α DETERMINATION FROM *k*, *k* B DECAYS 20 La Thuile...

9 March 2006

M.I.Vysotsky, ITEP

G.G. Ovanesyan, M.V., JETP Letters 81 (2005) 361
M.V., Phys. Atom. Nucl., 69 (2006) 679
A.B.Kaidalov, M.V., hep-ph/0603013

ITEP TH

PLAN

- P/T small parameter
- $B \rightarrow \pi\pi$ in tree approximation: A_0, A_2, δ α
- factorisation: pro and contro
- **•** penguin corrections: C_{+-}, C_{00}, α
- Conclusions

$b \rightarrow u d \bar{u}$

$$c_1 = 1.09, c_2 = -0.21;$$

 $c_3 = 0.013, c_4 = -0.032, c_5 = 0.009, c_6 = -0.037$

P/T - small

$$P/T = 0 \Longrightarrow \sin 2\alpha^T = S_{+-}$$

$$B \to \pi^+ \pi^- : \alpha^T_{BABAR} = (99 \pm 5)^o$$

$$B \to \rho^+ \rho^- : \alpha^T = (96 \pm 7)^o$$

$$B \to \pi^\pm \rho^\mp : \alpha^T = (94 \pm 4)^o, \text{ or } (86 \pm 4)^o$$

values of α from all 3 decays agree with each other and with global CKM fit result.

R.Aleksan, F.Buccella, A.Le Yaouanc, L.Oliver, O.Pene, J.-C.Raynal (1995): $\Delta \alpha^{\pi\pi} > \Delta \alpha^{\rho\rho} > \Delta \alpha^{\pi\rho}$

Perturbation theory over P/T

$B \rightarrow \pi \pi$ exp data

	BABAR	Belle	Heavy Flavor
			Averaging Group
B_{+-}	5.5 ± 0.5	4.4 ± 0.7	5.0 ± 0.4
B_{00}	1.17 ± 0.33	2.3 ± 0.5	1.45 ± 0.29
B_{+0}	5.8 ± 0.7	5.0 ± 1.3	5.5 ± 0.6
S_{+-}	-0.30 ± 0.17	-0.67 ± 0.16	-0.50 ± 0.12
C_{+-}	-0.09 ± 0.15	-0.56 ± 0.13	-0.37 ± 0.10
C_{00}	-0.12 ± 0.56	-0.44 ± 0.56	-0.28 ± 0.39

 C_{+-} : BABAR - little penguin; Belle - big penguin. Average?

Ambitions: the same level of understanding as in $K \to \pi \pi$ decays

$B \rightarrow \pi \pi$ phenomenology

$$M_{\bar{B}_{d}\to\pi^{+}\pi^{-}} = \frac{G_{F}}{\sqrt{2}} |V_{ub}V_{ud}^{*}| m_{B}^{2} f_{\pi} f_{+}(0) \left\{ e^{-i\gamma} \frac{1}{2\sqrt{3}} A_{2} e^{i\delta} + e^{-i\gamma} \frac{1}{\sqrt{6}} A_{0} + \left| \frac{V_{td}^{*} V_{tb}}{V_{ub} V_{ud}^{*}} \right| e^{i\beta} P e^{i\delta_{p}} \right\} , \qquad (1)$$

$$M_{\bar{B}_{d}\to\pi^{0}\pi^{0}} = \frac{G_{F}}{\sqrt{2}} |V_{ub}V_{ud}^{*}| m_{B}^{2} f_{\pi} f_{+}(0) \left\{ -e^{-i\gamma} \frac{1}{\sqrt{3}} A_{2} e^{i\delta} + e^{-i\gamma} \frac{1}{\sqrt{6}} A_{0} + \left| \frac{V_{td}^{*} V_{tb}}{V_{ub} V_{ud}^{*}} \right| e^{i\beta} P e^{i\delta_{p}} \right\}, \quad (2)$$

$$M_{\bar{B}_u \to \pi^- \pi^0} = \frac{G_F}{\sqrt{2}} |V_{ub} V_{ud}^*| m_B^2 f_\pi f_+(0) \left\{ \frac{\sqrt{3}}{2\sqrt{2}} e^{-i\gamma} A_2 e^{i\delta} \right\}$$
(3)

tree approximation: A_0, A_2, δ, α

3 parameters from 3 equations (B_{+-}, B_{00}, B_{+0}) :

 $A_0 = 1.53 \pm 0.23, A_2 = 1.60 \pm 0.20, \delta = \pm (53^o \pm 7^o)$

 $A_0^f = 1.54,$ $A_2^f = 1.35$ but $\delta \dots$ $\sin 2\alpha^T = S_{+-}$,

 $\alpha_{\text{BABAR}}^{\text{T}} = 99^{o} \pm 5^{o} , \quad \alpha_{\text{Belle}}^{\text{T}} = 111^{o} \pm 6^{o} , \quad \alpha_{\text{average}}^{\text{T}} = 105^{o} \pm 4^{o} .$

FSI in $K \to \pi\pi, D \to \pi\pi, B \to D\pi$

K decays: 3 decay probabilities, or Watson theorem: $\delta_0^K=35^o\pm 3^o, \delta_2^K=-7^o\pm 0.2^o, \delta^K=42^o\pm 4^o$

D decays: 3 decay probabilities (Watson theorem is not applicable): factorisation also good for moduli of decay amplitudes, while $\delta_2^D - \delta_0^D = 86^o \pm 4^o$ (!?) 1/*M* scaling of FSI phases?

 $(D\pi)$: I = 1/2 or 3/2 ; 3 decay probabilities: $\delta_{D\pi} = 30^o \pm 7^o$

So: FSI phases can be L A R G E

penguin corrections

To avoid shifts of B_{+-} and B_{00} we should shift A_0 and δ :

$$A_0 \to A_0 + \tilde{A}_0 , \ \delta \to \delta + \tilde{\delta} ,$$

$$\tilde{A}_0 = \sqrt{6} \left| \frac{V_{td}}{V_{ub}} \right| \cos \alpha \cos \delta_p P \quad ,$$

$$\tilde{\delta} = -\sqrt{6} \left| \frac{V_{td}}{V_{ub}} \right| \cos \alpha \sin \delta_p P / A_0 \quad ,$$

where only the terms linear in P are taken into account

In the factorisation approach we have:

$$P^f = -a_4 - \frac{2m_\pi^2}{(m_u + m_d)m_b}a_6 = 0.06 \quad ,$$

 $a_4 = c_4 + c_3/3$, $a_6 = c_6 + c_5/3$ and shifts of A_0 and δ are small:

$$-0.12 < \tilde{A}_0 < 0.12 , \quad -4^o < \tilde{\delta} < 4^o$$

for

 $A_0 = 1.5$, $-1 < \cos \delta_p$, $\sin \delta_p < 1$ and $70^o < \alpha < 110^o$

C_{+-}, C_{00}

In linear in *P* approximation for direct CP asymmetries we obtain:

$$C_{+-} = -2P\sin\alpha \left|\frac{V_{td}}{V_{ub}}\right| \frac{\cos(\delta_p + \varphi)}{\sqrt{\frac{1}{12}A_2^2 + \frac{1}{6}A_0^2 + \frac{1}{3\sqrt{2}}A_0A_2\cos\delta}} =$$

 $-4.7P\cos(\delta_p + 68^o)$

$$C_{00} = -2P\sin\alpha \left|\frac{V_{td}}{V_{ub}}\right| \frac{\cos(\delta_p + \psi)}{\sqrt{\frac{1}{3}A_2^2 + \frac{1}{6}A_0^2 - \frac{\sqrt{2}}{3}\cos\delta A_0 A_2}} = 6.2P\cos\delta_p$$

where

$$\varphi = \arccos \frac{\frac{1}{\sqrt{3}} A_2 \sin \delta}{\sqrt{\frac{1}{3} A_2^2 + \frac{2}{3} A_0^2 + \frac{2\sqrt{2}}{3} A_0 A_2 \cos \delta}} \approx 68^o ,$$

$$\psi = \arccos \frac{-\frac{2}{\sqrt{3}}A_2 \sin \delta}{\sqrt{\frac{4}{3}A_2^2 + \frac{2}{3}A_0^2 - \frac{4\sqrt{2}}{3}A_0A_2 \cos \delta}} \approx 175^o$$

From experimental values of C_{ik} we can determine P and δ_p - Gronau-London pass;

since experimental uncertainty in C_{00} is big while Belle and BABAR contradicts each other in C_{+-} this pass is (temporary) closed

Let us look which values of direct asymmetries follow from our formulas. With $P = P_f$ we get:

$$C_{+-} = -0.28\cos(\delta_p + 68^o) ,$$

and for the theoretically motivated value $\delta_p \leq 30^o$ we obtain:

$$0 > C_{+-} > -0.10$$
,

which is close to BABAR result. For direct CP asymmetry in $B_d \rightarrow \pi^0 \pi^0$ decay we get:

$$C_{00} = 0.4 \cos \delta_p \quad ,$$

which differs in sign from C_{+-} and is rather big. It is very interesting to check these predictions experimentally.

 S_{+-} is not changed when penguins are taken into account:

$$\alpha = \alpha^T + \tilde{\alpha} \quad ,$$

$$\tilde{\alpha} = -\left|\frac{V_{td}}{V_{ub}}\right| P(1+C_{+-}) \sin \alpha \frac{\cos(\delta_p - \kappa)}{\sqrt{\frac{1}{12}A_2^2 + \frac{1}{6}A_0^2 + \frac{1}{3\sqrt{2}}A_0A_2\cos\delta}} ,$$

$$\kappa = \frac{\pi}{2} - \varphi .$$

$$\tilde{\alpha} = -2.4(1+C_{+-})P\cos(\delta_p - \kappa) = -0.14(1+C_{+-})\cos(\delta_p - 22^o) ,$$

 $\tilde{\alpha}_{\text{BABAR}} \approx -7^{o}$, $\alpha_{\text{BABAR}} = \alpha_{\text{BABAR}}^{T} + \tilde{\alpha}_{\text{BABAR}} = 92^{o} \pm 5^{o}$.

Conclusions

$$\tilde{\alpha}_{\text{average}} = -5^{o}$$
, $\alpha_{\text{average}} = \alpha_{\text{average}}^{T} + \tilde{\alpha}_{\text{average}} = 100^{o} \pm 4^{o}$

Theoretical uncertainty of the value of α can be estimated in the following way. Let us suppose that the accuracy of the factorisation calculation of the penguin amplitude is 50%:

$$\tilde{\alpha}_{\text{average}} = -5^o \pm 3^o_{\text{theor}}$$

$$\alpha_{\text{average}} = 100^o \pm 4^o_{\text{exp}} \pm 3^o_{\text{theor}}$$

The model independent isospin analysis of $B \rightarrow \rho \rho$ decays performed by BABAR gives:

$$\alpha_{BABAR}^{\rho\rho} = 100^o \pm 13^o \quad ,$$

The global CKM fit results are:

$$\alpha_{CKMFitter} = 98^o \pm 8^o$$
, $\alpha_{UTfit} = (97^{+13}_{-19})^o$

- The moduli of the amplitudes A_0 and A_2 are given with good accuracy by factorisation; FSI phase shift is very large, $\delta \approx 50^{\circ}$.
- Theoretical uncertainty of the value of α extracted from $B \rightarrow \pi \pi$ data on S_{+-} is at the level of few degrees.
- Resolution of the contradiction of Belle and BABAR data on CP asymmetries are very important both for checking the correctness of our approach (*C*) and determination of angle α (*S*).