Les Recontres de Physique de La Vallee d'Aoste

La Thuile, Aosta Valley March 6-11, 2006

BaBar Measurements

of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and γ

Marcello Rotondo
INFN - Padova
INFN

BaBar Collaboration

V_{ub} and the Unitarity Triangle

L.Silvestrini LP2005

- γ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from tree level processes
- Any New Physics that does not occur at tree level, must satisfy this $(\bar{\rho}, \eta)$ constraint

UTfit coll., hep-ph/0501199;
Botella et al., hep-ph/0502133

$\left|\mathrm{V}_{\mathrm{ub}}\right|$

Inclusive Semileptonic B-decays

- Apply cuts to reduce $\mathbf{b} \rightarrow \mathbf{c}$ background: OEP fails
- Measure partial branching fraction $\Delta B r$:

$$
\Gamma(b \rightarrow u \ell \bar{\nu})=\frac{1}{f_{u}} \cdot \frac{\Delta B r}{\tau_{B}}
$$

- Acceptance \boldsymbol{f}_{u} sensitive to Fermi motion of b-quark in meson B (needs non perturbative QCD computation)
- The b-quark motion is parameterized by the shape function $f\left(k_{+}\right)$
- universal function for B mesons, can be extracted from data:

$$
\mathrm{b} \rightarrow \mathrm{~s} \gamma \text { or } \mathrm{b} \rightarrow \mathrm{clv}
$$

$\left|\mathrm{V}_{\mathrm{ub}}\right|: \mathrm{E}_{\mathrm{e}}$ spectrum near end-point

- Historically first method to look for $b \rightarrow u\left(C L E O\right.$ '89): $E_{l e p}>2.3 \mathrm{GeV}\left(f_{u}=8 \%\right)$
- Present knowledge of $b \rightarrow c$ allows us to lower the $E_{\text {lep }}$
- Much smaller theoretical uncertainties

$$
\text { -Babar >2.0GeV (f } \left.\mathrm{f}_{\mathrm{u}}=25 \%\right)
$$

-Belle $>1.9 \mathrm{GeV}$ ($\mathrm{f}_{\mathrm{u}}=30 \%$)

Results on inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$

- Uncertainty on SF parameters: 4.7\%
- $\delta \mathrm{m}_{\mathrm{b}} \sim 40 \mathrm{MeV}$
- Other theory uncertainties: 4%
- Subleading SF, Weak annihilation (can be constrained experimentally)
- Experimental uncertainties: 4.4%
- Statistics: 2\%
- Detector systematics: 2.6\%
- Background modeling: 2\%
- Signal modeling: 2.2\%

World average Summer 2005

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|=(4.38 \pm 0.19 \pm 0.27) \times 10^{-3}
$$

$\left|\mathrm{V}_{\mathrm{ub}}\right|$: without shape functions

- Approach based on Leibovich et.al method (LLR): hep-ph/0005124,0105066
- $f(k+)$ same in $B \rightarrow X \gamma$ and in $B \rightarrow X_{u} l v$ decays: use directly the γ spectrum!

- Combine measurable endpoint in γ spectra with partial rate $\mathrm{b} \rightarrow \mathrm{u}$ below hadronic mass ($m_{x}{ }^{\text {cut }}$)

$$
\begin{aligned}
& \frac{\left|V_{u b}\right|}{\left|V_{t s}\right|}=\left\{\frac{6 \alpha\left(1+H_{m i x}^{\gamma}\right) C_{7}\left(m_{b}\right)^{2} \delta \Gamma(c)}{\pi\left[l_{0}(c)+I_{+}(c)\right]}\right\}^{\frac{1}{2}} \\
& I_{0}(c)=\int_{1-\frac{\sqrt{c}}{2}}^{1} d u \frac{d \Gamma^{\gamma}}{d u} i_{0}(u) \\
& I_{+}(c)=\int_{1-\frac{\sqrt{c}}{2}}^{1} d u \frac{d \Gamma^{\gamma}}{d u} i_{+}(u) \\
& u=2 E_{\gamma} / m_{B} \quad c=\left(m_{x}^{c u t} / m_{B}\right)^{2}
\end{aligned}
$$

$\delta \Gamma(c)$ is the partial $b \rightarrow u$ rate
Functions $\mathrm{i}_{0,+}(\mathrm{u})$ Weight Functions

Non perturbative uncertainties of $\operatorname{order}\left(\Lambda m_{B} / m_{b} m_{x}{ }^{\text {cut }}\right)^{2}$

$\left|\mathrm{V}_{\mathrm{ub}}\right|$: without shape functions

hep-ex/0601046 88×10^{6} BB

- Fully reconstructed B recoil analysis:
- Clear sample \& kinematics known
- Signal extracted from fit to m_{X}
- Use the full hadronic mass spectra

- Extract $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from OPE
$-\left|\mathrm{V}_{\text {ub }}\right|=\left(3.84 \pm 0.70_{\text {stat }} \pm 0.30_{\text {syst }} \pm 0.1\right.$
LLR, best error $\mathrm{m}_{\mathrm{x}}<1.67 \mathrm{GeV} / \mathbf{c}^{2}$

$$
-\left|\mathrm{V}_{\mathrm{ub}}\right|=\left(4.43 \pm 0.38_{\text {stat }} \pm 0.25_{\text {syst }} \pm 0.29_{\mathrm{th}}\right) \times 10^{-3}
$$

Uncertainty from SF \rightarrow statistical uncertainty

 smaller uncertainty from m_{b} and SF modelsNot yet included in HFAG

γ

Measurement of γ with $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \mathbf{K}^{(*) \pm}$

- Exploiting the interference among $b \rightarrow \bar{C} s$ and $b \rightarrow c \bar{u} s$ decay amplitude in charged B
- No Time Dependent analysis required

(Cabibbo \& color) Suppressed

δ relative strong phase unknown

Size of CP asymmetry

$r_{B}=\frac{\left|A\left(B^{+} \rightarrow D^{0} K^{+}\right)\right|}{\left|A\left(B^{+} \rightarrow \bar{D}^{\circ} K^{+}\right)\right|} \approx \frac{\left|V_{u b} \| V_{c s}\right|}{\left|V_{c b} \| V_{u s}\right|} \cdot f_{C O L} \approx 0.10$
Depends on the B decay mode
f \mathbf{D} final state common to D^{0} and $\overline{\mathrm{D}}^{0}$
-Three body $\mathrm{K}_{\mathrm{s}} \pi \pi$ (GGSZ)

- CP eigenstate (GLW)
- Double Cabibbo Suppressed mode Not covered in this talk

Large r_{B}, larger interference, better γ exp. precision

From Dalitz analysis: $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{(*)} \mathbf{K}^{ \pm}$with $\mathrm{D}^{0}\left(\mathrm{~K}_{\mathrm{s}} \pi \pi\right)$

Giri-Grossman-Soffer-Zupan:PRD68 054018 (2003)
$\mathbf{f}=\mathrm{K}_{S} \pi \pi$ 3-body final state accessible through many different decays: Dalitz Analysis

2
fit to the interference pattern between D^{0} and $\overline{\mathrm{D}^{0}}$ \downarrow

$$
\left(x_{ \pm}, y_{ \pm}\right)^{(*)} \equiv(\operatorname{Re}, \operatorname{Im})\left\{\mathrm{r}_{\mathrm{B}}^{(*)} e^{\mathrm{i}\left(\delta_{\mathrm{B}}^{(*)} \pm \gamma\right)}\right\}
$$

Converted in $\gamma, \delta_{\mathrm{B}}{ }^{(*)} \mathrm{r}_{\mathrm{B}}{ }^{(*)}$
(γ with a 2-fold ambiguity)
Results with 227 million BB
Combining: DK + D*K + DK*
$D K r_{b}=0.12 \pm 0.08 \pm 0.03 \pm 0.04$
$D * K r_{b}=0.17 \pm 0.10 \pm 0.03 \pm 0.03$ $D K^{*} r_{s}<0.19 @ 90 \%$ CL

PRL95 (2005) \& hep-ex/0507101
$\gamma=\left(67 \pm 28_{\text {stat }} \pm 13_{\text {syst }} \pm 11_{\text {Dalitz }}\right)^{\circ}$
Golden Mode for γ

GLW method: $\mathrm{B} \rightarrow \mathrm{D}[\mathrm{CP}-$ Eigenstate]K

Gronau-London-Wyler: PLB253, 483 PLB265,172(1991)
$\mathrm{CP}^{+}=\pi^{+} \pi^{-} \mathrm{K}^{+} \mathrm{K}^{-}$
$C P^{-}=K_{s} \pi^{0} \quad K_{s} \phi \quad K_{s} \omega$

Select CP-even and CP-odd final state

Theoretically clean but
8 -fold ambiguity
3 ind. observables
3 unknown: $\mathbf{r}_{\mathrm{B}}, \boldsymbol{\delta}_{\mathrm{B}}, \boldsymbol{\gamma}$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{CP} \pm} \equiv \frac{\Gamma\left(B^{-} \rightarrow \mathrm{D}_{ \pm} K^{-}\right)-\Gamma\left(B^{+} \rightarrow \mathrm{D}_{ \pm} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow \mathrm{D}_{ \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \mathrm{D}_{ \pm} K^{+}\right)}=\frac{ \pm 2 \mathrm{r}_{\mathrm{B}} \sin \left(\delta_{\mathrm{B}}\right) \sin (\gamma)}{\mathrm{R}_{\mathrm{CP} \pm}} \\
& \mathrm{R}_{\mathrm{CP} \pm} \equiv \frac{\Gamma\left(B^{-} \rightarrow \mathrm{D}_{ \pm} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \mathrm{D}_{ \pm} K^{+}\right)}{\left[\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)\right] / 2}=1+\mathrm{r}_{\mathrm{B}}^{2} \pm 2 \mathrm{r}_{\mathrm{B}} \cos \left(\delta_{\mathrm{B}}\right) \cos (\gamma)
\end{aligned}
$$

- DATA
$\cdots \cdot \mathrm{B} \rightarrow \mathrm{D}_{\mathrm{CP}}^{0} \mathrm{~K}$
$\cdots \cdots \mathrm{B} \rightarrow \mathrm{D}_{\mathrm{CP} .}^{0} \pi$
..... background

$\Delta E(\mathrm{GeV})$

hep-ex/0512067 232 million of BB

D^{0} mode	$R_{C P}$	$A_{C P}$
$C P+$	$0.90 \pm 0.12 \pm 0.04$	$0.35 \pm 0.13 \pm 0.04$
$C P-$	$0.86 \pm 0.10 \pm 0.05$	$-0.06 \pm 0.13 \pm 0.04$

CP observables expressed in $x_{ \pm}$to allow a direct comparison with Dalitz results

$$
\begin{aligned}
& x_{+}=-0.082 \pm 0.053(\text { stat }) \pm 0.018(\text { syst }), \\
& x_{-}=+0.102 \pm 0.062(\text { stat }) \pm 0.022(\text { syst }), \\
& r^{2}=-0.12 \pm 0.08(\text { stat }) \pm 0.03(\text { syst })
\end{aligned}
$$

- results on $\mathrm{x}_{ \pm}$consistent with Dalitz analysis both in central value and in error

Combined results on γ

Dalitz: $x_{ \pm} \& y_{ \pm}$
GLW: $x_{ \pm}$from $R_{C P}$ and $A_{C P}$
ADS: with current statistics, limit on r_{B}

$$
\begin{aligned}
& \gamma_{\text {Dalitz }}=(67 \pm 33)^{\circ} \quad \text { UTfit results } \\
& \gamma_{\text {All }}=(72 \pm 30)^{\circ} \quad \text { SM fits predicts } \gamma=(58 \pm 7)^{\circ}
\end{aligned}
$$

Small r_{B} from GLW -> Small improvement on $\sigma(\gamma)$ More statistics is needed!

\times BaBar Only
Thanks to M.Pierini

Different path
 towards $\gamma \ldots$

Measurement of $\boldsymbol{\operatorname { s i n }}(2 \beta+\gamma)$ from B^{0}

- Exploit mixing (2 2) and interference between $b \rightarrow c$ and $b \rightarrow u$ transitions (γ) in Time Dependent Analysis like $B^{0}(t) \rightarrow D\left({ }^{*}\right) \pi(\rho)$

$$
\begin{aligned}
& \text { Sensitivity depends on } \\
& \qquad \mathbf{r}=|\mathbf{A}(\mathbf{b} \rightarrow \mathbf{u}) / \mathbf{A}(\mathbf{b} \rightarrow \mathbf{c})|
\end{aligned}
$$

Different possible final state f
hep-ex/0602049 \& PRD71,112003(2005)

$$
\begin{aligned}
& -\mathrm{f}=\mathrm{D}\left(^{*}\right) \pi(\rho) \\
& -\mathrm{f}=\mathrm{D}\left(^{*}\right) \mathrm{K}\left({ }^{*}\right) 0 \\
& -\mathrm{f}=\mathrm{D}\left(^{*}\right) \mathrm{a}_{0(2)} \\
& -\mathrm{f}=\mathrm{DK} \pi
\end{aligned}
$$

Large $B R$
but $r \sim 0.02$ small
asymmetry

Small BR, but expected $\mathrm{r} \sim \mathrm{O}(1)$
Large asymmetry

$\sin (2 \beta+\gamma)$ with $B^{0} \rightarrow D^{(*) 0} K^{(*) 0}$

PRL78,3257(1997)
PRD61,116013(2001)
\bar{B}^{0}

- Both diagrams color suppressed: expected large asymmetry
- Time dependent measurement with $\mathrm{K}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}}$
- r_{B} from self-tagged final states $\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{-} \pi^{+}$

$$
\begin{aligned}
\mathcal{B}\left(B \rightarrow D^{0} \bar{K}^{0}\right) & =(5.3 \pm 0.7 \pm 0.3) \times 10^{-5} \\
\mathcal{B}\left(B \rightarrow D^{* 0} \bar{K}^{0}\right) & =(3.6 \pm 1.2 \pm 0.3) \times 10^{-5} \\
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \bar{K}^{* 0}\right) & =(4.0 \pm 0.7 \pm 0.3) \times 10^{-5} \\
\mathcal{B}\left(\bar{B}^{0} \rightarrow \bar{D}^{0} \bar{K}^{* 0}\right) & =(0.0 \pm 0.5 \pm 0.3) \times 10^{-5}
\end{aligned}
$$

No evidence of $b \rightarrow u$ mode
$\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}\right)<1.1 \times 10^{-5} @ 90 \% \mathrm{CL}$

$$
\mathbf{r}_{\mathrm{B}}<0.40 @ 90 \% \mathrm{CL}
$$

r_{B} smaller than theoretical expectation (~0.4) not useful to measure γ value yet

$\sin (2 \beta+\gamma)$ with $B^{0} \rightarrow D^{(*)+} a_{0(2)}$: Search for $B^{0} \rightarrow D_{s}^{(*)+} a_{0(2)}$

- CKM-favored is suppressed:

- $b \rightarrow c$ and $b \rightarrow u$ same magnitude: expected large r_{B}

- $\mathbf{B}^{0} \rightarrow \mathrm{D}_{\mathbf{s}}{ }^{(*)+} \mathrm{a}_{0(2)} \quad$ hep-ex/0512031
- Constrain (assuming $\operatorname{SU}(3)$) the $b \rightarrow u$ process

B^{0} mode	$n_{\text {sig }}$	$\mathcal{B}\left[10^{-5}\left(10^{-7}\right)\right]$	U.L. $\left[10^{-5}\right]$
$D_{s}^{+} a_{0}^{-}$	$0.9_{-1.7}^{+2.2}$	$0.6_{-1.1}^{+1.4} \pm 0.1\left(2.6_{-5.1}^{+6.6} \pm 0.5\right)$	1.9 (0.09)
$D_{s}^{+} a_{2}^{-}$	$0.6{ }_{-0.6}^{+1.0}$	$6.44_{-5.7}^{+10.4} \pm 1.5 \quad(4.5-4.0 \pm 0.8)$	19 (0.13)
$D_{s}^{*+} a_{0}^{-}$	$1.5{ }_{-1.8}^{+2.3}$	$1.4_{-1.6}^{+2.1} \pm 0.3 \quad\left(6.5_{-7.8}^{+10.1} \pm 1.2\right)$	3.6 (0.17)
$D_{s}^{*+} a_{2}^{-}$	-	- (-)	20 (0.13)

Lower than expected from theory:

- UL suggests $\mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{(*)+} \mathrm{a}_{0(2)}\right)$ too low to extract γ with present B-factories
- Revisit $B \rightarrow a_{0} X$ transitions and Form-Factors
- Limit of the factorization for this decays?

$\mathbf{B}^{0} \rightarrow \mathbf{D}^{0} / \overline{\mathbf{D}}^{0} \mathbf{K}^{+} \boldsymbol{\pi}^{-}$

- Principle similar to GLW: CP eigenstate isospin analysis to extract γ
- CKM suppressed $\mathrm{b} \rightarrow$ ucs include color-allowed diagrams
- Expected large rate and large CP violation
R.Aleksan et.al

PRD67,096002(2003)
PLB557,198(2003)

- Dalitz analysis allow to resolve δ, reduce ambiguity to 2-fold

PRL96, 011803(2006)

$$
\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{+} \pi^{-}\right)=(88 \pm 15 \pm 9) \times 10^{-6}
$$

$$
\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} K^{*}(892)^{0}\right) \cdot \mathcal{B}\left(K^{*}(892)^{0} \rightarrow K^{+} \pi^{-}\right)
$$

$$
=(38 \pm 6 \pm 4) \times 10^{-6}
$$

$$
\mathcal{B}\left(B^{0} \rightarrow D_{2}^{*}(2460)^{-} K^{+}\right) \cdot \mathcal{B}\left(D_{2}^{*}(2460)^{-} \rightarrow \bar{D}^{0} \pi^{-}\right)
$$

$$
=(18.3 \pm 4.0 \pm 3.1) \times 10^{-6}
$$

$\mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{+} \pi^{-}\right)<19 \mathrm{x} 10^{-6} 90 \% \mathrm{CL}$

- No significant CKM-suppressed component
- CP violation effects smaller than expected
- Not useful for γ extraction yet

Conclusions

- Many different and independent techniques to extract $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and γ
- The shape function is one of most relevant systematic uncertainty on $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- First $\left|\mathrm{V}_{\mathrm{ub}}\right|$ extraction with reduced shape function dependence!

2008

- Dalitz gives the best sensitivity to γ :
- GLW methods can improves the γ extraction: more modes and statistics is needed
- Many other alternative methods have been evaluated:
- Less promising than theoretical expectation

