

BSM at Belle: $B \rightarrow K^* \ell^+ \ell^-$ and search for leptonic *B* decays

Stefano Villa, EPFL

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, Italy, March 10, 2006

Summary

- *B* physics at Belle
- The $B \to K^* \ell^+ \ell^-$ channel
 - → forward-backward asymmetry
 - → measurement of Wilson coefficients
- $B \rightarrow \ell v_{\ell}$ searches
- $B \rightarrow \ell^+ \ell^-$ searches
- Future prospects
- Conclusions

Notation:

- $B^0 \equiv B^0_d$
- Charge-conjugate modes always included

B physics at Belle

Csl calorimeter (ECL)

Aerogel Cherenkov

Counter

Central Drift Chamber

Time Of Flight counter

<u>B production</u>

BB pairs produced at KEKB in e^+e^- (3.5 GeV on 8 GeV) collisions at the Y(4S) resonance. Collected so far more than 500 fb⁻¹

Charged tracks reconstruction/ID:

• electron ID: loss in CDC, shower shape

Silicon Vertex Detector

K_L Detector (KLM) in ECL and response of ACC;

B signal selection:

typically based on event shape variables with signal window defined using

$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2} \quad (\approx m_B)$$

and $\Delta E = E_{B-} E_{beam} \quad (\approx 0)$

eff \geq 90%, π -misID rate $\approx 0.1\%$

- muon ID: based on ECL and KLM; eff \geq 90%, π -misID rate $\approx 1\%$
- K^{\pm} selected using ACC, TOF and CDC; eff \geq 90% and π -misID rate \approx 6%.
- Other charged tracks identified as π^{\pm}

 $B \rightarrow K^* \ell^+ \ell^-$

$B \rightarrow K^* \ell^+ \ell^-$: a window on BSM physics

• $b \rightarrow s\ell\ell$: FCNC process, forbidden at tree level

- at lowest order via electromagnetic penguin or box diagrams
- Lepton pair yields useful observables for testing the theory:
- forward-backward asymmetry (A_{FB})
- invariant mass (q^2)

BSM:

SM:

Sensitive to new physics via insertion of heavy particles in the internal lines.

$B \rightarrow K^* \ell^+ \ell^-$: Wilson coefficients

New Physics at the one loop level can be described in terms of an effective Hamiltonian:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$
Local operators

- $C_i(\mu)$ Wilson coefficients: effective strength of short distance interactions
- To leading order, only O_7 , O_9 and O_{10} contribute to $b \rightarrow s\ell\ell$
- C_i computed perturbatively up to NNLO: $C_i = A_i + higher order terms$
- The $B \rightarrow K^* \ell^+ \ell^-$ amplitude depends on A_7 , A_9 and A_{10} under the assumption that higher order terms behave like in the SM.

SM VALUES:
$$A_7 = -0.330$$
 , $A_9 = 4.069$, $A_{10} = -4.213$

H.H. Asatryan et al. Phys. Lett. B 507, 162 (2001); A. Ali et al. Phys. Rev. D 66, 034002 (2002)

Constraints on Wilson coefficients

The absolute value of C_7 is constrained by $B \rightarrow X_s \gamma$; constraints on C_9 and C_{10} (donut-shape) are derived from the $B \rightarrow X_s \ell^+ \ell^-$ branching fractions.

Forward-backward asymmetry in $K^*\ell^+\ell^-$

$$A_{\mathsf{FB}}(q^2) = \frac{\Gamma(q^2, \cos\theta_{B\ell^-} > 0) - \Gamma(q^2, \cos\theta_{B\ell^-} < 0)}{\Gamma(q^2, \cos\theta_{B\ell^-} > 0) + \Gamma(q^2, \cos\theta_{B\ell^-} < 0)}$$

- $\theta_{B\ell^{-}}$ ($\equiv \theta$): angle between B and ℓ^{-} in the dilepton rest frame
- A_{FB} is a function of q^2 of the dilepton system
- A_{FB} non-zero due to interference of vector (C₇, C₉) and axial vector (C₁₀) couplings

More generally, one can extract the coefficients by fitting the double-differential decay width: $d^2\Gamma / dq^2 d \cos\theta$

 θ_{B}

$B \rightarrow K^* \ell^+ \ell^-$ selection

- Dataset: 357 fb⁻¹ = 386M *BB* pairs
- Modes: $K^{*+} \rightarrow K^{+} \pi^{0}$, $K_{S} \pi^{+}$; $K^{*0} \rightarrow K^{+} \pi^{-}$
- lepton = e, μ
- Charmonium (J/ψ , ψ (2S)) veto
- Dominant background: *BB* with both *B's* decaying semileptonically: suppressed using E_{miss} and $\cos \theta_{\text{B}}^*$
- $B \rightarrow K \ell^+ \ell^-$ used as "null test": $A_{FB} \approx 0$ in SM, small BSM

D.A. Demir et al. Phys.Rev. D66 (2002) 034015

Signal yield: $N_{sig} = 114 \pm 13$

Consistent with Belle measurement (140fb⁻¹): Br($B \rightarrow K^* \ell^+ \ell^-$)=(11.5^{+2.6} -2.4 ± 0.8 ± 0.2)x10⁻⁷ A. Ishikawa *et al.* Phys.Rev. Lett. 91, 261601 (2003)

Extraction of A_{FB} and Wilson coeffs.

• Extract the ratio of Wilson coefficients A_9/A_7 , A_{10}/A_7 ($A_7 = A_7^{SM} = -0.330$) from an

unbinned maximum likelihood fit on events in the signal window with a pdf including $g(q^2, \theta) = d^2 \Gamma / dq^2 d \cos \theta$.

- Several event categories:
 - signal + "cross feeds" from misreconstructed $B \rightarrow K^{(*)} \ell^+ \ell^-$ or other $b \rightarrow s \ell \ell$
 - 4 background sources dominated by dilepton (80%)

 $A_{\rm FB} \text{ simply obtained by integration:} \quad \mathcal{A}_{\rm FB}(q^2) = \frac{\int_{-1}^1 \operatorname{sgn}(\cos\theta) g(q^2,\theta) \, d\cos\theta}{\int_{-1}^1 g(q^2,\theta) \, d\cos\theta}$

Null test: extract A_{FB} for $B \rightarrow K\ell^+\ell^ A_{FB}^{bkg-sub}(B \rightarrow K^+\ell\ell) = 0.09 \pm 0.14(\text{stat.})$

Fit results hep-ex/0603018 submitted to PRL

LEPTONIC B DECAYS

Possible enhancements of BF in

- **BSM:** MSSM (charged Higgs): can explore the $(M_H, \tan\beta)$ plane.
 - Pati-Salam models: can set limit on the mass of LQ

$B^- \rightarrow e^- \overline{v}_e$ and $B^- \rightarrow \mu^- \overline{v}_\mu$

- One highly energetic lepton
- Charmonium veto
- Large missing *E* and *p*
- Signal window defined on ΔE and $M_{\rm bc}$ of the companion B
- Cut on lepton momentum in *B* rest frame

Br(
$$B \rightarrow \mu \nu_{\mu}$$
) < 2.0x10⁻⁶ hep-ex/0408132, 140 fb⁻¹

 Br($B \rightarrow e \nu_{e}$) < 5.4x10⁻⁶ Belle-conf-0247, 60 fb⁻¹

update coming soon!

 $B \to \tau \overline{\nu}_{+}$

- Reconstruct the companion *B* in exclusive $D^{(*)0}h^+$ and $D^{(*)0}D^{(*)+}_{s}$ channels to get a pure (55%) B^+B^- sample (4x10⁵ evts)
- Reconstruct signal from remaining particles in the event
- Final selection based on remaining energy in ECL: $E_{ECL} \approx 0$ for signal

 $R^{0} \rightarrow \ell^{+} \ell^{-}$

BSM:

- Enhancement of BF($B^0 \rightarrow \mu^+ \mu^-$, e⁺e⁻) in high tan β MSSM (2 orders of magnitude) and SUSY
- $B^0 \rightarrow \mu^{\pm} e^{\mp}$ allowed in Pati-Salam (leptoquark) and SUSY models

SM:

- Box or annihilation diagram
- Br($B^0 \rightarrow \mu^+ \mu^-$) = (1.0±0.1) x 10⁻¹⁰
- Br($B^0 \rightarrow e^+e^-$) = (2.3±0.3) x 10⁻¹⁵
- Br($B^0 \rightarrow \mu^{\pm} e^{\mp}$) ≈ 0 (neutrino osc.)
- Helicity suppressed $\sim (m_{\ell})^2$

BELLE results

90% CL limits based on 78 fb⁻¹ Phys. Rev D 68, 111101(R) (2003)

 $Br(B \rightarrow \mu^{+}\mu^{-}) < 1.6x10^{-7}$ $Br(B \rightarrow e^{+}e^{-}) < 1.9x10^{-7}$ $Br(B \rightarrow \mu^{\pm}e^{\mp}) < 1.7x10^{-7}$

limit on the Pati-Salam LQ mass: $M_{LQ} > 46 \text{ TeV/}c^2$ at 90% CL

Super Belle: expected performance

Goal: $\mathcal{L}=5\times10^{35}$ cm⁻² s⁻¹; in 1 year $\int \mathcal{L}=5$ ab⁻¹

A. Ishikawa at Lake Louise 2006

Conclusions

- Belle performed the first measurement of Wilson Coefficients in $B \rightarrow K^* \ell^+ \ell^-$:
 - Integrated forward-backward asymmetry significantly >0
 - → First determination of sign of A_9A_{10}
 - Results compatible with SM prediction and ruling out many BSM scenarios
- *B* leptonic decays set constraints on BSM parameter space
 - $\rightarrow M_{\rm H}$ -tan β in MSSM
 - → $M_{\rm LO}$ in Pati-Salam models
 - → Limits on $B \rightarrow \tau v_{\tau}$ and $B \rightarrow \mu v_{\mu}$ close to SM prediction!
- Still a lot to come from Belle and hopefully Super Belle!

BACKUP SLIDES

Operators in \mathcal{H}_{eff}

$$\begin{aligned} \mathcal{O}_{1} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})(\overline{c}_{\beta}\gamma^{\mu}Lb_{\alpha}), \\ \mathcal{O}_{2} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\alpha})(\overline{c}_{\beta}\gamma^{\mu}Lb_{\beta}), \\ \mathcal{O}_{3} &= (\overline{s}_{\alpha}\gamma_{\mu}Lb_{\alpha})\sum_{q=u,d,s,c,b}(\overline{q}_{\beta}\gamma^{\mu}Lq_{\beta}), \\ \mathcal{O}_{4} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\overline{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{5} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\overline{q}_{\beta}\gamma^{\mu}Rq_{\beta}), \\ \mathcal{O}_{6} &= (\overline{s}_{\alpha}\gamma_{\mu}Lc_{\beta})\sum_{q=u,d,s,c,b}(\overline{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{7} &= \frac{e}{16\pi^{2}}\overline{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L+m_{b}R)b_{\alpha}F^{\mu\nu}, \\ \mathcal{O}_{8} &= \frac{g}{16\pi^{2}}\overline{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\overline{\ell}\gamma_{\mu}\ell, \\ \mathcal{O}_{9} &= \frac{e^{2}}{16\pi}\overline{s}_{\alpha}\gamma^{\mu}Lb_{\alpha}\overline{\ell}\gamma_{\mu}\beta, \end{aligned}$$

Details of the fit

The Probability Density Function:

$$P(M_{\rm bc}, q^2, \cos\theta; A_9/A_7, A_{10}/A_7)$$

$$= \frac{1}{N_{\rm sig}} f_{\rm sig} \epsilon_{\rm sig}(q^2, \cos\theta) g(q^2, \cos\theta)$$

$$+ \frac{1}{N_{\rm CF}} f_{\rm CF} \epsilon_{\rm CF}(q^2, \cos\theta) g(q^2, \cos\theta)$$

$$+ \frac{1}{N_{\rm IF}} f_{\rm IF} \epsilon_{\rm IF}(q^2, \cos\theta) g(q^2, -\cos\theta)$$

$$+ (1 - f_{\rm sig} - f_{\rm CF} - f_{\rm IF} - f_{K^*hh} - f_{\psi X_s}) \times$$

$$\left\{ (f_{K^*\ell h} \mathcal{P}_{K^*\ell h}(q^2, \cos\theta) + (1 - f_{K^*\ell h}) \mathcal{P}_{\rm dl}(q^2, \cos\theta) \right\}$$

$$+ f_{K^*hh} \mathcal{P}_{K^*hh}(q^2, \cos\theta) + f_{\psi X_s} \mathcal{P}_{\psi X_s}(q^2, \cos\theta).$$

 $\label{eq:constraint} \begin{array}{l} \pmb{\epsilon} \ : \ efficiency \ functions, \ estimated \ from \ data \ and \ MC \\ \hline \mathbf{f} \ : \ event \ by \ event \ signal \ and \ background \ probability, \ from \ M_{bc} \ fit \end{array}$

Systematic uncertainties

source	negative A ₇ solution		positive A ₇ solution	
	A_9/A_7	A ₁₀ /A ₇	A ₉ /A ₇	A ₁₀ /A ₇
A ₇	+0.29 -0.03	+0.01 -0.03	+0.13 -0.27	+0.36-0.15
m _b	+0.69 -0.68	+0.45 -0.46	± 0.63	± 0.42
Form factor model	± 0.66	± 1.72	± 1.04	+2.23
q ² resolution	± 0.28	± 0.39	± 0.28	± 0.39
efficiency	± 0.08	± 0.03	± 0.10	± 0.06
signal fraction	+0.43 -0.47	+0.22 -0.33	+0.43 -0.46	+0.37 -0.40
total	+1.12-1.10	+1.83-1.84	+1.33-1.36	+2.36 -2.34

Positive A₇ solution

Best fit for positive A₇ (non-SM like):

