

Recent Results from MINOS

Peter Shanahan - Fermilab For the MINOS Collaboration La Thuile, March 7, 2006

Argonne · Athens · Benedictine · Brookhaven · Caltech · Cambridge · Campinas · Dubna · Fermilab College de France · Harvard · Illinois Inst. of Technology · Indiana · ITEP-Moscow · Lebedev Livermore · Minnesota-Twin Cities · Minnesota-Duluth · Oxford · Pittsburgh · Protvino
Rutherford · Sao Paulo · South Carolina · Stanford · Sussex · Texas A&M · Texas-Austin · Tufts · University College London · Western Washington · William&Mary · Wisconsin

• We hope to have a preliminary beam v oscillation result soon - *O*(1 month)

MINOS Experiment

 $1-\sin^2(2\theta)\sin^2(1.27\Delta m^2L/E)$

- Main Injector Neutrino Oscillation Search
 - Improve Δm^2 and $\sin^2(2\theta)$ measurement in v_{μ} disappearance $P(v_{\mu} \rightarrow v_{\mu}) =$
 - Improve limit on $v_{\mu} \rightarrow v_{e}$
- Long baseline: 735 km
 - Neutrino beam from Fermilab
 - > 2 Detectors: Near at FNAL, Far in Soudan, Minnesota
- Atmospheric v's in Far Detector
 - Magnetic field allows differentiation of μ^- and μ^+
 - ► Compare disappearance of v_{μ} and $\overline{v}_{\mu} \rightarrow CPT$ test

hep-ex/0512036 - to appear in Phys. Rev. D

Recent Results from MINOS

Expected MINOS Reach

- Monte Carlo sensitivities for different total Protons-on-Target (POT)
 - ▶ Total nominal run is 12x10²⁰ by 2009
 - v_{μ} disappearance: Significant step in precision on Δm^2
 - ν_e appearance (θ₁₃): Improvement over CHOOZ limit vs. POT
 ³ σ Contours

NuMI Beam

Decay Pipe

675 m

Hadron Monitor

Recent Results from MINOS

5 m

12 m

18 m

207 m

La Thuile, March 7, 2006

5

 π^+

• Neutrinos at the Main Injector

- Parabolic magnetic horns focus hadrons
- Energy spectrum tunable by changing target position

 π

30 m

Up to 10µs neutrino spill every 1.9s

Target Hall

Horns^{#2}

10 m

Target

120 GeV protons

Main Injector

MINOS Detectors

- Planes of Scintillator and Magnetized Iron
 - ▶ 2.54 cm thick Fe (~1.5 T)
 - 1 cm thick scintillator
 - 4.1 cm transverse segmentation
- Read out via Wavelength Shifting Fibers into Multi-Anode PMTs

MINOS Detectors

- Near Detector:
 - > 980t, 100m underground
 - Partially Instrumented
 - High-rate electronics
 - Strips read out at one end

• Far Detector:

- ▶ 5400 t, 710 m underground
- Fully Instrumented
- Veto Shield for Atmospheric v studies
- Strips read out at both ends

Peter Shanahan - Fermilab

v Signatures in MINOS

Peter Shanahan - Fermilab

Recent Results from MINOS

Calibration

- Near/Far and Intra-detector calibration
 - Use cosmic muon response
- Absolute calibration
 - Calibration Detector at CERN
 - 60 planes, 1m x 1m
 - p, π^{\pm} , kaons, e, μ^{\pm}
 - Compare response in Data & MC

Beam v Data Taking

Events/10¹⁸ POT

- 1st Neutrinos in January 2005
- 1st run: March 2005 February 2006
 - ► 1.4x10²⁰ Protons-on-Target
- Low Energy Spectrum:
 - Best overlap with Atmospheric Disappearance scale at 735 km baseline
- "1e20" Data set
 - First beam v oscillation analysis underway with 0.95x10²⁰ protons on target
 - May December, 2005

Analysis Sketch

Compare Far Detector v_{μ} CC spectrum to events S expectation ←No osc. Fit for Oscillation Parameters $\Delta m^2 = 2x 10^{-3} eV^2$ $-\sin^2(2\theta)=0.9$ Constrain uncertainties on expectation with External Information, Far Detector Near Detector and Beam Instrumentation MC Near Detector constraints can be explicit (fit parameters or [┎]┠_┙╄_{┿╋}╗╋╪╪┽╗╄╪┲_╈╤ adjustments to MC), or implicit (direct extrapolation to Far Detector) J. 10 20Neutrino E_{reco} (GeV) Hadron Near Interactions and Muon Detector Spectra Monitoring Far Oscillations Detector Detector Spectrum Response **External Calibration** Experiments Detector Hadron Production and Focusing

CC Event Selection

• Charge Current Pre-selection:

- Events with tracks (*CC Muon*), Vertex within fiducial volume, event timing consistent with Beam Spill.
- CC/NC Separation: Likelihood-like "PID" Based on PDFs of 3 basic reconstruction quantities

PDF PID parameter distribution for true CC and NC events

13 parameter Artificial Neural Net gives consistent results

Recent Results from MINOS

Blind Analysis

- The MINOS collaboration has instituted a Blind Analysis Policy
- Near Detector Data set is fully open (no blinding)
- Far Detector Data set is partially blinded:
 - Most events are excluded from direct study, according to an unknown function of basic energy-related reconstruction parameters
 - Permits meaningful Far Detector Data/MC comparisons for quantities that correlate weakly with neutrino energy.
 - Total sample will be opened once we are satisfied with studies

Far Detector v Timing Timing of Cosmic Ray and Neutrino Candidates Far Detector

Selected using event topology only, within 100µs window of beam

Far Detector Data: subjected to blinding

Peter Shanahan - Fermilab

Recent Results from MINOS

Far Detector Events vs. Time

• Far Detector neutrino rate tracks well with Protons on Target

MINOS PRELIMINARY

Systematic Effects

- Neutrino interactions
 - Neutrino cross sections, nuclear effects
- Detector response
 - Calibrations, detector simulation, reconstruction, event selection
- Beam modeling flux extrapolation
 - Far Detector sees point source, Near Detector sees extended source
 - Hadron production and focusing

Detailed Studies of Each Are in Progress

Detector Modeling

Number of Events 5000 5000

1000

LE BEAM

Track Angle

Axis

from Detector Entries

DATA

92645

17.92

12.39

74283

18.04

12.56

19

П мс

RMS

Entries

Mean

RMS

Chi2/NDF = 55.50/59

- Near Detector: 10s of thousands v events/day in ~ 17 t fiducial volume. Detailed studies of:
 - **Detector Response**
 - **Interaction Physics**

Beam Modeling

- Hadron Production: Fluka'05
- Hadron tracking and non-target interactions: GEANT3
- Constraints
 - External experiments, beam component modeling, hadron and muon monitors, Near Detector
 - Coming Soon: Results from MIPP - MI hadron production experiment

Tuning to Near Detector:

▶ Parameterize Fluka2005 in x_F, P_T

• Range of parent hadron (x_F, P_T) and mapping to E_v changes with beam configuration:

► Vary parameterization simultaneously in different beam configurations to maximize agreement of MC and Data

 Substantial Improvement In All Configurations
 Nominal Beam Configuration: Low Energy

Medium Energy Target Position

High Energy Target Position

MINOS Status

- Current Analysis Results soon!
 - 0.95x10²⁰ Protons-on-Target (data through Dec. 5, '05)
- 1st Run Through Feb. 26, '06
 - Start of Fermilab Shutdown
 - 1.35x10²⁰ Protons-on-Target in nominal LE beam, 6x10¹⁸ in other configurations
 - We hope for a full analysis by summer 2006
- Restart beam data taking in June '06
 - Hopefully with somewhat higher intensity

1E20: MC Statistical Uncertainty For $\Delta m^2=2.38x10^{-3} eV^2$ $sin^2(2\theta)=0.931$

Conclusions

- The MINOS experiment has been taking beam neutrino data for the past year.
- Our analysis of our first 1x10²⁰ Protons-on-target data set is well underway, with much recent progress.
- We look forward to a significant preliminary measurement of Δm^2_{23} soon.
- Analyses of v_{μ} disappearance, and many other topics, continue