1. select r ∈ [0, 1) with uniform pdf,
2. if r < α apply W (1), else W (2).

The case α = 1/2 obviously corresponds to the case in which W (1) and W (2) are selected randomly
and with the same probability at each step.

It should be clear that if 0 < α < 1 and at least one between W (1) and W (2) is an irreducible
aperiodic Markov chain, then W is an irreducible aperiodic Markov chain, since we have a finite
probability of always selecting W (1) or W (2) in step 2. above. The same is true if, e. g., W (1) is
irreducible and W (2) is aperiodic. It is also immediate to verify that if W (1) and W (2) satisfy the
balance or the detailed balance condition, then the same is true for W .

Let us consider a different way in which two Markov chain can be composed: we can define W
by

Wab = (W (2)W (1))ab =
∑
c

W (2)
ac W

(1)
cb , (3.3.23)

and the elementary step of the associated Markov chain is

1. apply W (1) ,
2. apply W (2) .

In this case the two Markov chain are not stochastically “mixed”, but executed sequentially.
It is immediate to see that if W (1) and W (2) satisfy the balance condition with respect to the

pdf π then also W does the same, however if W (1) and W (2) satisfy the detailed balance condition
it is not generically true that W does the same. Indeed we have (in the equality (1) we use the
detailed balance condition for W (1))

Wabπb =
∑
c

W (2)
ac W

(1)
cb πb

(1)
=
∑
c

W (2)
ac W

(1)
bc πc ,

Wbaπa =
∑
c

W
(2)
bc W

(1)
ca πa

(1)
=
∑
c

W
(2)
bc W

(1)
ac πc ,

(3.3.24)

and there is in general no reason for the two expression to coincide. Since the condition that is
really necessary to ensure the validity of the MCMC algorithm is the balance condition, this is
typically not a problem, however it is something to keep in mind if for some reason detailed balance
is needed.

Even if W (1) and W (2) are associated to irreducible and aperiodic Markov chains, the compo-
sition W = W (2)W (1) can be associated to a reducible Markov chain, as can be explicitly seen in
the following example from [21]

W (1) =

 0 0 1/2
1 0 0
0 1 1/2

 , W (2) =

 0 1 0
0 0 1/2
1 0 1/2

 , (3.3.25)

W (2)W (1) =

 1 0 0
0 1/2 1/4
0 1/2 3/4

 . (3.3.26)

W (1) and W (2) are irreducible and aperiodic, but W (2)W (1) is clearly reducible. A sufficient, but

quite difficult to realize, condition for W to be aperiodic and irreducible is clearly W
(i)
ab > 0 for

any a, b ∈ Ω and for i = 1, 2.
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Chapter 4

Data analysis for MCMC

We have seen in Sec. 3.2 that if a stochastic matrix W is associated to an irreducible and aperiodic
Markov chain and pa is any pdf on the state space Ω, we have∑

a∈Ω

|(W kp)a − πa| ≤ Ae−k/τexp , (4.0.1)

where πa is the (unique) invariant pdf of the Markov chain.
If F : Ω→ R is a bounded function, and we are interested in computing the average value

〈F 〉 =
∑
a∈Ω

F (a)πa , (4.0.2)

we can estimate 〈F 〉 by using

F =
1

N

N∑
i=1

F (xi) , (4.0.3)

where xi are the N states obtained by evolving the Markov chain associated to W , starting from a
generic initial state x0. To verify that this is a reliable prescription, let us compute 〈F 〉s, where we
denote by 〈 〉s the average on the possible samples, i. e., the possible statistical outcomes of the
Markov chain evolution; in 〈 〉s the i-th draw of the sample is thus averaged with weight (W ip)a.

If we introduce the notation (W kp)a = πa + R
(k)
a , and use Eq. (4.0.1) and |F (a)| ≤ M for any

a ∈ Ω, we get

∣∣〈F 〉s − 〈F 〉∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

∑
a∈Ω

F (a)(W ip)a − 〈O〉

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

∑
a∈Ω

F (a)R(j)
a

∣∣∣∣∣ ≤
≤ 1

N

N∑
i=1

∑
a∈Ω

|F (a)| |R(j)
a | ≤

M

N

N∑
i=1

∑
a∈Ω

|R(j)
a | ≤

AM

N

N∑
i=1

e−i/τexp .

(4.0.4)

Moreover we have
N∑
i=1

e−i/τexp ≤
∞∑
i=1

e−i/τexp =
e−1/τexp

1− e−1/τexp
, (4.0.5)

hence, finally, ∣∣〈F 〉s − 〈F 〉∣∣ ≤ AM

N

e−1/τexp

1− e−1/τexp
. (4.0.6)

We thus see that F is a biased estimator for 〈F 〉, with a bias that vanishes as 1/N in the large
sample limit.
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To speed up the convergence of F to 〈F 〉 it is customary, in Monte Carlo simulations, to discard
the first Nth ≈ few τexp steps generated by the Markov Chain, which are the ones needed for the
system to “thermalize”. In this way the previous bound becomes

∣∣〈F 〉s − 〈F 〉∣∣ ≤ AM

N −Nth

N∑
i=Nth+1

e−i/τexp ≤ AMe−(Nth+1)/τexp

(N −Nth)(1− e−1/τexp)
. (4.0.7)

It is important to note that this thermalization removal procedure is very useful in practice,
however it is not needed from the purely theoretical point of view, nor it is really conclusive, since
a significantly smaller but nonvanishing 1/N bias remains. The fundamental point to stress is
however that a bias O(1/N) is negligible with respect to the Monte Carlo statistical error, which
approach zero as O(1/

√
N).

The 1/
√
N scaling of the statistical error should at this point sound reasonable, but it can not

be obtained from the simplest form of the Central Limit Theorem discussed in Sec. 1.1, since that
form assumed the draws to be independent, which is not the case for draws generated by using a
Markov chain. The effect of autocorrelation is discussed in the next section.

4.1 Coping with autocorrelations in MCMC

4.1.1 The integrated autocorrelation time(s)

Due to the presence of autocorrelations, we can not use the simple expression Eq. (1.1.8) for the
variance σ2

F
of the sample average F . We have to start again from the basic definition of σ2

F
:

σ2
F

=
〈
(F − 〈F 〉)2

〉
s

=

〈(
1

N

N∑
i=1

F (xi)− 〈F 〉

)2〉
s

=

=

〈(
1

N

N∑
i=1

(F (xi)− 〈F 〉)

)2〉
s

=
1

N2

N∑
i,j=1

〈δFi δFj〉s ,

(4.1.1)

where in the last step we introduced the notation δFi = F (xi) − 〈F 〉 and the average 〈 〉 is
computed with respect to the invariant pdf of the Markov chain.

Let us introduce σ2
F = 〈F 2〉−〈F 〉2, which for N large enough coincides with σ2

F = 〈F 2〉s−〈F 〉2s.
For independent draws we would have

(independent draws) 〈δFi δFj〉s = σ2
F δij , (4.1.2)

and Eq. (1.1.8) would follow. In the general case it is convenient to introduce the autocorrelation
function of F by

CF (i, j) =
〈δFi δFj〉s

σ2
F

, (4.1.3)

so we can rewrite σ2
F

in the form

σ2
F

=
σ2
F

N2

N∑
i,j=1

CF (i, j) . (4.1.4)

It is now convenient to discuss some properties of the autocorrelation function CF (i, j) in the
post-thermalization regime i, j � τexp, in which we can neglect the exponential corrections to the
asymptotic pdf πa. We have by definition

CF (i, i) = 1 , (4.1.5)
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and from

2δFiδFj = (δFi)
2 + (δFj)

2 − (δFi − δFj)2 = −(δFi)
2 − (δFj)

2 + (δFi + δFj)
2 (4.1.6)

we get (using 〈(δFi)2〉s = 〈(δFj)2〉s for i, j � τexp)

− 〈(δFi)2〉s ≤ 〈δFi δFj〉s ≤ 〈(δFi)2〉s , (4.1.7)

hence
− 1 ≤ CF (i, j) ≤ 1 . (4.1.8)

If we denote by z the state of the Markov chain at t = 0 and assume i > j, the probability of
having state a at time t = j and state b at time t = i is,

(W i−j)ba(W j)az = (W i−j)baπa + (W i−j)baR
(j)
a ' (W i−j)baπa , (4.1.9)

where in the last step we assumed once again j � τexp and neglected the exponentially small

correction due to R
(j)
a . Using this expression in the autocorrelation function we have

CF (i, j) =
1

σ2
F

〈δFi δFj〉s =
1

σ2
F

∑
ab

(W i−j)baπaδFa δFb = CF (i+ k, j + k) (4.1.10)

for any k ≥ 0. With analogous manipulations, assuming i, j � τexp, we also find

CF (i, j) = CF (j, i) , (4.1.11)

which together with the previous identity shows that CF (i, j) depends only on |i− j|. With a clear
abuse of notation we can thus write CF (i, j) = CF (|i− j|).

Let us now investigate the behavior of CF (i, j) for large |i − j| (and always i, j � τexp): if as
before we denote by z the state of the Markov chain at t = 0 and assume i > j, the probability of
having state a at time t = j and state b at time t = i is

(W i−j)ba(W j)az = (W i−j)baπa + (W i−j)baR
(j)
a ' (W i−j)baπa = πbπa +R

(i−j)
ba πa , (4.1.12)

hence

|〈δFi δFj〉s| =

∣∣∣∣∣∑
ab

πaπbδFa δFb +
∑
ab

R
(i−j)
ba πaδFa δFb

∣∣∣∣∣ ≤
≤
∑
ab

|R(i−j)
ba πaδFa δFb| = O(e−(i−j)/τexp) ,

(4.1.13)

where we used
∑
a πaδFa = 〈δF 〉 = 0 and the exponential convergence to πa of (W k)ab. We thus

finally have
|CF (i, j)| ≤ Ae−|i−j|/τexp . (4.1.14)

After this intermezzo on the properties of the autocorrelation function we can go back to our
original aim, the computation of σ2

F
. We have

σ2
F

=
1

N2

N∑
i=1

N∑
j=1

〈δFi δFj〉s =
σ2
F

N2

N∑
i=1

N∑
j=1

CF (i, j) =
σ2
F

N2

N∑
i=1

∑
j−i

CF (i, j)
(1)
'

' σ2
F

N2

N∑
i=1

∑
j−i

CF (|i− j|)
(2)
' σ2

F

N2

N∑
i=1

+∞∑
k=−∞

CF (|k|) =
σ2
F

N

+∞∑
k=−∞

CF (|k|) ,

(4.1.15)

where in (1) we neglected O(τexp/N
2) terms coming from 1 ≤ i, j . τexp, while in (2) we as-

sumed N � τexp and neglected terms exponentially small in N . If we now define the integrated
autocorrelation time of the observable F by

τ
(F )
int =

∞∑
k=1

CF (k) , (4.1.16)
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we have finally

σ2
F

=
σ2
F

N
(1 + 2τ

(F )
int ) . (4.1.17)

Pay attention to the fact that slightly different definitions of the integrated autocorrelation time
exist in the literature. The moral is that, when autocorrelations are present, the effective sample

size is reduced from N to N/(1 + 2τ
(F )
int ).

It is important to stress that τexp and τ
(F )
int are conceptually two very different objects. On

one hand τexp is the largest characteristic time of the MCMC evolution, and it is the typical time

needed to thermalize the system. On the other hand τ
(F )
int depends on the observable F , and it

is related to the timescale of the fluctuations of F in the thermalized part of the Markov chain
evolution. It is nevertheless possible to show that τexp is an upper bound of all the integrated
autocorrelation times.

We now show, following [6], that τ
(F )
int ≤ τexp when detailed balance is satisfied. We have seen in Lemma 3.3.1

that if a Markov chain satisfies the detailed balance, then the transpose of its associated stochastic matrix W is
Hermitian with respect to the scalar product

(u, v) =
∑
a

πauava . (4.1.18)

Using Eq. (4.1.10) we can write (assuming i > j)

〈δFi δFj〉s =
∑
ab

(W i−j)baπaδFa δFb = (δF, (tW )i−jδF ) , (4.1.19)

and thus

σ2
F = (δF, δF ) , CF (k) =

(δF, (tW )kδF )

(δF, δF )
. (4.1.20)

If we denote by v
(j)
a the j-th eigenvector of tW , from 〈δFi〉s = 0 it follows that δF has no component along the

eigenvector associated to the eigenvalue 1 (see Theorems 3.2.3-3.2.4), so δFa =
∑
j>0 c

(j)v
(j)
a (the j = 0 eigenvalue

is λ = 1) and from λj ∈ (−1, 1) if j 6= 0 we have

∞∑
k=1

(δF, (tW )kδF ) =

∞∑
k=1

∑
a,j

πa(c(j))2λkj (v
(j)
a )2 =

∑
a,j

πa(c(j))2
λj

1− λj
(v

(j)
a )2 ≤

Λ′

1− Λ′
(δF, δF ) , (4.1.21)

where Λ′ = maxj>0 λj and we used the fact that x/(1− x) is an increasing function on (−1, 1). We thus have (see
Eq. (4.1.16))

τ
(F )
int ≤

Λ′

1− Λ′
, (4.1.22)

and clearly (see Eq. (3.2.23))

Λ′ ≤ max
j>0
|λj | = e−1/τexp , (4.1.23)

hence

τ
(F )
int ≤

e−1/τexp

1− e−1/τexp
. (4.1.24)

Moreover the last expression is ≤ τexp and, when τexp � 1, it approaches τexp.

We have computed σ2
F

, and to conclude this section we have to discuss the statistical distribution

of F . We thus recall one of the possible versions of the Central Limit Theorem for correlated
random variables (see, e. g., [4] §5.27, or [14] §8.3 for a different formulation), which can be stated
as follows: if X1, X2, . . . is a succession of dependent random variables, whose autocorrelation
function 〈XiXi+k〉−〈Xi〉〈Xi+k〉 vanishes O(k−5), with 〈Xi〉 = 0 and finite 〈X12

i 〉, then the variance
of SN = X1 + · · ·+XN satisfies

1

N
σ2
SN
→ σ2 = 〈X2

1 〉+ 2

∞∑
k=1

〈X1X1+k〉 , (4.1.25)

and if σ > 0 then SN/(
√
Nσ) converges to a normal Gaussian distribution. The outcome of this

theorem is thus that in a MCMC simulation, in the large sample limit, F is distributed with a
Gaussian pdf and variance given by Eq. (4.1.17).
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4.1.2 Binning/blocking

It is possible to directly use Eq. (4.1.17) to estimate σ2
F

, however there are some subtleties that
have to be taken into account when doing this, which are discussed in [22] (see also [23] and, for
some background material, [24] §5.3, 6.2). For this reason a more indirect but straightforward
procedure is usually adopted, which goes under the names of binning or blocking.

Our aim is to numerically estimate the variance of F defined by

F =
1

N

N∑
i=1

F (xi) , (4.1.26)

where the xis are obtained by evolving a Markov chain. Let k be a positive natural number and
let us assume, for the sake of the simplicity, that k divides N ; if this is not the case it is sufficient
to consider the first1 kbN/kc elements of the sample. We define a new sample composed of N/k
elements by averaging blocks of size k as follows:

F
(k)
i =

1

k

(
F (xki+1) + F (xki+2) + · · ·+ F (xki+k)

)
, i = 1, . . . , N/k , (4.1.27)

and we obviously have F = F (k), where

F (k) =
1

N/k

N/k∑
i=1

F
(k)
i . (4.1.28)

If we compute the variance of F (k) as if the F
(k)
i elements were independent, using Eq. (1.1.9),

we get (assuming N � k)

σ2

F (k)
=

1

N/k

1

N/k − 1

N/k∑
i=1

(
F

(k)
i − F

)2

' k2

N2

N/k∑
i=1

1

k2

(
δFki+1 + · · ·+ δFki+k

)2
, (4.1.29)

where δFj = F (xj)− F . Moreover we have

(
δFki+1 + · · ·+ δFki+k

)2
=

k∑
j=1

(δFki+j)
2 + 2

k−1∑
j=1

δFki+jδFki+j+1+

+ 2

k−2∑
j=1

δFki+jδFki+j+2 + · · ·+ 2δFki+1δFki+k ,

(4.1.30)

and if k is large enough we can rewrite these sum as sample averages defining the correlation
function, hence (to be formally correct we should write CF for the sample estimator of CF )(

δFki+1 + · · ·+ δFki+k
)2

= kσ2
F + 2(k − 1)σ2

FCF (1) + 2(k − 2)σ2
FCF (2) + · · · . (4.1.31)

Since the correlation function CF (j) decays exponentially for large j, if k is large enough (in
the worst case large with respect to τexp) we have

(
δFki+1 + · · ·+ δFki+k

)2 ' kσ2
F

1 + 2

∞∑
j=1

CF (j)

 = kσ2
F (1 + 2τ

(F )
int ) . (4.1.32)

Using this expression in Eq. (4.1.29) we finally get, if k is large enough

σ2

F (k)
=

k2

N2

N/k∑
i=1

1

k2
kσ2

F (1 + 2τ
(F )
int ) =

σ2
F

N
(1 + 2τ

(F )
int ) , (4.1.33)

1For x ∈ R the floor function bxc is the largest n ∈ Z such that n ≤ x.
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Algorithm 6 Possible MCMC algorithm to sample a normal Gaussian distribution. The starting
point x0 has been fixed to 5 to clearly visualize the thermalization process.

x0 = 5
loop

select x̄ ∈ (xk − δ, xk + δ) with uniform pdf
y = exp(− 1

2 x̄
2 + 1

2x
2
k)

if y ≥ 1 then
xk+1 = x̄

else
select r ∈ [0, 1) with uniform pdf
if r ≤ min[1, y] then

xk+1 = x̄
else

xk+1 = xk
end if

end if
end loop

which coincides with Eq. (4.1.17) found in the previous section.
We thus have a simple operative way of computing σ2

F
(i. e. the sample estimate of σ2

F
): for

several k values define the blocked averages as in Eq. (4.1.27), and compute the naive sample
variances σ2

F (k)
, as if the blocked variables were independent. The values σ2

F (k)
, as a function of k,

will saturate for large k at a value that is the correct estimate of σ2
F

. Note that this method works

well when the value of k for which σ2
F

saturates is small enough with respect to the sample size

N , otherwise the error of σ2
F

get large, making the estimated values oscillate widely as a function
of k.

4.1.3 An explicit example

We now present a complete example of MCMC generation and data analysis for the simple case
already discussed in Sec. 3.3.1, i. e. for the sampling of a one dimensional distribution. For the
sake of the simplicity we consider the case of the normal Gaussian distribution.

A possible MCMC algorithm to sample a normal Gaussian distribution is shown in Alg. (6),
and the parameters of this algorithm are the starting point x0 and the value of δ. We chose x0 = 5
as the starting point, in order to better visualize the thermalization process, since random points
extracted from the Gaussian pdf will most likely lie in [−2, 2]. For what concern δ we will use
several values, in order to investigate how the choice of δ affects the efficiency of the algorithm,
measured by the statistical accuracy that can be achieved at fixed CPU time. We thus generated,
using the algorithm Alg. (6), 108 draws for several values of δ in the range between 0.1 and 50
(which required about 25s of CPU time for each δ).

In Fig. 4.1 the typical behavior of the beginning of a MC history is shown, for δ = 1 and δ = 0.2:
both the histories start from x0 = 5, then they drift toward zero (which is the average of the pdf
we are sampling) and start to oscillate, with oscillations whose typical amplitude is related to the
standard deviation of the invariant pdf (which in the present case is 1). Already looking at this
figure it should be clear that data obtained by using δ = 1 are less correlated than data generated
using δ = 0.2, hence δ = 1 is numerically more efficient.

In Fig. 4.2 (left) we show the estimated autocorrelation function

Cx(n) =
〈xixi+n〉s
〈x2
i 〉s

(4.1.34)

of the draws xn, computed after removing the first 106 draws of each sample (in this way we are
significantly overestimating the thermalization time, but we had enough statistics not to worry
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Figure 4.1: Two Monte Carlo histories obtained by performing 1000 loops of the algorithm Alg. (6),
for δ = 1 and δ = 0.2.
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Figure 4.2: (left) Autocorrelation function Cx(n) of the numbers obtained using the algorithm
Alg. (6) for several values of the parameter δ. (right) The fitted exponential autocorrelation time
as a function of δ.

about it). Autocorrelation functions are well described by a simple exponential behavior starting
practically from n = 0, and it is thus simple to estimate τexp by performing a fit. Note however
that the values of the autocorrelation function for different time separations have been estimated
from the same sample, hence they are correlated. For this reason a simple uncorrelated fit pro-
vides a reasonable estimate of τexp but can not be used to estimate its uncertainty. If a reliable
uncertainty is needed a correlated fit has to be used. In Fig. 4.2 (right) we report the exponential
autocorrelation time estimated for all the valued of δ simulated. As was already clear from Fig. 4.2
(left) τexp is very large for small values of δ, it decreases by increasing δ until it reaches a minimum
for δ ≈ 4 (where τexp ≈ 2), then it increases again.

This behavior is quite typical and can be easily explained: for δ � 1 the trial state x̄ is always
very close to the previous state xk (the typical scale of the “distance” being the standard deviation
of the pdf we are sampling, in this case 1), so it will be almost always accepted, but a large number
of steps will be needed to decorrelate, hence τexp is large. Since almost every update is accepted,
we can approximate the motion of the state by a random walk, and in a random walk the typical
distance traveled in a time t is proportional to

√
t. We thus expect τexp to scale O(δ−2) for δ � 1,

since O(δ−2) steps are needed to travel an O(1) distance in the configuration space. By increasing
δ the acceptance probability decreases, but as far as δ ≈ 1 its scaling with δ is still quite mild,
however for δ ≈ 1 two consecutive draws are almost independent of each other, since their typical
distance is of the same order of the standard deviation of the pdf. Hence τexp reaches a minimum
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for δ ≈ 1. If we consider the δ � 1 limit we find a situation that is the dual of that found for
δ � 1: two consecutive draws will be practically independent from each other, however it will be
very difficult for a draw to be accepted, since it is generated uniformly in (approximately) (−δ, δ),
and the pdf is concentrated in (−1, 1). The typical acceptance probability will scale as 1/δ and thus
we expect τexp = O(δ) for δ � 1, since one draw every O(δ) is accepted. Both these asymptotic
behaviors are consistent with data reported in Fig. 4.2 (right).

The acceptance probabilities of the Metropolis accept/reject step for the simulations performed
at the different values of δ are the following

δ 50 20 10 5 4 3 1 0.5 0.1
acc. prob. 0.032 0.080 0.160 0.317 0.390 0.492 0.804 0.901 0.980

and a general rule of thumb is that the acceptance probability should be in the range 30% .
acc. prob. . 70% for the exponential autocorrelation time to be reasonable. For computation-
ally intensive problems it is however in general convenient to perform a preliminary study of the
behavior of τexp as a function of the simulation parameters, in order to optimize the resource usage.

For the simple case of MCMC sampling of the normal Gaussian the previous reasoning can be easily made
quantitative in the case δ � 1 [25]: we have seen that the autocorrelation Cx(n) is exponential practically starting
from n = 0, and the autocorrelation after one step is (remember that σ2

x = 1)

Cx(1) = 〈xixi+1〉s =

∫ ∞
−∞

dx
√

2π
e−

1
2
x2
∫ +δ

−δ

dy

2δ
x [(x+ y)Pacc(x→ y) + x(1− Pacc(x→ y))] =

=
1

2δ
√

2π

∫ +∞

−∞
dxe−

1
2
x2
∫ +δ

−δ
dy x(x+ yPacc(x→ y)) =

= 1 +
1

2δ
√

2π

∫ +∞

−∞
dxe−

1
2
x2
∫ +δ

−δ
dy xyPacc(x→ y) ,

(4.1.35)

where Pacc(x→ y) is given by

Pacc(x→ y) = min

[
1, exp

(
−

1

2
(x+ y)2 +

1

2
x2
)]

. (4.1.36)

If we consider the limit δ � 1 we can consider only the cases in which x and x+ y have the same sign. If they are
both positive we can approximate (since |y| ≤ δ � 1)

Pacc(x→ y) '
{

1 y < 0
1− xy y > 0

, (4.1.37)

hence ∫ +δ

−δ
dy xyPacc(x→ y) '

∫ 0

−δ
xydy +

∫ δ

0
xy(1− xy)dy = −x2

δ3

3
. (4.1.38)

The same result is obtained also when x and x+ y are both negative, thus we obtain

Cx(1) ' 1−
1

2δ
√

2π

δ3

3

∫ ∞
−∞

x2e−x
2/2dx = 1−

δ2

6
, (4.1.39)

and using Cx(n) = e−n/τexp for n = 1 and τexp � 1 we finally get τexp ' 6/δ2, which is also shown in Fig. 4.2

(right).

We now consider the numerical evaluation of the moments of the normal Gaussian pdf. In
particular we consider for example 〈x〉, 〈x2〉 and 〈x4〉, whose values are obviously analytically known
and are 0, 1, and 3, respectively. The first step for estimating these numbers is the computation of
the corresponding sample averages by using the Monte Carlo samples generated (also in this case
we discard the first 106 draws).

The nontrivial (but fundamental!) part is to estimate also the variance of these sample averages,
which requires the use of blocking, due to the autocorrelation of MC data. For several values of
the block size k we thus have to build the blocked samples, as in Eq. (4.1.27), using the functions
F (x) = x, F (x) = x2 and F (x) = x4. Then we have to compute the naive (i. e., neglecting
autocorrelations) standard deviation of the average of these blocked samples by using Eq. (4.1.29),
and study the dependence of the result on the block size.
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Figure 4.3: (left) Blocking analysis of σx for the output of the algorithm Alg. (6) for several values
of the parameter δ. (right) Blocking analysis of σx2 for the output of the algorithm Alg. (6) for
several values of the parameter δ.

The outcomes of this analysis are shown in Fig. (4.3) for some values of δ and for the cases of
the first and of the second momentum (the results for the fourth one are completely analogous).
In both the cases the standard deviation of the mean of the blocked variables grows as a power-
law in the block size when the block size is not large enough, then it saturates and becomes
approximately independent of the block size. This plateau value, as discussed in Sec. 4.1.2, is the
correct estimation of the error to be associated to the sample average. Note that in the present
case the gathered statistic is very large with respect to the exponential autocorrelation time (in
the worst case τexp is ≈ 620, while the sample size after thermalization is 0.99 × 108), so the
curves shown in Fig. (4.3) are very smooth. In more realistic cases oscillations are present, and
the plateau is not an horizontal straight line, but rather a line which oscillate randomly around
a constant value. The amplitude of these oscillations is related the error to be associated to the
standard error of the average.

Using the plateau values we obtain the estimates reported in Tab. (4.1) for the first, second
and fourth momenta of the normal Gaussian distribution, which are obviously consistent with
theoretical expectations. By looking a these values we can see that, since the gathered statistics

are the same for all the cases, the integrated autocorrelation times τ
(F )
int have the same behavior

of the exponential autocorrelation time τexp, being larger for very small and very large values of

δ. In case an estimate of τ
(F )
int is needed, it can be obtained from Eq. (4.1.33): 1 + 2τ

(F )
int is given

by the ratio of two σ2

F (k)
values, one computed using a large block size k (i. e., a block size which

corresponds to the plateau) and the other computed for k = 1.

δ 〈x〉 〈x2〉 〈x4〉
50 -0.00056(70) 0.9998(11) 2.9970(67)
20 0.00058(42) 0.99853(68) 2.9923(41)
10 0.00024(29) 0.99948(47) 2.9975(28)
5 0.00040(20) 0.99943(32) 2.9959(20)
4 -0.00006(19) 0.99976(29) 3.0005(19)
3 -0.00016(20) 1.00000(28) 2.9999(20)
1 -0.00008(40) 1.00013(45) 3.0004(32)
0.5 0.00004(75) 1.00008(80) 3.0009(54)
0.1 -0.0030(35) 1.0009(35) 3.002(22)

Table 4.1: Numerical results obtained by using Alg. (6) to extract 108 draws.
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4.2 Estimating secondary observables

We have considered up to now the so called “primary” observables, i. e., those observables that
can be written as average values. There is, however, also another important class of observables,
the so called “secondary” observables, which are functions of one or more average values, like e. g.

U4 =
〈x4〉
〈x2〉2

. (4.2.1)

A natural estimator for this quantity is obviously

U4 =
x4(
x2
)2 , (4.2.2)

however, when using such an expression, we have to face two different problems. The first problem
is related to the presence of a bias in the previous estimator, however it is easily seen that such a
bias is O(1/N) and hence subdominant with respect to the statistical errors; for this reason this
theoretical problem is practically irrelevant in MC simulations. The second problem is instead
more serious, and it is related once again to the estimation of the uncertainty. Using blocking
we are taking into account the autocorrelations of data generated using the MCMC approach,
however in computing the uncertainty to be associated with Eq. (4.2.2) we face a new problem.
Had x4 and x2 be computed using two independent MCMC we could combine their uncertainties
by using standard error propagation. However in standard circumstances both these quantities are
estimated by using the same statistical sample, hence their statistical uncertainties are correlated.

Let us start by discussing the first problem. If we are interested in evaluating F (〈x〉), we can
estimate the bias of the estimator F (x) using the following reasoning. The typical fluctuation of x
around 〈x〉 is σx/

√
N , where σx is the standard deviation of the variable x and N is the number

of (independent) samples used to estimate x. If N is large enough we can use a Taylor expansion
to get

〈F (x)〉 = 〈F (〈x〉)〉+ 〈F ′(〈x〉)(x− 〈x〉)〉+
1

2
〈F ′′(〈x〉)(x− 〈x〉)2〉+ · · · '

' F (〈x〉) +
1

2
F ′′(〈x〉)σ2

x = F (〈x〉) +
1

2
F ′′(〈x〉)σ

2
x

N
,

(4.2.3)

where σ2
x is the variance of the sample average x, and in the last step we used Eq. (1.1.8). As

anticipated, the bias is O(1/N) and thus negligible, in the large sample limit, with respect to the
statistical error O(1/

√
N).

We now discuss the more serious problem of correlations: let A and B be two primary ob-
servables and let us suppose that we need to evaluate F (〈A〉, 〈B〉) (the discussion can be oviously
extended to more general cases). The uncertainty to be associated to F (A,B), is the square root
of the variance of the stochastic variable F (A,B), which is defined as usual by

〈F (A,B)2〉 − 〈F (A,B)〉2 . (4.2.4)

Proceeding as for the case of the bias, we can approximate

F (A,B) ' F + F ′AδA+ F ′BδB +
1

2
F ′′ABδA δB +

1

2
F ′′AA(δA)2 +

1

2
F ′′BB(δB)2 , (4.2.5)

where all functions are computed at 〈A〉, 〈B〉 and we introduced the notation δA = A− 〈A〉, and
analogously for δB. We thus have

〈F (A,B)〉2 ' F 2 + F
(
F ′′AB〈δAδB〉+ F ′′AA〈(δA)2〉+ F ′′BB〈(δB)2〉

)
, (4.2.6)

and
〈F (A,B)2〉 ' F 2 + (F ′A)2〈(δA)2〉+ (F ′B)2〈(δB)2〉+ 2F ′AF

′
B〈δA δB〉+

+ F
(
F ′′AB〈δAδB〉+ F ′′AA〈(δA)2〉+ F ′′BB〈(δB)2〉

)
,

(4.2.7)
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from which finally

〈F (A,B)2〉 − 〈F (A,B)〉2 = (F ′A)2〈(δA)2〉+ (F ′B)2〈(δB)2〉+ 2F ′AF
′
B〈δA δB〉 . (4.2.8)

If the fluctuations of A and B are independent, 〈δAδB〉 = 0, we recover the standard formula of
the error propagation, however this is the correct expression to be used also when correlations are
present.

If we have no information on the covariance 〈δAδB〉 we can only put an upper bound on the
true uncertainty: using the Schwartz inequality

|〈δAδB〉| ≤
√
〈(δA〉

√
〈(δB〉 (4.2.9)

we have indeed

〈F (A,B)2〉 − 〈F (A,B)〉2 ≤
(
|F ′A|

√
〈(δA)2〉+ |F ′B |

√
〈(δB)2〉

)2

. (4.2.10)

The use of this formula, however, largely overestimates the error in typical cases. Let us consider
the example discussed in Sec. 4.1.3 and the secondary observable 〈x4〉/〈x2〉2 for δ = 50: using data
in Tab. (4.1) we get for the error the upper bound (F (x1, x2) = x1/x

2
2, and F ′A = 1, F ′B = −6

when using the average values x1 = 〈x4〉 = 3 and x2 = 〈x2〉 = 1)

σU4
≤ 0.0067 + 6× 0.0011 = 0.0133 . (4.2.11)

If we wrongly assume that the errors of numerator and denominator are independent we get instead

σU4

?
=
√

0.00672 + 62 × 0.00112 ' 0.0094 . (4.2.12)

Finally, the true uncertainty, obtained by using the methods discussed in the following two sub-
sections, is

σU4
= 0.0032 , (4.2.13)

and the final estimate is U4 = 2.9983(32). This happens because the fluctuations of x4 and x2 are
obviously strongly correlated, and in this case, with 2F ′AF

′
B = −12, we can estimate a posteriori

〈δAδB〉 ' 0.88

√
〈(δA〉

√
〈(δB〉 . (4.2.14)

In principle nothing prevents us from using Eq. (4.2.8) to asses the uncertainty of F (A,B), since
the covariance 〈δAδB〉 can be straightforwardly estimated. The problem with Eq. (4.2.8) is that
it requires the computation of a significant number of derivatives and covariances if the function
F depends on several primary observables, and its numerical implementation thus becomes quite
baroque. To avoid these problems we can use the so called “plug-in estimators”, which are defined
by an algorithm in which the specific form of F enters only parametrically, without the need of
computing the derivatives and covariances appropriate for F . In practice we are trading the man
power need to code derivatives and covariances for the CPU power needed to execute these plug-in
estimators.

Since our principal aim is the computation of the statistical error to be associated to secondary
observables, in the following subsection we initially assume to be able to generate uncorrelated
samples. We will then comment on how to take autocorrelations into account.

4.2.1 Bootstrap

We are interested in evaluating a secondary observable F which depends on several primary observ-
ables, for example U4 = 〈x4〉/〈x2〉2. The sample estimator of this quantity is F , i. e. the function
F evaluated on the sample averages of the primary observables, for example U4 = x4/(x2)2, and let
us assume for the moment that the different draws are statistically independent from each other.
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Algorithm 7 Bootstrap estimation of the uncertainty of U4 = 〈x4〉/〈x2〉2 for iid draws.

Require: xi for i = 1, . . . , N
for r = 1, . . . , R do

S2 = 0, S4 = 0
for i = 1, . . . , N do

generate j ∈ {1, . . . , N} with uniform pdf
S2 ← S2 + x2

j

S4 ← S4 + x4
j

end for
x2 = S2/N
x4 = S4/N

U4
(r)

= x4/x2
2

end for
compute the sample variance of the mean of {U4

(r)}r=1,...,R, as in Eq. (4.2.15).

To compute the variance σ2
F

of the estimator F , in principle, one could use the following
strategy: perform R independent Monte-Carlo simulations, generating N draws in each case, and
estimate σ2

F
by using the sample variance σ2

F
defined by (see Eq. (1.1.7))

σ2
F

=
R

R− 1

 1

R

R∑
j=1

(F
(j)

)2 −

 1

R

R∑
j=1

F
(j)

2
 , (4.2.15)

where F
(i)

is the value of the sample estimator F computed by using the i-th sample. This method
is in general unfeasible, since to evaluate the uncertainty of the estimator evaluated on a given
sample we need to generate many more samples, using an algorithm that is in general nontrivial.

A way to apply Eq. (4.2.15) while minimizing the overhead of generating new samples is to
use what is called the plug-in principle, which consists in approximating a probability distribution
function with the empirical distribution of a sample of observations drawn from it. In practice: if
our sample consists of N independent elements, we can create a bootstrap sample by randomly
extracting N draws (with uniform pdf and with replacement) from this sample. The important
point to note is that the elements of the bootstrap sample have the same statistical distribution of
those of the original one. By resampling in this way the original sample {xi}i=1,...,N we can thus

generate R bootstrap samples {x(r)
i }i=1,...,N (the index r = 1, . . . , R identifies the sample), that can

be used to evaluate the sample averages of the primary observables and obtain R estimates F
(r)

,
by which we can evaluate σ2

F
using Eq. (4.2.15). It is fundamental that the same bootstrap sample

is used to compute all the primary observables needed for evaluating F ; correlations are instead
lost if we use different bootstrap samples for different primary observables. A simple scheme of a
bootstrap computation is reported in Alg. (7), and many more details on the bootstrap and on its
statistical basis can be found, e. g., in [26] §10-11 and [27] §5-6-7.

Let us now finally consider the case of a Markov chain, in which different draws are not inde-
pendent from each other. The simplest way to take into account autocorrelations in the bootstrap
method is to divide the sample in N/k blocks (k is the block-size and we are assuming N to
be divisible by k), then generate R bootstrap samples by randomly selecting, with uniform pdf
and with replacement, N/k blocks each time. As for the case of primary observables discussed in
Sec. 4.1.2, the whole procedure has to be repeated for increasing values of the block-size k until
saturation is reached.
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4.2.2 Jackknife

The idea of the jackknife method is analogous to that of the bootstrap, with the only difference
that mock samples are not generated stochastically, but deterministically. Let us once again start
by discussing the case of independent draws x1, . . . , xN .

Jackknife samples are generated by removing a single drawn from the original sample, so we
get N samples of N − 1 draws, which provide N estimates of the primary observables2 〈gα(x)〉:

gα (i) =
1

N − 1

∑
j 6=i

gα(xi) , j = 1, . . . , N , (4.2.16)

from which we get N estimates F(i) = F (gα (i)) of the secondary observable. If we denote by FJ
the sample composed by the N estimates F(i), the quantity

F 2
J − FJ

2
=

1

N

N∑
i=1

F 2
(i) −

(
1

N

N∑
i=1

F(i)

)2

(4.2.17)

estimates the square fluctuation of F induced by changing the sample by removing an element.
Since all the elements of the sample enter in a symmetric way in the computation of F , and the
draws are independent from each other, we naively expect

σ2
F
' N

(
F 2
J − FJ

2
)
. (4.2.18)

To show that this expectation is indeed true we can rewrite the jackknife estimates gα (i) of the primary
observables as follows:

gα (i) =
1

N − 1

∑
j 6=i

gα(xi) = 〈gα〉+
1

N − 1

∑
j 6=i

δgα j , (4.2.19)

where we introduced the notation δgα j = gα(xj) − 〈gα(x)〉. Since the typical value of gα (i) − 〈gα〉 is σ2
α/
√
N we

can use the approximation

F(i) = F

〈gα〉+
1

N − 1

∑
j 6=i

δgα j

 '
' F +

∑
α

F ′α
1

N − 1

∑
j 6=i

δgα j +
1

2

∑
αβ

F ′′αβ
1

(N − 1)2

∑
j 6=i

∑
k 6=i

δgα jδgβ k ,

(4.2.20)

where F and its derivatives are computed in 〈gα〉. Analogously we have, using gα = 〈gα〉+ 1
N

∑N
i=1 δgα i,

F = F (gα) ' F +
∑
α

F ′α
1

N

∑
j

δgα j +
1

2

∑
αβ

F ′′αβ
1

N2

∑
j

∑
k

δgα jδgβ k . (4.2.21)

Using 〈δgα i〉 = 0 and 〈δgα jδgβ k〉 = Cαβδjk (where Cαβ is the covariance matrix), we get from the second
expression the identities

〈F 〉 ' F +
1

2N

∑
αβ

F ′′αβCαβ , (4.2.22)

and

〈F 2〉 ' F 2 +
1

N

∑
αβ

F ′αF
′
βCαβ +

F

N

∑
αβ

F ′′αβCαβ , (4.2.23)

from which

σ2
F

= 〈F 2〉 − 〈F 〉2 =
1

N

∑
αβ

F ′αF
′
βCαβ . (4.2.24)

If we use instead the expression for F(i) we get

〈F(i)F(j)〉 ' F 2 +
1

(N − 1)2

∑
αβ

F ′αF
′
βCαβ

∑
k 6=i

∑
` 6=j

δk` +
F

(N − 1)2

∑
αβ

F ′′αβCαβ
∑
k 6=i

∑
6̀=i
δk` , (4.2.25)

2We denote by greek indices the ones used for labling the primary observables on which the secondary observable
depends. Latin indices will instead be used to label the different draws.
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Algorithm 8 Jackknife estimation of the uncertainty of U4 = 〈x4〉/〈x2〉2 for iid draws.

Require: xi for i = 1, . . . , N
S2 = 0, S4 = 0
for i = 1, . . . , N do

S2 ← S2 + x2
i

S4 ← S4 + x4
i

end for
for i = 1, . . . , N do

(x2)(i) = (S2 − x2
i )/(N − 1)

(x4)(i) = (S4 − x4
i )/(N − 1)

(U4)(i) = (x4)(i)/((x
2)(i))

2

end for
compute σ2

U4
using Eq. (4.2.32) with F(i) = (U4)(i).

and from the identities ∑
k 6=i

∑
6̀=i
δk` =

∑
k 6=i

(∑
`

δk` − δki

)
=
∑
k 6=i

(1− δki) = N − 1 (4.2.26)

and ∑
k 6=i

∑
6̀=j
δk` =

∑
k 6=i

(∑
`

δk` − δkj

)
=
∑
k 6=i

(
1− δkj

)
= N − 1−

∑
k 6=i

δkj

= N − 1−
(∑

k

δkj − δij

)
= N − 2 + δij ,

(4.2.27)

we finally have

〈F(i)F(j)〉 ' F 2 +
N − 2 + δij

(N − 1)2

∑
αβ

F ′αF
′
βCαβ +

F

N − 1

∑
αβ

F ′′αβCαβ , (4.2.28)

and in particular

〈F 2
(i)〉 ' F

2 +
1

N − 1

∑
αβ

F ′αF
′
βCαβ +

F

N − 1

∑
αβ

F ′′αβCαβ . (4.2.29)

We can now evaluate

〈F 2
J − FJ

2〉 =
1

N

∑
i

〈F 2
(i)〉 −

1

N2

∑
ij

〈F(i)F(j)〉 , (4.2.30)

which using the previously written expressions becomes

〈F 2
J − FJ

2〉 =

(
1

N − 1
−

N − 2

(N − 1)2
−

1

N(N − 1)2

)∑
αβ

F ′αF
′
βCαβ =

=
1

N(N − 1)

∑
αβ

F ′αF
′
βCαβ =

1

N − 1
σ2
F
,

(4.2.31)

where in the last step we used Eq. (4.2.24). We have thus found that a sample estimator of σ2
F

is

σ2
F

= (N − 1)
(
F 2
J − FJ

2
)

= (N − 1)(FJ − FJ )2 =
N − 1

N

∑
i

(
F(i) − FJ

)2
. (4.2.32)

A summary of the jackknife method to estimate the uncertainty of B4 = 〈x2〉/〈x2〉2 is shown in
Alg. (8), where it is also shown that to compute all the jackknife samples it is sufficient to scan the
original sample only twice. For this reason the jackknife is computationally more efficient than the
bootstrap (which requires at least O(100) scans), howerver to use the jackknife method observables
have to be reasonably smooth functions of the sample. If this is not the case jackknife can provide
wrong estimates of the variance (larger than the real ones), as it famously happens for the case of
the sample median. More details on the jackknife and its relation with bootstrap can be found,
e. g., in [26] §10, [27], see also [28].

When autocorrelations are present in the sample, we can take them into account by dividing
the sample in N/k blocks of size k (we are assuming N to be divisible by k), then generating
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jackknife samples by removing the i-th block instead of the i-th draw. In this case we thus have

gα (i) =
1

N − k
∑

j 6∈i−th block

gα(xj) (4.2.33)

and

σ2
F

= (N/k − 1)
(
F 2
J − FJ

2
)

= (N/k − 1)(FJ − FJ)2 =
N − k
N

N/k∑
i=1

(
F(i) − FJ

)2
. (4.2.34)

51



52



Part II

Statistical mechanics and phase
transitions

53



Chapter 5

*The Ising model: physics and
simulations

54



Chapter 6

*Other models and algorithms

55



Part III

The study of path-integrals in
quantum mechanics

56



Chapter 7

*Quantum statistical mechanics
and path-integrals

57



Chapter 8

*MCMC in quantum mechanics:
thermodynamics

58



Chapter 9

*MCMC in quantum mechanics:
spectrum

59



Chapter 10

*Path-integrals with nontrivial
topology

60



Chapter 11

*Identical particles

61



Part IV

The study of path-integrals in
quantum field theories

62



Chapter 12

*Statistical quantum field theory
and path-integrals

63



Chapter 13

*MCMC in quantum field theory:
thermodynamics

64



Chapter 14

*MCMC in quantum field theory:
spectrum

65



Chapter 15

*The Hybryd Monte Carlo
algorithm

66



Chapter 16

*Gauge field theories

67



Chapter 17

*Two dimensional gauge field
theories

68



Bibliography

[1] S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto and A. D. Sokal. “Extrapolating
Monte Carlo Simulations to Infinite Volume: Finite-Size Scaling at ξ/L � 1”. Phys. Rev.
Lett., 74, (1995) 2969.

[2] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. John Wiley
& Sons (1968).

[3] W. Feller. An Introduction to Probability Theory and Its Applications, volume 2. John Wiley
& Sons (1970).

[4] P. Billingsley. Probability and Measure. John Wiley & Sons (1995).

[5] A. I. Khinchin. Mathematical foundations of statistical mechanics. Dover Publications (1949).

[6] A. D. Sokal. “Monte Carlo Methods in Statistical Mechanics: Foundations and New Algo-
rithms”. In C. DeWitt-Morette, P. Cartier and A. Folacci (Editors), “Functional Integration.
Basics and applications”, Springer (1997).

[7] D. H. Lehmer. “Mathematical methods in large-scale computing units”. In H. H. Aiken
(Editor), “The Annals of the Computation Laboratory of Harvard University”, volume XXVI.
Harvard University Press (1951). Proceedings of a Second Symposium on Large-Scale Digital
Calculating Machinery (1949).

[8] D. E. Knuth. The Art of Computer Programming, vol. 2 (Seminumerical Algorithms).
Addison-Wesley (1998).

[9] G. Marsaglia. “Random numbers fall mainly in the planes”. Proc. Natl. Acad. Sci. USA, 61,
(1968) 25.

[10] A. M. Ferrenberg, D. P. Landau and Y. J. Wong. “Monte Carlo simulations: Hidden errors
from “good” random number generators”. Phys. Rev. Lett., 69, (1992) 3382.

[11] M. Creutz. “Monte Carlo Study of Quantized SU(2) Gauge Theory”. Phys. Rev. D, 21, (1980)
2308.

[12] M. Abramowithz and I. A. Stegun. Handbook of Mathematical Functions With Formulas,
Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series
(1972).

[13] A. D. Kennedy and B. J. Pendleton. “Improved Heat Bath Method for Monte Carlo Calcu-
lations in Lattice Gauge Theories”. Phys. Lett. B, 156, (1985) 393.

[14] R. Durrett. Probability. Theory and Examples. Cambridge University Press (2018).

[15] F. R. Gantmacher. The theory of matrices, volume 2. American Mathematical Society (2000).

[16] S. Sternberg. A Methematical Companion to Quantum Mechanics. Dover Publications (2019).

69



[17] F. A. Berezin and M. A. Shubin. The Schrödinger Equation. Kluwer Academic Publishers
(1991).

[18] G. Teschl. Mathematical Methods in Quantum Mechanics With Applications to Schrödinger
Operators. American Mathematical Society (2009).

[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller. “Equation
of state calculations by fast computing machines”. J. Chem. Phys., 21, (1953) 1087.

[20] W. K. Hastings. “Monte Carlo Sampling Methods Using Markov Chains and Their Applica-
tions”. Biometrika, 57, (1970) 97.

[21] G. O. Roberts and J. S. Rosenthal. “Markov-chain Monte Carlo: Some pratical implications
of theoretical results”. Canad. J. Statist., 26, (1998) 5.

[22] N. Madras and A. D. Sokal. “The pivot algorithm: A highly efficient Monte Carlo method for
the self-avoiding walk”. J. Stat. Phys., 50, (1988) 109.

[23] U. Wolff. “Monte Carlo errors with less errors”. Comput. Phys. Commun., 156, (2004) 143.
[Erratum: Comput.Phys.Commun. 176, 383 (2007)], hep-lat/0306017.

[24] M. B. Priestley. Spectral Analysis and Time Series. Volume 1. Univariate Series. Academic
Press (1981).

[25] M. D’Elia. “Appunti del Corso di Metodi Numerici della Fisica Teorica, Parte I” (2016).

[26] B. Efron and T. Hastie. Computer Age Statistical Inference. Cambridge University Press
(2016).

[27] B. Efron. The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrian
and Applied Mathematics (1982).

[28] R. G. Miller. “The jackknife – a review”. Biometrika, 61, (1974) 1.

70

hep-lat/0306017

	Introduction
	I The Markov Chain Monte-Carlo method
	Basics of Monte Carlo methods
	Sample statistics
	Integration methods

	Sampling a probability distribution function
	Pseudo-random number generators
	Simple sampling, importance sampling, reweighting
	The change of variable method
	The von Neumann accept/reject method

	Markov Chain Monte Carlo
	Markov chains: general properties
	Markov chains: spectral and ergodic properties
	Sampling a pdf using Markov chains
	The Metropolis(-Hastings) algorithm
	The heat-bath algorithm
	Composition of Markov chains


	Data analysis for MCMC
	Coping with autocorrelations in MCMC
	The integrated autocorrelation time(s)
	Binning/blocking
	An explicit example

	Estimating secondary observables
	Bootstrap
	Jackknife



	II Statistical mechanics and phase transitions
	*The Ising model: physics and simulations
	*Other models and algorithms

	III The study of path-integrals in quantum mechanics
	*Quantum statistical mechanics and path-integrals
	*MCMC in quantum mechanics: thermodynamics
	*MCMC in quantum mechanics: spectrum
	*Path-integrals with nontrivial topology
	*Identical particles

	IV The study of path-integrals in quantum field theories
	*Statistical quantum field theory and path-integrals
	*MCMC in quantum field theory: thermodynamics
	*MCMC in quantum field theory: spectrum
	*The Hybryd Monte Carlo algorithm
	*Gauge field theories
	*Two dimensional gauge field theories
	Bibliography


