Les Recontres de Physique de La Vallee d'Aoste La Thuile, Aosta Valley March 6-11, 2006

BaBar Measurements of |V_{ub}| and γ

Marcello Rotondo INFN – Padova

BaBar Collaboration

 Any New Physics that does not occur at tree level, must satisfy this (ρ,η) constraint

UTfit coll., hep-ph/0501199; Botella et al., hep-ph/0502133

Vub

Inclusive Semileptonic B-decays

Full Γ (**b** \rightarrow **ulv**) **Rate:** Operator Product Expansion (OPE) allows to extract $|V_{ub}|$ with 5% error

$$|V_{ub}| = 0.00424 \left(\frac{\mathcal{B}(B \to X_u l\nu)}{0.002} \frac{1.61 \,\mathrm{ps}}{\tau_b} \right)^{1/2} \times (1.0 \pm 0.028_{pert+nonpert} \pm 0.039_{m_b}).$$

- Apply cuts to reduce $b \rightarrow c$ background: OEP fails
 - Measure partial branching fraction ΔBr .

$$\Gamma(b \to u \ell \bar{\nu}) = \frac{1}{f_u} \cdot \frac{\Delta B r}{\tau_B}$$

b \rightarrow **u** have smaller m_X

$$\rightarrow$$
 larger $E_{lep}\&q^2$

Cut on these variables to Maximize Phase Space

- Acceptance *f_u* sensitive to Fermi motion of b-quark in meson B (needs non <u>perturbative</u> QCD computation)
- The b-quark motion is parameterized by the shape function f(k+)
 - universal function for B mesons, can be extracted from data:
 b→ sγ or b→ clv

La Thuile 06/03/2006

M. Rotondo

|V_{ub}|: E_e spectrum near end-point

- Historically first method to look for b \rightarrow u (CLEO '89): E_{lep}>2.3 GeV (f_u=8%)
- Present knowledge of $b \rightarrow c$ allows us to lower the E_{lep}

•Babar >2.0GeV (f_u=25%)

Much smaller theoretical uncertainties

•Belle >1.9GeV (f_u=30%)

Results on inclusive |V_{ub}|

- **Uncertainty on SF parameters: 4.7%**
 - $\delta m_b \sim 40 MeV$
- Other theory uncertainties: 4%
 - Subleading SF, Weak annihilation (can be constrained experimentally)
- Experimental uncertainties: 4.4%
 - Statistics: 2%
 - Detector systematics: 2.6%
 - Background modeling: 2%
 - Signal modeling: 2.2%

World average Summer 2005 $|V_{ub}|=(4.38 \pm 0.19 \pm 0.27)x10^{-3}$

La Thuile 06/03/2006

|V_{ub}|: without shape functions

- Approach based on Leibovich et.al method (LLR): hep-ph/0005124,0105066
 - f(k+) same in $B \rightarrow X\gamma$ and in $B \rightarrow X_u Iv$

decays: use directly the γ spectrum!

 Combine measurable endpoint in γ spectra with partial rate b→u below hadronic mass (m_x^{cut})

$$\frac{|V_{ub}|}{|V_{ts}|} = \begin{cases} \frac{6\alpha(1+H_{mix}^{\gamma})C_7(m_b)^2\delta\Gamma(c)}{\pi[l_0(c)+l_+(c)]} \\ l_0(c) = \int_{1-\frac{\sqrt{c}}{2}}^{1} du \frac{d\Gamma^{\gamma}}{du}i_0(u) \\ l_+(c) = \int_{1-\frac{\sqrt{c}}{2}}^{1} du \frac{d\Gamma^{\gamma}}{du}i_+(u) \\ u = 2E_{\gamma}/m_B \qquad c = (m_x^{cut}/m_B)^2 \end{cases}$$

 $δ\Gamma(c)$ is the partial b→u rate Functions i_{0,+}(u) Weight Functions

Non perturbative uncertainties of order $(\Lambda m_B/m_b m_x^{cut})^2$

|V_{ub}|: without shape functions

- Fully reconstructed B recoil analysis:
 - Clear sample & kinematics known
 - Signal extracted from fit to m_X
- Use the full hadronic mass spectra
 - Extract |V_{ub}| from OPE
 - $|V_{ub}| = (3.84 \pm 0.70_{stat} \pm 0.30_{syst} \pm 0.10_{th}) \times 10^{-3}$
- LLR, best error m_x<1.67 GeV/c²
 - $|V_{ub}| = (4.43 \pm 0.38_{stat} \pm 0.25_{syst} \pm 0.29_{th}) \times 10^{-3}$

Uncertainty from SF ightarrow statistical uncertainty

smaller uncertainty from m_b and SF models

Not yet included in HFAG

M. Rotondo

Measurement of γ with $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$

- Exploiting the **interference** among $b \rightarrow ucs$ and $b \rightarrow cus$ decay amplitude in charged B
- No Time Dependent analysis required

 $\boldsymbol{\delta}$ relative strong phase unknown

Depends on the B decay mode Large r_B , larger interference, better γ exp. precision

(Cabibbo & color) Suppressed

f D final state common to D^0 and \overline{D}^0

- -Three body $K_s \pi \pi$ (GGSZ)
- CP eigenstate (GLW)
- Double Cabibbo Suppressed mode (ADS) Not covered in this talk

From Dalitz analysis: $B^{\pm} \rightarrow D^{(*)}K^{\pm}$ with $D^{0}(K_{s}\pi\pi)$

Giri-**G**rossman-**S**offer-**Z**upan:PRD68 054018 (2003)

 $\mathbf{f} = K_S \pi \pi$ 3-body final state accessible through many different decays: **Dalitz Analysis**

fit to the interference pattern
between D^o and
$$\overline{D}^{o}$$

 $(x_{\pm}, y_{\pm})^{(*)} \equiv (\text{Re}, \text{Im})\{\mathbf{r}_{B}^{(*)}e^{\mathbf{i}(\delta_{B}^{(*)}\pm\gamma)}\}$
Converted in γ , $\delta_{B}^{(*)} \mathbf{r}_{B}^{(*)}$
 $(\gamma \text{ with a 2-fold ambiguity})$

Results with 227 million BB Combining: DK + D*K + DK* DK $r_b=0.12\pm0.08\pm0.03\pm0.04$ D*K $r_{b}=0.17\pm0.10\pm0.03\pm0.03$ DK* $r_s < 0.19$ @ 90% CL

PRL95 (2005) & hep-ex/0507101 $\gamma = (67 \pm 28_{stat} \pm 13_{syst} \pm 11_{Dalitz})^{\circ}$

Golden Mode for γ

La Thuile 06/03/2006

M. Rotondo

GLW method: $B \rightarrow D[CP-Eigenstate]K$

 $CP^{+} = \pi^{+}\pi^{-} K^{+}K^{-}$ $CP^{-} = K_{s}\pi^{0} K_{s}\phi K_{s}\omega$

Gronau-London-Wyler: PLB253, 483 PLB265,172(1991)

Select CP-even and CP-odd final state

Combined results on y

Dalitz: x₊ & y₊ **GLW:** x_+ from R_{CP} and A_{CP} **ADS:** with current statistics, limit on $r_{\rm B}$

 $\gamma_{\text{Dalitz}} = (67 \pm 33)^{\circ}$ UTfit results $\gamma_{AII} = (72 \pm 30)^{\circ}$ SM fits predicts $\gamma = (58\pm7)^{\circ}$

Small r_B from GLW -> Small improvement on $\sigma(\gamma)$ More statistics is needed!

3.5

Different path towards γ...

Measurement of sin(2\beta+\gamma) from B⁰

• Exploit mixing (2 β) and interference between b \rightarrow c and b \rightarrow u transitions (γ) in Time Dependent Analysis like B⁰(t) \rightarrow D(*) $\pi(\rho)$

- Time dependent measurement with $K^0 \rightarrow K_s$
- **r**_B from self-tagged final states $K^{*0} \rightarrow K^{-}\pi^{+}$

 $\mathcal{B}(B \to D^0 \overline{K}{}^0) ~=~ (5.3 \pm 0.7 \pm 0.3) \times 10^{-5}$ $\mathcal{B}(B \to D^{*0}\overline{K}^0) = (3.6 \pm 1.2 \pm 0.3) \times 10^{-5}$ $\mathcal{B}(\overline{B}^0 \to D^0 \overline{K}^{*0}) = (4.0 \pm 0.7 \pm 0.3) \times 10^{-5}$ $\mathcal{B}(\overline{B}^0 \to \overline{D}^0 \overline{K}^{*0}) = (0.0 \pm 0.5 \pm 0.3) \times 10^{-5}$ No evidence of $b \rightarrow u$ mode $Br(B^0 \rightarrow D^0 K^{*0}) < 1.1 \times 10^{-5} @90\% CL$

 $\Delta E [GeV]$

GeV

BABAR

 $r_{\rm B} < 0.40 @ 90\% CL$

r_B smaller than theoretical expectation (~0.4) not useful to measure γ value yet

 $^{10}b) B \rightarrow D^{*0}K_{s}$

0.01 GeV

₅₅Ea)

 $\Delta E [GeV]$

sin(2 β + γ) with B⁰ \rightarrow D^{(*)+} $a_{0(2)}^{-}$: Search for B⁰ \rightarrow D_s^{(*)+} $a_{0(2)}^{-}$

- CKM-favored is suppressed:
 - b \rightarrow c and b \rightarrow u same magnitude: **expected large r**_B
- $B^0 \rightarrow D_s^{(*)+} a_{0(2)}^-$ hep-ex/0512031
 - Constrain (assuming SU(3)) the b \rightarrow u process

		a	u
B^0 mode	n_{sig}	$\mathcal{B} \left[10^{-5} (10^{-7}) \right]$	$U.L. [10^{-5}]$
$D_{s}^{+}a_{0}^{-}$	$0.9^{+2.2}_{-1.7}$	$0.6^{+1.4}_{-1.1} \pm 0.1 \ (2.6^{+6.6}_{-5.1} \pm 0.5)$	1.9(0.09)
$D_{s}^{+}a_{2}^{-}$	$0.6\substack{+1.0 \\ -0.6}$	$6.4^{+10.4}_{-5.7} \pm 1.5 \ (4.5^{+7.3}_{-4.0} \pm 0.8)$	19(0.13)
$D_{s}^{*+}a_{0}^{-}$	$1.5^{+2.3}_{-1.8}$	$1.4^{+2.1}_{-1.6} \pm 0.3 \ (6.5^{+10.1}_{-7.8} \pm 1.2)$	3.6(0.17)
$D_{s}^{*+}a_{2}^{-}$	_	- (-)	20(0.13)

 B^0 `

Lower than expected from theory:

PLB517,125(2001),PRD67,014011(2003)

- UL suggests BR(B⁰ \rightarrow D^{(*)+} $a_{0(2)}^{-}$) too low to extract γ with present B-factories
- Revisit $B \rightarrow a_0 X$ transitions and Form-Factors
- Limit of the factorization for this decays?

La Thuile 06/03/2006

 $D^{(*)+}$

 $a_{0(2)}$

$B^{0}\rightarrow D^{0}/\overline{D}^{0} K^{+}\pi^{-}$

- Principle similar to GLW: CP eigenstate isospin analysis to extract γ
 - CKM suppressed b→ucs include color-allowed diagrams
 - Expected large rate and large CP violation
 - Dalitz analysis allow to resolve δ , reduce ambiguity to 2-fold

PRL96, 011803(2006) $\mathcal{B}(B^0 \to \overline{D}^0 K^+ \pi^-) = (88 \pm 15 \pm 9) \times 10^{-6}$ $\mathcal{B}(B^0 \to \overline{D}^0 K^* (892)^0) \cdot \mathcal{B}(K^* (892)^0 \to K^+ \pi^-)$ $= (38 \pm 6 \pm 4) \times 10^{-6}$ $\mathcal{B}(B^0 \to D_2^* (2460)^- K^+) \cdot \mathcal{B}(D_2^* (2460)^- \to \overline{D}^0 \pi^-)$ $= (18.3 \pm 4.0 \pm 3.1) \times 10^{-6}$

 $BR(B^0 \rightarrow D^0 K^+ \pi^-) < 19 \times 10^{-6} 90\% CL$

- No significant CKM-suppressed component
- CP violation effects smaller than expected
- Not useful for $\boldsymbol{\gamma}$ extraction yet

R.Aleksan et.al

PRD67,096002(2003)

PLB557,198(2003)

Conclusions

- Many different and independent techniques to extract |V_{ub}| and γ
- The shape function is one of most relevant systematic uncertainty on |V_{ub}|
 - First |V_{ub}| extraction with reduced shape function dependence!

- GLW methods can improves the γ extraction: more modes and statistics is needed
- Many other alternative methods have been evaluated:
 - Less promising than theoretical expectation

La Thuile 06/03/2006