Numerical calculations and the evolution of the APE series

Ape starts as a tool for numerical simulations of non perturbative phenomena in quantum chromodynamics

 People realised that a boost can be given to the field through the construction of optimized computers

The series

- 1984-1989: APE1
 - 16 nodes, 1 gigaflop
 - Primitive language
- 1990-1995: APE100
 - The first time custom
 - 2048 nodes
 - Speaks TAO
 - Integrated 300 Gigaflops

D Baciliari
INTEN ONAE D.1 I.1.
INFN-CNAF, Bologna, Italy
S. Cabasino, A. Frighi, F. Marzano, N. Matone, P. S. Paolucci, S. Petrarca, G. Salina
INFN, Sezione di Roma, Italy
N. Cabibbo, E. Marinari, G. Parisi
Dipartimento di Fisica, II Univerita' di Roma "Tor Vergata"; INFN, Sezione di Roma, Italy
F. Costantini, G. Fiorentini, S. Galeotti, D. Passuello, R. Tripiccione
Dipartimento di Fisica, Univerita' di Pisa; INFN, Sezione di Pisa, Italy
A. Fucci, R. Petronzio, F. Rapuano
CERN, Geneva, Switzerland
D. Pascoli, P. Rossi
Dipartimento di Fisica, Univerita' di Padova; INFN, Sezione di Padova, Italy
E.Remiddi
Dipartimento di Fisica, Univerita' di Bologna; INFN-CNAF, Bologna, Italy; INFN, Sezione di
Bologna, Italy
R.Rusack
Rockefeller University, New York, U.S.A.
B.Tirozzi
Dipartimento di Matematica - Universita' "La Sapienza" Roma, Italy

1984-1989

The series continued

- 1995-2000: APE1000
 - A INFN-Desy effort
 - Nodes connected in a three dimensional mesh
 - Integrated 2 Teraflops deployed
- 2001-2005: apeNEXT
 - INFN-Desy-Orsay collaboration
 - 64 bit arithmetics
 - 10 teraflops installation

The APE innovations

 The "core" (a+ib)*(A+iB) + C +iD operation built in

The APE innovations

VLIW: very long instruction word
 – Simplifies the decoding effort

The APE innovations

• SIMD architecture and strong 3-d connectivity

						apeNEXT
Machine	RLX TM5600	RLX TM5800	Avalon	ASCI Red	ASCI White	
Performance (Gflops)	21.4	3.3	17.6	600	2500	3670
Power (kilowatts)	5.2	0.52	18.0	1200	2000	80
Perf/Power (Mflops/watt)	4.12	6.35	0.978	0.5	1.25	46

Table 4. Performance-Power Ratio for Five Parallel-Computing Systems

Machine	RLX TM5600	RLX TM5800	Avalon	ASCI Red	ASCI White
Performance (Gflops)	21.4	3.3	17.6	600	2500
Area (feet2)	6	6	120	1600	9920
Perf/Power (Mflops/feet2)	3500	550	150	375	252

46

Table 5. Performance-Space Ratio for Five Parallel-Computing Systems

The physics

- The accuracy of lattice calculations goes with the reduction of the discretisation effects
 - The lattice resolution
 - The finite volume

Number of points

CPU and memory

The physics

- Chirality on the lattice
 - Recovered in the "continuum limit"
 - Obtained at finite lattice spacing at the expenses of introducing a fifth dimension

CPU and memory

CKM Lattice QCD queries

	$ \epsilon_{\rm K} $	ΔM_{B_s}	$\frac{\Delta M_{B_s}}{\Delta M_{B_d}}$	$B ightarrow \left(egin{array}{c} \pi \ ho \end{array} ight) l u$	$B ightarrow \left(egin{array}{c} D \ D^* \end{array} ight) l u$
СКМ	$Im[V_{td}]$	$ V_{ts} ^2$	$ V_{ts} ^2/ V_{td} ^2$	$ V_{ub} ^2$	$ V_{cb} ^2$
Matrix Elements	\hat{B}_{K}	$f_{B_s}^2 \hat{B}_{B_s}$	$\frac{f_{B_s}^2 \hat{B}_{B_s}}{f_{B_d}^2 \hat{B}_{B_d}}$	$ \langle {\pi \atop \rho} J^{ub}_L B\rangle ^2$	$ \langle \begin{array}{c} D\\ D^* J_L^{cb} B\rangle ^2 \end{array}$

The NEXT physics

- Accounting q–qbar pair creation (unquenching)
 - A non local effective gauge interaction
 - Monte Carlo scale badly with the volume and with the quark mass

CPU and memory.. may not be enough

Unquenching, a multiscale problem

The inclusion of sea quark loops needs the calculation of the determinant of an operator with a LARGE hyerarchy of scales, from the quark mass to the chiral cutoff

 $\mathrm{C_{ost}} \propto \mathrm{N_{conf}} \; m_q^{-3} \; L^5 \; a^{-8}$

Water flow and wave calculation

- Solve Reynolds-Averaged
 Navier-Stokes equations
- Mesh discretization
- Domain decomposition and multigrid methods

Luescher et al.

$$\fbox{C_{\rm ost} \propto N_{\rm conf} \ m_q^{-1} \ L^5 \ a^{-6}}$$

EPFL, J. Wynne '03

B physics, another multiscale problem

- High resolution to properly account for bottom quark dynamics
- Large volume to include a heavy-light system

100^3*200 lattice

The step scaling method

 Finite volume effects should manly depend upon the light quark and be rather insensitive to the heavy quark mass

$$\begin{aligned} f_{h\ell}(L_{\infty}) &= f_{h\ell}(L_0) \; \frac{f_{h\ell}(L_1)}{f_{h\ell}(L_0)} \; \frac{f_{h\ell}(L_2)}{f_{h\ell}(L_1)} \cdots, \qquad L_0 < L_1 < L_2 \dots \\ &\frac{f_{h\ell}(L_1)}{f_{h\ell}(L_0)} = \sum \left(L_1 \right) \end{aligned}$$

The NEXT generation

- "definite" calculations of spectra and kaon physics
- B physics with sea quarks without brute force

perspectives

- New ideas for a PETAflop generation
- Distributed computing for parallel simulations (GRID)
- Computer architecture optimization for a large class of scientific problems
 - Standard language support
 - Modularity in communication
- Closing chapters in lattice QCD