Charm and Tau results from B Factories

Fabrizio Salvatore

Royal Holloway, University of London (on behalf of the BABAR and Belle collaborations)

- The BABAR and Belle experiments
- D mixing results
- $D^+_{s} \rightarrow \mu^+ \nu_{\mu}$ decay and measurement of f_{D_s}
- LFV in Tau decays
- Rare τ decays
- Study of $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ decay
- \bullet Measurement of $m^{}_{\tau}$ and test of CPT

Les Rencontres de Physique de la Vallée d'Aoste

B-Factories Detectors

Charm results from B Factories

D mixing analysis

D mixing

 \bullet D⁰ and D⁰ flavor eigenstates are not mass eigenstates

• Parameters used to characterize mixing:

• In SM mixing is expected to be small:

box diagram : x, $y \le 10^{-5}$ long - distance : $x \le y \sim 10^{-3} - 10^{-2}$

x>>y or CPV in D mixing would signal new physics

• Recent results obtained using $D^0 \rightarrow K^+\pi^-(n\pi)$ Wrong Sign events

• $K\pi$ final state <u>obtained</u> via DCS $D^0 \rightarrow K^+\pi^-(n\pi)$ or $D^0-\overline{D^0}$ mixing, followed by CF $\overline{D^0} \rightarrow K^-\pi^+(n\pi)$ decay

• The two decays can be distinguished by the decay-time distribution

Charm results from B Factories

D mixing analysis

f_{Ds} measurement using charm tagged events in e*e⁻ collisions

f_{Ds} measurement using charm tagged e*e⁻ events

• Leptonic weak decays of charmed pseudo-scalar mesons provide unambiguous determination of form factor f_M

$$\Gamma(D_{s}^{+} \rightarrow l\nu_{l}) = \frac{G_{F}^{2} |V_{cs}|^{2}}{8\pi} f_{D_{s}}^{2} m_{l}^{2} m_{D_{s}^{+}} \left(1 - \frac{m_{l}^{2}}{m_{D_{s}^{+}}^{2}}\right)^{2}$$

• Lattice QCD calculations predict $f_{D_s}/f_D = 1.24\pm0.07$ with $f_{D_s} = (249\pm17)$ MeV (PRL 95, 122002 (2005))

• Recent preliminary results improve measurement of $\Gamma(D_s^+ \to \mu v_{\mu}) / \Gamma(D_s^+ \to \phi \pi)$ and f_{D_s} • BABAR data sample: 230.2 fb⁻¹

 $, T \rightarrow \mu^{\dagger} v_{\mu}$ analysis

- Signal events: $D_s^{*+} \rightarrow \gamma D_s^{+} \rightarrow \mu^+ \nu_{\mu}$ from cc̄ events $\gamma, D_s^{+}, \mu^+, \nu_{\mu}$ lie in the same hemisphere
- Recoil system: fully reconstructed D^0 , D^+ , D_s^+ , D^{*+} ("tag")
 - Charge of signal muon uniquely identified
- Main backgrounds:
 - $e+e-\rightarrow$ ff (f=u,d,s,b, τ) without a real charm tag
 - p*(tag)>2.35 GeV/c (reject B background);
 - use tag side-bands from data
 - correctly tagged events with μ from semi-leptonic charm decay or τ decay
 - repeat analysis substituting e for μ
 - remaining bkgnds estimated from simulation

Lepton Flavor Violation

LFV with τ decays

• Search for LFV τ decays ideal probe of new physics effects

• forbidden in SM: BR $O(10^{-40})$ in SM with neutrino oscillations

τ→μγ	BR < 3.10x10 ⁻⁷ (PRL 92 (2004) 171802)		
τ →θ γ	BR < 3.90x10 ⁻⁷ (PLB 613 (2005) 22-28)		
τ→III	BR < (1.9-3.5)x10 ⁻⁷ (PLB 598 (2004) 103)		
τ →lhh'	BR < (1.6-8.0)x10 ⁻⁷ (Preliminary results)		
τ →l(π⁰,η,η')	BR < 1.5-10x10 ⁻⁷ (PLB 622 (2005) 218-228)		
τ→IV ⁰	BR < (2.0-7.7)x10 ⁻⁷ (Preliminary results)		
τ→Λπ, $\overline{\Lambda}$ π	BR < (1.4, 0.72)x10 ⁻⁷ (hep-ex/0508044)		

Fabrizio Salvatore, Le Rencontres de Physique de la Valee d'Aoste

Background estimated from M_{inv} sideband
 Extrapolate to signal region assuming flat distribution in M_{inv}

BR(
$$\tau \to eK_s^0$$
) < 5.6×10⁻⁸ (@ 90% CL)
BR($\tau \to \mu K_s^0$) < 4.9×10⁻⁸ (@ 90% CL)
hep-ex/0509014

LFV e⁺e⁻→l⁺τ⁻

Strongly suppressed in SM with heavy neutrinos

• Very sensitive to beyond SM contributions

• Experimental limits:

	\sqrt{s} (GeV)	UL (95% CL)	Publication
$\sigma_{_{\mu au}}$ / $\sigma_{_{\mu\mu}}$	29	< 6.1×10 ⁻³	PRL 66, 1007 (1991)
$\sigma_{_{e au}}$ / $\sigma_{_{\mu\mu}}$	29	<1.3×10 ⁻³	"
$BR(Z^0 \to \mu\tau, e\tau)$	92	$<(0)1 \times 10^{-5}$	Phys. Lett. 254, 293 (1991)
$\sigma_{_{\mu au}}$	>92	64 <i>fb</i>	Phys. Lett. 519, 23 (2001)
$\sigma_{_{e au}}$	>92	78 <i>fb</i>	"

• First result from BABAR at energies accessible by B Factories

• Data sample 210.6 fb⁻¹

• Four modes: $e^+e^- \rightarrow l^+\tau^-$, $l^+=e^+$, μ^+ ; $\tau^- \rightarrow \pi^- \nu_{\tau}$, $\pi^-\pi^+\pi^- \nu_{\tau}$

m_r (GeV/c²)

p^{*}_e (GeV/c)

Lepton Flavor Violation

Rare tau decays

Lepton Flavor Violation

Rare tau decays

Study of $\tau \rightarrow \pi^{-}\pi^{0}v_{\tau}$ decay

Study of
$$\tau^- \rightarrow \pi^- \pi^0 v_{\pi}$$
 decay

Decay dominated by intermediate resonances: ρ , ρ' , ρ'' Under CVC theorem, $\pi\pi^0$ mass spectrum can be used to improve theoretical error on $a_u = (g_u - 2)/2$ $F_{\pi}(s) = \frac{1}{1 + \beta + \gamma} \left(BW_{\rho} + BW_{\rho'} + BW_{\rho''} \right)$ Belle CLEO 10 G&S Fit $(\rho_{(770)} + \rho_{(1450)} + \rho_{(1700)})$ $BW_{GS} = \frac{M_i^2 + d \cdot M_i \Gamma_i(s)}{(M_i^2 - s) + f(s) - i\sqrt{s} \Gamma_i(s)}$ 1 $|\mathbf{F}_{\pi}|^2$ 10 10⁻² $a_{\mu}^{\pi\pi}[0.50, 1.80] = (462.6 \pm 0.6 \pm 3.2 \pm 2.3) \times 10^{-10}$ 10 hep-ex/0512071 1 ${}^{1.5}$ ${}^{(M_{\pi^{\pm}\pi^{0}})^{2}}$ 3 (GeV/c²)² 2.5 0.5 2 $a_{\mu}^{\pi\pi} [0.50, 1.80] = (464.0 \pm 3.0 \pm 2.3) \times 10^{-10}$ $m_{\rho} = 774.6 \pm 0.2 \pm 0.3 \text{ MeV/c}^2$ τ: ALEPH, CLEO $\Gamma_{0} = 150.6 \pm 0.3 \pm 0.5 \text{ MeV}$ $a_{\mu}^{\pi\pi}$ [0.50,1.80] = (448.3 ± 4.1 ± 1.6)×10⁻¹⁰ $m_{0'} = 1336 \pm 12 \pm 23 \text{ MeV/c}^2$ e⁺e⁻: CMD2, KLOE $\Gamma_{0'} = 471 \pm 29 \pm 21 \text{ MeV}$ Differences between $\pi\pi^0$ mass spectrum and $m_{0^{1}} = 1600 \pm 13 \pm 4 \text{ MeV/c}^2$ $\pi^+\pi^-$ mass spectrum in $e^+e^- \rightarrow \pi^+\pi^-$ reaction $\Gamma_{0''} = 255 \pm 19 \pm 79 \text{ MeV}$

Lepton Flavor Violation results

Rare tau decays

Study of $\tau^- \rightarrow \pi^- \pi^0 v_{\pi}$ decay

Measurement of τ^- mass

τ mass measurement

In SM, high precision measurements of mass, lifetime and BF of τ lepton can be used to test lepton universality

• Present limit on m_{τ} dominated by BES result (PRD 53 (1996) 20)

• Same accuracy (~0.3 MeV) can be obtained with present stat

The Analysis of τ lepton decays allows to measure separately m_{τ^+} and m_{τ^-} and test CPT theorem

• Similar test from OPAL: $(m_{\tau^+} - m_{\tau^-})/m_{avg} < 3.0 \times 10^{-3} @90\%$ CL

• High τ statistic of Belle allow significant improvement Analysis uses different technique than BES: • Define estimator of τ mass (nseudo-mass)

• Define estimator of τ mass (pseudo-mass)

$$M_{\min} = \sqrt{M_X^2 + 2(E_{beam} - E_X)(E_X - P_X)}$$

 \bullet $M_{min} \leq m_{\tau^+};$ in absence of ISR and FSR, M_{min} has an edge at m_{τ}

• Use
$$\tau \rightarrow l^{-}\nu_{1}\nu_{\tau}$$
; $\tau^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}(\pi^{0})\nu_{\tau}$ decays and fit M_{min}
 $F(X) = (p_{3}+p_{4}X)atan((X-p_{1})/p_{2}) + p_{5} + p_{6}X$

Backup Slides

$\mathcal{D}_{s}^{*} \rightarrow \mu^{*} v_{\mu}$ preliminary results

f_{D_s} result obtained normalizing to $D_s^+ \rightarrow \phi \pi^+ BF$ from PDG

$f_{D_s} = (241 \pm 16 \pm 6 \pm 30) \text{ MeV}$

$2^{-} = \pi^{-} \pi^{0} v_{\pi}$ branching fraction

- $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ selection:
- 2 or 4 charged trks with $p_T > 0.1 \text{ GeV/c}$
- Sum E_{cm} 2 highest p trks < 9.0 GeV/c
 - Removes Bhabha and $\mu^+\mu^-$ evts
- Reconstructed vtx close to IP
 - Removes beam-related bkgnd
- Highest p trk in the fiducial volume
- Cut in (M_{miss}, θ_{miss}) plane
 Removes remaining Bhabha, 2γ and μμγ evts

$$B_{h\pi^0} = (25.60 \pm 0.04 \pm 0.31)\%$$
$$B_{\pi\pi^0} = (25.15 \pm 0.04 \pm 0.31)\%$$

- Good agreement with previous measurements
- Improvement in statistical error

- $\tau \rightarrow \pi^{-}\pi^{0}\nu_{\tau}$ selection:
- Evt divided in 2 hemispheres
 - 1 trk and 1 π^0 in one hemisphere • π^0 selection: $-6.0 < \frac{m_{\gamma\gamma} - m_{\pi^0}}{2} < 5.0$

 $\sigma_{_{\gamma\gamma}}$

- π^0 bg from sideband
- π^0 momentum > 0.25 GeV/c

