?/f ₃ determination at *B*-factories

?+i?

a/f,

ß/f

A. Poluektov Budker Institute of Nuclear Physics Novosibirsk, Russia

- CKM matrix and unitarity triangle
- GLW method

?/f

- ADS method
- Dalitz analysis method
- $\sin(2\beta + ?)$

Measurement of $f_{3}/?$

Weak decays and ??? matrix

quark decay Coupling constant gCabibbo-Kobayashi-Maskawa i gV_{ii} mixing matrix V_{ii} Unitarity: $V_{ii}^* V_{ik} = d_{ik}$ quark decay gV_{ii}^{*} V_{ii} parameterization (Wolfenstein): $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - l^2 / 2 & l & Al^3 (r - ih) \\ -l & 1 - l^2 / 2 & Al^2 \\ Al^3 (1 - r - ih) & -Al^2 & 1 \end{pmatrix}$

 $\lambda = 0.2235 \pm 0.0033 \quad A = 0.81 \pm 0.08 \quad |\rho - i\eta| = 0.36 \pm 0.09 \quad |1 - \rho - i\eta| = 0.79 \pm 0.19$

La Thuile 2006

Measurement of $f_{3}/?$ Unitarity triangle

 $\sin 2f_1(\beta)$ is measured with a good accuracy at B-factories. Measurement of all the angles needed to test SM.

A. Poluektov Measurement of $f_3/?$ Constraints of the Unitarity Triangle

World average as of summer 2005 from GLW, ADS, Dalitz and $sin(2f_1+f_3)$: $?/f_3=70^{+12}_{-14}$

Measurement of *f*₃/? PEP-II and BaBar

Measurement of *f* ₃/? KEKB and Belle

$B^+ \textcircled{R} D^0 K^+ \operatorname{decay}$

Need to use the decay where V_{ub} contribution interferes with another weak vertex.

La Thuile 2006

Measurement of *f*₃/?

4 equations (3 independent: $A_1R_1 = -A_2R_2$), 3 unknowns (r_B, d, g)

Measurement of f_{3} ? GLW method (BaBar)

BaBar results (211 fb⁻¹) $B^{\pm} \otimes DK^{\pm}$ decay:

hep-ex/0512067, hep-ex/0507002, PRD **72**, 071103

	R	A	
$B \otimes D_{CP+} K$	$0.90 \pm 0.12 \pm 0.04$	$0.35 \pm 0.13 \pm 0.04$	s/(0.01.C
B® D _{CP-} K	$0.86 \pm 0.10 \pm 0.05$	$-0.06 \pm 0.13 \pm 0.03$	Fvent

 $r_B^2 = -0.12 \pm 0.08(\text{stat}) \pm 0.03(\text{syst})$

$B^{\pm} \otimes DK^{*\pm}$, $K^{*\pm} \otimes K_{S} p^{\pm}$ decay:

	R	A
$B \otimes D_{CP+} K^*$	$1.96 \pm 0.40 \pm 0.11$	$-0.08 \pm 0.19 \pm 0.08$
$B \otimes D_{CP} K^*$	$0.65 \pm 0.26 \pm 0.08$	$-0.26 \pm 0.40 \pm 0.12$

 $r_B^2 = 0.30 \pm 0.25$

See talk by Marcello Rotondo "V_{ub} and ? at BaBar"

GLW method (Belle)

Belle results (253 fb⁻¹)

hep-ex/0601032

GLW analyses alone do not constrain $?/f_3$ significantly yet, but

- can be combined with other measurements
- provide information on r_B

Measurement of f_{3} ? ADS method

D. Atwood, I. Dunietz and A. Soni, PRL **78**, 3357 (1997); PRD **63**, 036005 (2001)

Enhancement of ??-violation due to use of Cabibbo-suppressed D decays

ADS method (Belle)

Belle results (357 fb⁻¹)

hep-ex/0508048

. Belle Dalitz analysis

$$R_{DK} = \frac{Br(B \to D_{supp}K)}{Br(B \to D_{fav}K)} = r_B^2 + r_D^2 + 2r_Br_D\cos j_3\cos d$$
$$r_D = \left| \mathbf{A}(D^0 \to K^+ p^-) / \mathbf{A}(D^0 \to K^- p^+) \right|$$

≚^{0.08} ≃ 0.07 Suppressed channel not visible yet: $0^{\circ} < \phi_3 < 180^{\circ}, 0.054 < r_D < 0.066 (2\sigma)$ $0^{\circ} < \phi_3 < 180^{\circ}, r_0 = 0.06$ $R_{DK} = (0.0^{+8.4}_{-7.9} \pm 1.0) \times 10^{-3}$ 0.06 $47^{\circ} < \phi_3 < 75^{\circ}, r_{\rm D} = 0.06$ 0.05 (CKMFitter 20 bound 0.04 BABAR (90% C 0.03 Using $r_{\rm D}$ =0.060±0.003, 0.02 This analysis (90% C.L for maximum mixing ($f_3=0$, $d=180^\circ$): 0.01 $r_{R} < 0.18 \ (90\% \ \text{CL})$ 0 0 0.05 0.1 0.15 0.25 0.35 0.2 0.4 0.3 BABAR Dalitz analysis r_B

$\frac{\text{Measurement of } f_{3}/?}{\text{ADS method (BaBar)}}$

BaBar results (211 fb⁻¹)

hep-ex/0504047, PRD 72, 032004

Suppressed channel not visible either:

Like in GLW analyses, no significant constraint on $?\!/{\rm f}_{\rm 3'}$ but upper limit on $r_{\rm B}$

Measurement of f_{3} ? Dalitz analysis method

A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)A. Bondar, Proc. of Belle Dalitz analysis meeting, 24-26 Sep 2002.

$$\tilde{D}^{0} \rangle = |D^{0}\rangle + re^{iq} |\overline{D}^{0}\rangle$$
Using 3-body final state, identical for D^{0} and \overline{D}^{0} : $K_{s}p^{+}p^{-}$.
Dalitz distribution density: $ds(m_{K_{s}p^{+}}^{2}, m_{K_{s}p^{-}}^{2}) \propto |\mathbf{A}|^{2} dm_{K_{s}p^{+}}^{2} dm_{K_{s}p^{-}}^{2}$

$$|\mathbf{A}(m_{K_{s}p^{+}}^{2}, m_{K_{s}p^{-}}^{2})|^{2} = |\mathbf{A}(m_{K_{s}p^{+}}^{2}, m_{K_{s}p^{+}}^{2}, m_{K_{s}p^{-}}^{2})|^{2} = |\mathbf{A}(m_{K_{s}p^{+}}^{2}, m_{K_{s}p^{-}}^{2})|^{2} = |\mathbf{A}(m_{K_{s}p^{+}}^{2}, m_{K_{s}p^{+}}^{2}, m_{K_$$

(assuming ??-conservation in D^0 decays)

If $f(m_{K_sp^+}^2, m_{K_sp^-}^2)$ is known, parameters $(r_B, \boldsymbol{d}, \boldsymbol{g})$ are obtained from the fit to Dalitz distributions of $D \ \mathcal{B} \ K_s p^+ p^-$ from $B^{\pm} \ \mathcal{B} D \ K^{\pm}$ decays

A. Poluektov

Measurement of $f_{3}/?$

Dalitz analysis: $D^0 \otimes K_s p^+ p^-$ decay

Statistical sensitivity of the method depends on the properties of the 3-body decay involved.

(For $|M|^2 = Const$ there is no sensitivity to the phase ?) Large variations of D^0 decay strong phase are essential

Use the model-dependent fit to experimental data from flavor-tagged $D^* @D^0 p$ sample.

Model is described by the set of two-body amplitudes + flat nonresonant term.

As a result, model uncertainty in the $?/f_3$ measurement.

A. Poluektov Measurement of $f_3/?$ Dalitz analysis: sensitivity to the phase

La Thuile 2006

Measurement of $f_{3}/?$

Dalitz analysis (BaBar)

hep-ex/0504039, PRL **95**, 121802 hep-ex/0507101

Fit parameters are $x_{\pm} = r \cos(\pm ?+d)$ and $y_{\pm} = r \sin(\pm ?+d)$ (better behaved statistically than r, d, g) r, d, g are obtained from frequentist statistical treatment based on PDFs from toy MC simulation.

A. Poluektov Measurement of $f_3/?$ Dalitz analysis (BaBar)

Model uncertainty from pp s-wave estimated with K-matrix formalism: 3°. Nonresonant contribution in $B^{\pm} @DK^{*\pm}$ is treated by introducing additional free parameter 0<?<1 accounting for $B^{\pm} @DK_{S}p^{\pm}$ contribution.

Combined for 3 modes: ?=67°±28°±13° (syst)±11° (model)

Measurement of $f_3/?$ Dalitz analysis (Belle)

New! Preliminary!

5-11 March 2006

La Thuile 2006

Measurement of $f_{3}/?$

Dalitz analysis (Belle)

5-11 March 2006

La Thuile 2006

Measurement of f_{3} ? Dalitz analysis (Belle)

Combined for 3 modes: $f_3 = 53^{\circ} + 15_{-18} \pm 3^{\circ}$ (syst) $\pm 9^{\circ}$ (model) $8^{\circ} < f_3 < 111^{\circ}$ (2s interval) $r_{DK} = 0.159^{+0.054}_{-0.050} \pm 0.012$ (syst) ± 0.049 (model) CPV significance: 78% $r_{D^*K} = 0.175^{+0.108}_{-0.099} \pm 0.013$ (syst) ± 0.049 (model) $r_{DK^*} = 0.564^{+0.216}_{-0.155} \pm 0.041$ (syst) ± 0.084 (model)

5-11 March 2006

La Thuile 2006

 $\frac{\text{Measurement of } f_3/?}{\sin(2f_1 + f_3) \text{ (Belle)}}$

Belle result (357 fb⁻¹) New! Preliminary! $B^{0}(\overline{B}^{0}) \rightarrow D^{(*)^{\mp}} p^{\pm}$ - full reconstruction $B^{0}(\overline{B}^{0}) \rightarrow D^{*\mp} p^{\pm}$ with $D^{*\mp} \rightarrow D^{0} p^{\pm}$ - partial reconstruction (reconstruct only pions) 50 400 9200 ਰ ਇ (a) (b) 45 50160 π⁻/ 50140 study 120 study 120 study 100 st 400 π⁻**/** 40 350 35 300 a000 30 250 .×800 25 200 20 80 600 150 15 60 400 100 10 40 200 50 5 20 0 -15 -15 -10 -5 0 5 10 15 -10 -5 0 5 10 15 0.2-0.15-0.1-0.05 -0 0.05 0.1 0.15 0.2 -0.2-0.15-0.1-0.05 -0 0.05 0.1 0.15 0.2 ∆t(ps) ∆t(ps) ∆z [cm] ∆z [cm] 450 ਬ400 ਬ੍ਰਿ200 π+1 D*p partial rec (c) (d) 45 400 D*p full rec 350 300 ā000 ដ្ហី120 5 800 250 **آ**م 200 20 600 80 150 15 60 400 100 10 40 200 50 20 -15 -15 -10 0-0.2-0.15-0.1-0.05 -0 0.05 0.1 0.15 0.2 -5 0 10 -10 -5 0 10 -0.2-0.15-0.1-0.05 -0 0.05 0.1 0.15 0.2 5 15 5 15 ∆t(ps) ∆t(ps) ∆z [cm] ∆z [cm]

La Thuile 2006

Measurement of $f_{3}/?$

$sin(2f_1+f_3)$ (Belle)

 $S^{+}(D^{*}p)=0.049\pm0.020\pm0.011$ $S^{-}(D^{*}p)=0.031\pm0.019\pm0.011$ $S^{+}(Dp)=0.031\pm0.030\pm0.012$ $S^{-}(Dp)=0.068\pm0.029\pm0.012$

CP violation significance: 2.5s

If $R \sim 0.02$: $B^{0}(\overline{B}^{0}) \rightarrow D^{*\mp} p^{\pm}$ $|\sin(2f_{1}+f_{3})| > 0.46 (0.13)$ $B^{0}(\overline{B}^{0}) \rightarrow D^{\mp} p^{\pm}$ $|\sin(2f_{1}+f_{3})| > 0.48 (0.07)$ at 68% (95%) CL

$\frac{\text{Measurement of } f_{3}}{\sin(2\beta+2)} \text{ (BaBar)}$

BaBar result (211 fb⁻¹)

$$S^{\pm} = a_f \pm c_f$$
, where
 $a_f = 2r_f \sin(2\mathbf{b} + \mathbf{g}) \cos \mathbf{d}_f$
 $c_{f,lep} = 2r_f \cos(2\mathbf{b} + \mathbf{g}) \sin \mathbf{d}_f$
Full reconstruction:

 $a^{Dp} = -0.013 \pm 0.022(\text{stat}) \pm 0.007(\text{syst})$ $a^{D^*p} = -0.043 \pm 0.023(\text{stat}) \pm 0.010(\text{syst})$ $a^{Dr} = -0.024 \pm 0.031(\text{stat}) \pm 0.010(\text{syst})$

 $c_{lep}^{Dp} = -0.043 \pm 0.042 (\text{stat}) \pm 0.011 (\text{syst})$ $c_{lep}^{D^*p} = 0.047 \pm 0.042 (\text{stat}) \pm 0.015 (\text{syst})$ $c_{lep}^{Dr} = -0.098 \pm 0.055 (\text{stat}) \pm 0.019 (\text{syst})$

Partial reconstruction:

 $a^{D^*p} = -0.034 \pm 0.014(\text{stat}) \pm 0.009(\text{syst})$ $c^{D^*p}_{lep} = -0.025 \pm 0.020(\text{stat}) \pm 0.013(\text{syst})$

hep-ex/0602049, EPS-2005

5-11 March 2006

La Thuile 2006

Measurement of $f_{3}/?$

$sin(2\beta+?)$ (BaBar)

Combine partial and full reconstruction results for the a and c_{lep} parameters and use the r_f value from SU(3) symmetry

 $|\sin(2\beta + \gamma)| > 0.64 @ 68 \% C.L.$ $|\sin(2\beta + \gamma)| > 0.42 @ 90 \% C.L.$

See talk by Marcello Rotondo later today for more details

 $|2\beta + \gamma| = 90^\circ \pm 43^\circ$

Measurement of $f_3/?$

The angle $?/f_{3}$ remains the most difficult angle of the Unitarity Triangle to measure, although B-factories are working hard.

Many new analyses appeared since summer conferences:

- GLW method (Belle and BaBar)
- Dalitz analysis (Belle)
- $sin(2f_1+f_3)$ (Belle)
- See talk by Marcello Rotondo for more hot BaBar results

Good perspectives with higher statistics since the theoretical uncertainties are very low.

Measurement of $f_3/?$

Measurement of f_{3} ? ADS method

$$Br(B^{\pm} \rightarrow D_{\text{supp}}K^{\pm}) = [r_B^2 + r_D^2 + 2r_Br_D\cos(\pm \boldsymbol{j}_3 + \boldsymbol{d})]|\mathbf{A}_B|^2 |\mathbf{A}_D|^2$$

$$r_{B} = \left| \mathbf{A}(B^{-} \to \overline{D}^{0}K^{-}) / \mathbf{A}(B^{-} \to D^{0}K^{-}) \right|$$
$$r_{D} = \left| \mathbf{A}(D^{0} \to K^{+}\boldsymbol{p}^{-}) / \mathbf{A}(D^{0} \to K^{-}\boldsymbol{p}^{+}) \right|$$

$$r_D$$
, $|\mathbf{A}_D|^2$ — determined from D decay analysis $|\mathbf{A}_B|^2$ — from $B^{\pm} @D_{\text{flavor}} K^{\pm}$

Using single *D* decay channel:

2 equations, 3 unknowns (r, d, j_3) With one more channel added: 4 equations, 4 unknowns (r, d_1, d_2, j_3)

Measurement of $f_3/?$

 $D^0 \otimes K_s p^+ p^-$ decay model

La Thuile 2006

Measurement of $f_3/?$

$D^0 \otimes K_s p^+ p^-$ decay model

Intermediate state	Amplitude	Phase, °	Fit fraction
$K_{\rm S}$ s ₁ (M=520±15 MeV, G=466±31 MeV)	1.43±0.07	212±4	9.8%
$K_{\rm S}$?(770)	1 (fixed)	0 (fixed)	21.6%
$K_{\rm S}$?	0.0314 ± 0.0008	110.8±1.6	0.4%
$K_{\rm S} f_0(980)$	0.365±0.006	201.9±1.9	4.9%
<i>K</i> _S s ₂ (M=1059±6 MeV, G=59±10 MeV)	0.23±0.02	237±11	0.6%
$K_{\rm S}f_2(1270)$	1.32±0.04	348±2	1.5%
$K_{\rm S} f_0(1370)$	1.44±0.10	82±6	1.1%
$K_{\rm S}$?(1450)	0.66±0.07	9±8	0.4%
K [*] (892) ⁺ p ⁻	1.644±0.010	132.1±0.5	61.2%
<i>K</i> *(<i>892</i>) ⁻ <i>p</i> ⁺	0.144±0.004	320.3±1.5	0.55%
<i>K</i> *(<i>1410</i>)+ <i>p</i> -	0.61±0.06	113±4	0.05%
<i>K</i> *(<i>1410</i>) ⁻ <i>p</i> ⁺	0.45±0.04	254±5	0.14%
$K^*_{\ 0}(1430)^+p^-$	2.15±0.04	353.6±1.2	7.4%
$K^*_{0}(1430)^-p^+$	0.47±0.04	88±4	0.43%
$K_{2}^{*}(1430)^{+}p^{-}$	0.88±0.03	318.7±1.9	2.2%
$K_{2}^{*}(1430)^{-}p^{+}$	0.25±0.02	265±6	0.09%
<i>K</i> *(<i>1680</i>)+ <i>p</i> -	1.39±0.27	103±12	0.36%
<i>K</i> *(<i>1680</i>) ⁻ <i>p</i> ⁺	1.2±0.2	118±11	0.11%
Nonresonant	3.0±0.3	164±5	9.7%

A. Poluektov Measurement of $f_3/?$ $B^{\pm} \otimes DK^{\pm}$, $D \otimes K_S p^+ p^-$ Dalitz plots (Belle)

Measurement of $f_{3}/?$

Model-independent approach

 D^0 decay amplitude: $f = |f(m_+^2, m_-^2)| e^{if(m_+^2, m_-^2)}$ $D^0 - \overline{D^0}$ interference from $B^+ \circledast D^0 K^+$:

$$\begin{split} A_{\tilde{D}^0} &= \mid f(m_+^2, m_-^2) \mid e^{i f(m_+^2, m_-^2)} + r e^{i q} \mid f(m_-^2, m_+^2) \mid e^{i f(m_-^2, m_+^2)} \\ &= \mid f(m_+^2, m_-^2) \mid + r e^{i q} \mid f(m_-^2, m_+^2) \mid e^{i [f(m_+^2, m_-^2) - f(m_-^2, m_+^2)]} \end{split}$$

|f| is measured directly, $f(m_+^2, m_-^2) - f(m_-^2, m_+^2)$ is model-dependent If CP-tagged D^0 are available (e.g. from ?'' $\mathbb{B} D^0 \overline{D}^0$, where tag-side D^0 decays into CP-eigenstate) phase difference can be measured:

$$\begin{split} A_{CP} = & \frac{|f(m_{+}^{2}, m_{-}^{2})|e^{if(m_{+}^{2}, m_{-}^{2})} \pm |f(m_{-}^{2}, m_{+}^{2})|e^{if(m_{-}^{2}, m_{+}^{2})}}{\sqrt{2}} \\ = & \frac{|f(m_{+}^{2}, m_{-}^{2})| \pm |f(m_{-}^{2}, m_{+}^{2})|e^{i[f(m_{-}^{2}, m_{+}^{2}) - f(m_{+}^{2}, m_{-}^{2})]}}{\sqrt{2}} \end{split}$$

Measurement of **f**₃/? Model-independent approach

 $\sigma(\phi_3)$ (degree)

hep-ph/0510246

50 ab^{-1} at SuperB factory should be enough for model-independent $?/f_3$ measurement with accuracy below 2°

~10 fb⁻¹ at ?(3770) needed to accompany this measurement.

