## **Production and Properties of Heavy Flavours at HERA**



Jerome Whyte - York University

On Behalf of H1 and ZEUS Collaborations





Mar. 5 - 11, 2006

#### Overview:

- HERA Collider
- c/b production
- Charm Fragmentation
- Charm/Beauty Jet Cross Sections
- Charm and Beauty Contributions to the Proton Structure function  $F_2$

20<sup>th</sup> Recontres de la Vallee d'Acoste La Thuile Mar. 5 - 11, 2006



Why study heavy quark production at HERA?

- Heavy quark production can be used as a test of perturbative QCD due to the large mass scale of the quark
- Understanding heavy quark production will be useful for LHC experiments where beauty and charm will be produced at high rates as background

This talk will focus on a few of the most recent results.



#### <u>HERA I</u>

#### <u>HERA II</u>

• Int. Lum. 160  $pb^{-1}$  (03-05 More to come!)

- 820/920 GeV proton beam, 27.5 GeV e<sup>±</sup>
  920 GeV proton beam, 27.5 GeV e<sup>±</sup> beam
  Beam spot 80 × 20 μm<sup>2</sup>
- Beam spot  $150 \times 30 \ \mu m^2$
- Integrated Lum. 135 pb<sup>-1</sup> (94-00) H1 and ZEUS are two experiments at HERA studying these electron proton interactions

4

# c/b **Productions**

At HERA charm/beauty production is dominated by Boson Gluon Fusion (BGF)  $\gamma g \rightarrow QQ$ .



- $\gamma$  from e and g from the proton fuse producing a  $Q\overline{Q}$  pair
- x: Bjorken scaling variable (fractional momentum carried by struck parton)
- y: fraction of energy transferred from e to p (in p rest frame)

$$\bullet \ Q^2 = -q^2 = -(k-k')^2$$

- Two kinematic regimes:
- $\begin{array}{ll} \mbox{Photoproduction} & (\gamma p), \\ Q^2 < 1 \ {\rm GeV^2} \end{array}$ 
  - $\begin{array}{ll} \mbox{ Deep Inelastic scattering} \\ \mbox{(DIS)}, \ Q^2 > 1 \ {\rm GeV^2} \end{array}$

- Factorization
- $\sigma = \text{proton PDF} \otimes \sigma_{\gamma g \to Q\overline{Q}} \otimes \text{photon PDF} \otimes \text{fragmentation process}$

#### How is Charm Measured?



- The charm hadrons used to measure charm cross sections are  $D^0$ ,  $D^+$ .  $D^*$ ,  $D_S$ ,  $\Lambda_C$
- $\bullet$  Left is the  $D^*$  signal measured at ZEUS
- Semileptonic decays  $(c \rightarrow \mu X)$  are also used
- An inclusive lifetime tag method is also used to measure charm (will be explained later)

## **Charm Fragmentation Fractions**



•  $f(c \rightarrow H)$  is the fraction of c quarks ending in a specific hadronic state H (e.g.  $D^{*\pm}$ ,  $D^0$ , etc.)





Consistent with the universality assumption of charm fragmentation fractions.

## Ratio of u/d in Charm Fragmentation

 $R_{u/d}$  is the ratio of the sum of direct neutral mesons  $(D^0, D^{*0})$  production cross sections to the sum of the charged mesons  $(D^{*\pm}, D^{\pm})$  production cross sections

$$R_{u/d} = \frac{cu}{c\overline{d}}$$



u and d quarks are produced equally in charm fragmentation.  $\rightarrow$  Strong Isospin Invariance Holds

#### Fraction of D Mesons in Vector State

• The vector to pseudoscalar fraction for charm is:

$$P_V^D = \frac{V}{V + PS}$$



•  $P_V^D \neq 0.75$  Simple Spin Counting Does NOT Work with Charm.

To summarize fragmentation; the fragmentation fractions, ratio of u to d, and the vector to pseudoscalar ratio for D mesons are consistent with universality.

# Calculations in pQCD



When looking at the hard scattering process, 2 schemes of calculating pQCD are:

#### "Massive" Scheme

- c/b massive i.e  $m_Q \neq 0$
- valid when  $m_Q^2 \approx Q^2$
- Heavy quarks (HQ) NOT active flavours in parton distributions
- HQ produced in the hard scatter, e.g.  $\gamma g \rightarrow Q \overline{Q}$

#### "Massless" Scheme

- c/b massless i.e.  $m_Q = 0$
- $\bullet$  valid when  $p_T^2 \gg m_Q^2$
- HQ active flavours in parton distribution, i.e. charm and beauty are in the proton
- HQ can be produced in reactions such as  $gQ \rightarrow gQ$

## **Charm Jet in Photoproduction**



• Large fraction of jets are not back to back indicating contributions from higher order QCD radiation.

#### At $\Delta \phi < 120$ NLO predicts a smaller cross section than is observed.

#### Charm Dijets in Photoproduction

Comparison with higher  $E_T$  Jets:

- Dijet mass  $(M^{jj})$  well described by the massive NLO QCD prediction
- $\Delta \phi^{jj}$  and  $(p_T^{jj})^2$  show a large deviation from NLO at low  $\Delta \phi^{jj}$  and at high  $(p_T^{jj})^2$
- These regions are expected to be sensitive to higher order effects

(ZEUS 98-00 data, the jet energy scale uncertainty indicated in yellow)



Good agreement of data to NLO except in phase space regions where higher orders are enhanced

# $D^{*\pm}$ Dijets in Photoproduction



Both massive and massless pQCD give a good description of the data

## Tagging Beauty via Muons



# Beauty from $p_T^{Rel}$ and Impact Parameters



• The fractions of b, c, and light flavours (LF) are determined from a likelihood fit to the 2D distributions  $(p_T^{Rel}, \delta)$ 

- At higher  $p_T^{Rel}$ , the contribution from beauty falls off less rapidly than that of the LF
- The same beauty to LF fall off feature occurs for higher positive impact parameters
- ( $\delta$  LF  $\approx$  symmetric about zero)

#### **Photoproduction with** $\mu$ + Jets



Agreement between H1 and ZEUS

• H1: Excess data/NLO at low  $p_T^{\mu}$ 

# **Photoproduction** $\mu$ + Jets

The  $p_T$  cross sections for muons created in the process  $ep \to eb\bar{b}X \to ejj\mu X$  is shown: ZEUS 30 dơ/dp<sup>µ</sup><sub>T</sub> (pb/GeV) • ZEUS (prel.) 2004 • This measurement utilizes the added 25 **ZEUS 96-00** ZEUS silicon Micro Vertex Detector NLO QCD x had (MVD) 20 • In good agreement with ZEUS HERA I 15 data, and to the NLO QCD prediction from FMNR 10 • First beauty result from HERA II 5 • Measurement made with only 20% of present data -----3 5 9  $p_T^{\mu}$  (GeV)

#### Much more to come!

## **Inclusive Lifetime Tag**

An inclusive method to measure beauty and charm utilizes the significance of the signed impact parameter  $S = \delta/\sigma(\delta)$ .



- The (positive) tail of the 1st most significant track  $(S_1)$  shows the charm to LF ratio increase
- Now the (positive) tail of the  $S_2$  shows the beauty to LF ratio increase

Beauty and charm cross sections are obtained from likelihood fits to data



 $F_2^{\overline{Q}Q}$  is extracted from the charm/beauty double differential cross sections:

$$\frac{d^2 \sigma^{Q\overline{Q}}(x,Q^2)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left( [1 + (1-y)^2] F_2^{Q\overline{Q}}(x,Q^2) - y^2 F_L^{Q\overline{Q}}(x,Q^2) \right)$$

- $F_L$  only significant at large y
- $F_2$  depends on  $Q^2$  only because gluons are present in the proton
- Previous measurements used  $D^*$  cross sections to determine  $F_2^{\overline{c}c}$
- New (H1)  $F_2^{\overline{c}c}$  measurement uses inclusive lifetime tag
- $F_2^{\overline{b}b}$  uses inclusive lifetime tag measurements

- QCD calculations fit the data reasonably well
- NNLO calculations now available
- scaling violation



- $F_2^{\overline{c}c}$  increases with  $Q^2$  for same x
- Contributions from  $F_2^{\overline{c}c}$  can be as high as [30%] 0.4
- Good description by NLO QCD calculation





- Improved precision expected from HERA II
- Compared to NNLO as well

# Summary



• Many more results from HERA to come!

# Combined Fit of $p_T^{Rel}$ and $\delta$

ZEUS measured similar  $p_T^{Rel}$  and  $\delta$  distributions.

