Recent results on Charmonium decays at BESII

WANG Zheng CCAST, Beijing,10049 China

For BES Collaboration.

Results and perspective of particle physics 20th Les Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, March 5-11, 2006

Focus on $\psi(\text{2S})$ and χ_{cJ} decays from BES:

 Partial Wave Analysis of $\chi_{c0} \rightarrow K^+ K^- \pi^+ \pi^-$ •Observation of $\chi_{c0.2} \rightarrow \omega \omega$. •Analysis of $\chi_{cl} \rightarrow 2(K^+K^-)$ •Measurement of $\chi_{c,I} \rightarrow 2(\pi^+\pi^-)pp$ Measurements of $\psi(2S) \rightarrow \gamma K \overline{K} \pi, \gamma \eta \pi^{+} \pi^{-}, K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$

BES Detector and the data

Side view of the BES detector Tracking: Main Drift Chamber

Photon ID: BSC

Hadron ID: MDC(dE/dx)+TOF

6.42 pb⁻¹ continuum data (Ecm=3.65GeV) was used to estimate the continuum bg.

Introduction

* $\psi(2S)$ and χ_{cJ} decay properties are essential to test perturbative QCD models and QCD based calculations, such as the "12% rule", COM...

* The decays of χ_{cJ} provide a direct window on gluecall dynamics in the 0⁺⁺ and 2⁺⁺ channels, as the χ_{cJ} hadronic decays may proceed via $cc \rightarrow gg \rightarrow q\bar{q}q\bar{q}$

PWA of $\chi_{c0} \rightarrow \pi^+ \pi^- K^+K^-$

PWA of $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$

•Selected events are fitted with the unbinned ML method;

•The amplitude of the process $\psi(2S) \rightarrow \gamma \chi_{c0}$, $\chi_{c0} \rightarrow X + Y \rightarrow \pi^+ \pi^- K^+K^-$ are described by the relativistic covariant tensor amplitudes.

$$A = \psi_{\mu}(m_1)e_{\nu}^*(m_2)A^{\mu\nu} = \psi_{\mu}(m_1)e_{\nu}^*(m_2)\sum_{i}\Lambda_i U_i^{\mu\nu}$$

- • $\psi(2S)$ polarization four-vector;
- •Polarization four-vector of the photon (Coulonb gauge are assumed;
- •Particle wave amplitude with different J^{pc};
- Coupling strength(complex)

For detail, can see B.S.Zou and D. V. Bugg, Eur. Phys. J. A16, 537 (2003);

S. Dulat and B.S.Zou, Eur. Phys. J. A26, 125 (2005);

P.R.D72, 092002 (2005)

 $\pi^{+}\pi^{-}K^{+}K^{-}$ χ_{c0}

 $\chi_{c0} \rightarrow \pi^+ \pi^- K^+ K^-$

Decay mode	$N^{\rm fit}$	$\boldsymbol{\epsilon} \ (\%)$	$\mathcal{B}[\chi_{c0} \to X \to \pi^+ \pi^- K^+ K^-]$
			(×10 ⁻⁴)
$f_0(980)f_0(980)$	27.9 ± 8.7	6.25 ± 0.01	$3.46 \pm 1.08^{+1.93}_{-1.57}$
$f_0(980)f_0(2200)$	77.1 ± 13.0	7.09 ± 0.01	$8.42 \pm 1.42 \substack{+1.65 \\ -2.29}$
$f_0(1370)f_0(1710)$	60.6 ± 15.7	6.59 ± 0.01	$7.12 \pm 1.85^{+3.28}_{-1.68}$
$K^*(892)^0 ar{K}^*(892)^0$	64.5 ± 13.5	6.18 ± 0.01	$8.09 \pm 1.69^{+2.29}_{-1.99}$
$K_0^*(1430)\bar{K}_0^*(1430)$	82.9 ± 18.8	6.15 ± 0.01	$10.44 \pm 2.37^{+3.05}_{-1.90}$
$K_0^*(1430)\bar{K}_2^*(1430) + \text{c.c.},$	62.0 ± 12.1	5.66 ± 0.01	$8.49 \pm 1.66^{+1.32}_{-1.99}$

$$Br[\chi_{c0} \to K_1(1270)^+ K^- + c.c.] = (6.66 \pm 1.31^{+1.60}_{-1.51}) \times 10^{-3}$$

 $Br[\chi_{c0} \to K_1(1400)^+ K^- + c.c.] < 2.85 \times 10^{-3} 90\% C.L.$

Flavor-SU(3)-violating $K_1(1270)-K_1(1400)$ asymmetry is observed.

P.R.D72, 092002 (2005)

Observation of $\chi_{c0,2} \rightarrow \omega \omega$

P.L.B630:7-13, 2005

Observation of $\chi_{c0,2} \rightarrow \omega \omega$

 $\chi_{c1} \rightarrow \omega \omega$ is forbidden by requirement of quantum statistics rule.

P.L.B630:7-13, 2005

BES preliminary

 $Br(\chi_{c,I} \rightarrow \phi K^+K^-)$

BES preliminary

First measurement

 $\chi_{c1} \rightarrow \phi \phi$ is forbidden by requirement of quantum statistics rule.

BES preliminary

After the bg. Subtraction, $N_{\chi c0}$ =26.2±5.8, ε=9.0%

 $N_{\chi c2}$ =41.0±7.1, ε=8.8%

$$\mathcal{B}(\chi_{c0} \to \phi\phi) = (0.94 \pm 0.21 \pm 0.13) \times 10^{-3}$$
$$\mathcal{B}(\chi_{c2} \to \phi\phi) = (1.48 \pm 0.26 \pm 0.22) \times 10^{-3}$$

BES Br(χ_{cJ}→VV) are helpful in determining the parameters in the general factorization scheme in Zhao Qiang, PRD72, 074001 (2005),
clarify the role played by OZI-rule Viol., SU(3) flav. Breaking in decay transitions.
r=0.45±0.48, R= 0.45±0.48, g₀= 0.45±0.48 for χ_{c0} decay,
r=0.24±0.29, R= 1.09±0.21, g₀= 0.26±0.06 for χ_{c0} decay,

Search for $\chi_{cJ} \to \Lambda \overline{\Lambda} \pi^+ \pi^- \to 2(\pi^+ \pi^-) p \overline{p}$

Hep-ex/0602033, accepted by PRD.

Veasurement of
$$\psi(2S) \rightarrow \gamma K K \pi, \gamma \eta \pi^+ \pi^-$$

$$\psi(2S) \rightarrow \gamma K_{S}^{0} K \pi + c.c.$$
$$\gamma K^{+} K^{-} \pi^{0}$$
$$\gamma \eta \pi^{+} \pi^{-}$$

Search for glueball candidate, $\eta(1440)$, or say it as $\eta(1405)$ and $\eta(1475)$, which maybe have large branching fraction in J/ ψ decays.

We also measured : $Br(\chi_{cJ} \rightarrow K_{S}^{0}K\pi)$ $Br(\chi_{c1} \rightarrow K^{*}(892,1430)K \rightarrow K_{S}^{0}K\pi)$ $Br(\chi_{c1} \rightarrow a_{0}(980)^{\pm}\pi^{\mp} \rightarrow \eta\pi^{+}\pi^{-})$ $Br(\chi_{c1} \rightarrow f_{0}(1270)\eta \rightarrow \eta\pi^{+}\pi^{-})$

 η (1440) are not found in ψ (2S) decay

80

 $\chi_{cJ} \rightarrow K_S^0 K^+ \pi^- + c.c$

BES preliminary

$\chi_{c1} \rightarrow$	n^{obs}	$\varepsilon(\%)$	$\mathcal{B}(imes 10^{-3})$
$K^*(892)^0 \overline{K}^0 + c.c.$	22.5 ± 7.3	7.67	$1.1\pm0.4\pm0.2$
$K^*(892)^+K^- + c.c.$	26.7 ± 11.0	6.20	$1.6\pm0.7\pm0.3$
$K_J^*(1430)^0 \overline{K}^0 + c.c. \to K_S^0 K^+ \pi^- + c.c.$	21.8 ± 14.7	6.28	< 0.6
$K_J^*(1430)^+K^- + c.c. \to K_S^0K^+\pi^- + c.c.$	45.0 ± 26.1	5.00	< 1.4

 $\chi_{c1} \rightarrow a_0^{\pm} \pi^{\pm}, f_2 \eta \rightarrow \pi^+ \pi^- \eta$

In ψ(2S) $\rightarrow \gamma \chi_{c1} \rightarrow \gamma \eta \pi^+ \pi^- \rightarrow \gamma \gamma \gamma \pi^+ \pi^-$ process

Side view of the BES descere

 $\chi_{c1} \rightarrow a_0^{\pm} \pi^{\pm}, f_2 \eta \rightarrow \pi^+ \pi^- \eta$

$\psi(2S) \rightarrow K^+K^-\pi^+\pi^-\pi^0$

 $Br(\psi(2S) \rightarrow \omega f_0(1710))$

Br($\psi(2S)$ → $\omega f_0(1710)$, $f_0(1710)$ →K⁺K⁻)=(5.9±2.0±0.9)×10⁻⁵

Hep-ex/0512025 accepted by PRD.

$Br(\psi(2S) \rightarrow K^*(892)K\pi\pi)$

Br($\psi(2S)$ → K^{*}(892)⁰K⁻ $\pi^{+}\pi^{0}$ +c.c.) = (8.6±1.3±1.8)×10⁻⁴ Br($\psi(2S)$ → K^{*}(892)⁺K⁻ $\pi^{+}\pi^{-}$ +c.c.) = (9.6±2.2±1.7)×10⁻⁴

Continuum contribution subtracted incoherently. Hep-ex/0512025 accepted by PRD.

$Br(\psi(2S) \rightarrow K^*(892)K\rho)$

 $\begin{array}{l} \mathsf{Br}(\psi(2\mathsf{S}) \rightarrow \mathsf{K}^*(892)^*\mathsf{K}^{\scriptscriptstyle -}\rho^0 \texttt{+} \mathrm{c.c.}) = (7.3 \pm 2.2 \pm 1.4) \times 10^{-4} \\\\ \mathsf{Br}(\psi(2\mathsf{S}) \rightarrow \mathsf{K}^*(892)^0\mathsf{K}^{\scriptscriptstyle -}\rho^{\scriptscriptstyle +} \texttt{+} \mathrm{c.c.}) = (6.1 \pm 1.3 \pm 1.2) \times 10^{-4} \\\\ \textbf{Continuum contribution subtracted incoherently.} \end{array}$

Hep-ex/0512025 accepted by PRD.

Summary

Using 14M $\psi(\text{2S})$ data taken with the BESII detector at the BEPC,

OVER A PWA for the $\chi_{c0} \rightarrow \pi^+ \pi^- \mathbf{K}^+ \mathbf{K}^-$.

• Analyzed $\psi(2S) \rightarrow \gamma K \overline{K} \pi$ and $\gamma \eta \pi^+ \pi^-$ processes, $\eta(1440)$ is not found.

• $Br(\chi_{c0,2} \rightarrow \omega \omega)$, $Br(\chi_{cJ} \rightarrow 2(K^{+}K^{-}), \phi K^{+}K^{-}, \phi \phi)$ are measured.

• Analyzed the $\psi(2S) \rightarrow K^+K^-\pi^+\pi^-\pi^0$, $\chi_{cJ} \rightarrow 2(\pi^+\pi^-)pp$ and $\chi_{c1} \rightarrow K_S^0K^+\pi^-+c.c. \eta\pi^+\pi^-$ processes and their possible intermediate states.

Side view of the BES descare	Mixing of the $K_1(1270)-K_1(1400)$						
	-	Two lowest-lying Axial-Vector meson octets:					
		, <u>,</u>					
		Spin singlet (¹ P ₄)	Spin triplet (³ P ₄)				
		K _B (b ₁)	K _A (a ₁)				
K ₁ (1270): Kρ; K ₁ (1400): K*π		$K_A = \cos \theta K_1 (1400$	$K_{A} = \cos \theta K_{1}(1400) + \sin \theta K_{1}(1270)$				
		$K_B = \cos \theta K_1 (1270)$	$)-\sin \theta K_1(1400)$				

 $a_1\pi$: fobidden by G parity, SU(3) symmetry \rightarrow K_AKbar disallowed, pure K_BKbar meanwhile, $\theta \approx 45^{\circ}$ \rightarrow roughly equal of K₁(1270)-K₁(1400)

Here θ >57° is requirement.