The Alpha Magnetic Spectrometer Experiment (AMS)

AMS: A TeV (10¹² eV) Magnetic Spectrometer in Space 3m x 3m x 3m, 7t, ~ 0.5m² sr

The AMS detector has been under construction for 10 years.

						20
0.3 TeV	e-	Ρ	He	С	Fe	γ
TRD		Υ	γ	r	r	Ŷ
TOF	*		Υ	T	T	Υ
Tracker (magnet on)		****	۲ ۲ ۲	¥ _ħ	THE	\wedge
RICH	\bigcirc	\bigcirc	1997 - 19	0	0	00
ECAL			¥¥	Ŧ	Ŧ	

300,000 channels of electronics $\Delta t = 100 \text{ ps}$, $\Delta x = 10 \mu m$

International Participation in AMS

Italian National participation in AMS-02

y97637_1ba.ppt

Coordinator: R. Battiston

Physics of AMS

There has never been a large superconducting magnet in space due to the extremely difficult technical challenges

AMS-01

STEP ONE:

A Permanent Magnet to fly on STS-91

- 1- Stable: no influence from earth magnetic field
- 2- Safety for the astronauts: Minimum field leakage out of the magnet
- 3- Low weight: no iron

STEP TWO: A Superconducting Magnet for ISS with the same field arrangement

"Its time we face reality, my friends.... We're not exactly rocket scientists."

AMS-01: STS-91

10 Magnets were made

7 to study Field Calculation, Field Leakage, Dipole moment

3 (full size) for Space Qualification, test to Destruction and Flight.

First flight AMS-01

Approval: April 1995, Assembly: December 1997, Flight: June 1998

y97271c

National Aeronautics and Space Administration

Space Shuttle Discovery Returns from Space

Tracing the origin of cosmic rays from precision measurements of incident momentum vector and location

Run/Event: 897171331/310063 06-Jun-98 22:33:48 Lat/Long: 50N/27W

AMS paper: "Leptons in Near Earth Orbit"

y99089_05.ppt AMS-01 results were not predicted by any cosmic ray model

20

Construction of the AMS-02 Superconducting magnet

For a magnet with long duration without refill and light weight, use superfluid Helium

Indirect cooling with cold heat exchanger

Normal liquid Helium: 4.2K

Superfluid Helium: 1.8K film flow In Space: Cold Heat exchanger is uniformly cooled

In Space: Cold Heat exchanger cannot be uniformly cooled

Flight Vacuum Case at JSC

Flight superconducting magnet coils are fully assembled:

Volume 35 cu. ft., Field 8,600 Gauss, Weight 1 ton

New Technology for superconducting magnet in space

Thermal Mechanical Pump transfers superfluid helium at zero gravity in strong magnetic field.

New Technology for superconducting magnet in space

A passive phase separator in a strong magnetic field at 1.8K and zero gravity to remove helium gas from superfluid He tank

Flight Hardware

All Flight Hardware Modules produced. Assembly complete in 2005.

Silicon Tracker

Production completed. Test results from accelerator.

y03K193_03_ca.ppt ₃₀

Silicon Tracker Flight Hardware All 8 planes (200,000 channels) have been produced

Sensor positioning (Geneva)

Ultrasonic wire bonding (ETH-Z)

RICH Test Beam Results E = 158 GeV/n

AMS-02 Calorimeter

Measuring energy of electrons and g rays

ECAL Flight Module

Energy and Angular Resolution of ECAL from test beam measurements

2005 - 2006 Assembly of all Flight Hardware onto the Superconducting Magnet

RICH

Thermal system

• Thermal-Vacuum Test at ESA (Noordwijk)

Physics examples of AMS: 1. Search for antimatter The Big Bang requires the existence of an antimatter universe

07069_2_04

Cosmic antimatter cannot be detected on earth because matter and antimatter will annihilate each other in the atmosphere

Baryon Number Violation

No data from accelerator or proton decay has yet provided evidence for baryon number violation.

$\tau > 1.6 \times 10^{33} \text{ Y}$ (e⁺ π° mode)

CP-violation

Has been observed in K_L and B only. Both results are in agreement with the Standard Model.

Need new type of CP-violation for Baryogenesis.

y94907-3 DOE01

If no antimatter is found => there is no antimatter to the edge (1000 Mpc) of universe.

The physics of antimatter in the universe is based on:

the existence of a strong Time Reversal Violation the existence of Baryon Number Violation (proton decay) Grand Unified Theory Electroweak Theory

This is the main research topic for the current and next generation of accelerators world wide

AMS and Dark Matter

The fluxes of antiprotons and positrons may be sensitive to dark matter

Strangelets: a single "super nucleon" with many u, d & s

- Stable for masses A > ~10, with no upper limit
- "Neutron" stars may be composed of one big strangelet

Searches

- with terrestrial samples low sensitivity.
- with lunar samples limited sensitivity.
- in accelerators cannot be produced at an observable rate.
- in space candidates...

Jack Sandweiss, Yale

Strangelet candidate from AMS-01

Observed 5 June 1998 11:13:16 UTC

Lat/Long= -44.38°/+23.70°, Local Cutoff 1.95±0.1 GV, Angle= 77.5° from local zenith

One of the most important measurements in cosmic ray physics

For additional physics examples, see Appendix 2

Identify gSources with AMS

Future NASA Exploration: Manned mission to Mars

Of the 26892 man-days spent in space only 303 have been in Apollo Mission outside the magnetosphere (1.1%)

Mars reference design: weight estimates

2009 Piloted Mission 1 Surface Hab with Crew Lander

Exploration payload (Earth-Return Habitat Element):

6.00 0.00 22.50 2.50 10.00 4.00 0.50 1.50	3.00 0.00 17.50 0.50 0.00 3.00 0.00	3.00 0.00 5.00 2.00 10.00 1.00 0.50
$\begin{array}{c} 0.00\\ 0.00\\ 22.50\\ 2.50\\ 10.00\\ 4.00\\ 0.50\\ 1.50\end{array}$	0.00 17.50 0.50 0.00 3.00 0.00	0.00 5.00 2.00 10.00 1.00 0.50
22.50 2.50 10.00 4.00 0.50	17.50 0.50 0.00 3.00 0.00	5.00 2.00 10.00 1.00 0.50
2.50 10.00 4.00 0.50	0.50 0.00 3.00 0.00	2.00 10.00 1.00 0.50
10.00 4.00 0.50	0.00 3.00 0.00	10.00 1.00 0.50
4.00 0.50	3.00 0.00	1.00
0.50	0.00	0.50
1 50		0.00
1.50	0.00	1.50
2.00	0.00	2.00
0.00	0.00	0.00
0.00	0.00	0.00
3.50	0.00	3.50
0.00	0.00	0.00
0.90	0.00	0.90
0.50	0.50	0.00
53.90	24.50	29.40
	0.00 3.50 0.00 0.90 0.50 53.90	0.00 0.00 3.50 0.00 0.00 0.00 0.90 0.00 0.50 0.50 53.90 24.50

Magnetic radiation protection system for Mars mission

by B. Blau, V.Choutko, S. Harrison, A. Herve, S. Horvarth, H. Hofer, H.P. Marti, I. Vetlitskiy, et al, (CERN, ETH, MIT, SCL)

with AMS technology

Weight of complete system: 30.7 ton

Discoveries in Physics

Facility	Original purpose, Expert Opinion	Discovery with Precision Instrument	
P.S. CERN (1960)	π N interactions	Neutral Currents -> Z, W	
AGS Brookhaven (1960)	π N interactions	2 kinds of neutrinos, Time reversal non-symmetry, New form of matter (4 th Quark)	
FNAL Batavia (1970)	Neutrino physics	5 th Quark, 6 th Quark	
SLAC Spear (1970)	ep, QED	Partons, 4 th Quark, 3 rd electron	
ISR CERN (1980)	PP	Increasing PP Cross section	
PETRA Hamburg (1980)	6 th Quark	Gluon	
Super Kamiokande (2000)	Proton decay	Neutrinos have mass	
Hubble Space Telescope	Galactic survey	Curvature of the universe, dark energy	

Exploring a new territory with a precision instrument is the key to discovery.