

Radiative *B* **Decays at BaBalle**

color code: blue for Belle, green for BaBar.

Mikihiko Nakao (KEK)

March 9th, 2006, Les Rencontres de Physique de la Vallee d'Aoste

mikihiko.nakao@kek.jp

Flavor changing neutral current (FCNC)

Unique tool to study quark-level couplings

Flavor changing neutral current (FCNC)

Unique tool to study quark-level couplings (search for new physics)

Flavor changing neutral current (FCNC)

Unique tool to study quark-level couplings (search for new physics) Unique tool to study QCD corrections (probe for the murky hadron)

Flavor changing neutral current (FCNC)

Unique tool to study quark-level couplings (search for new physics) Unique tool to study QCD corrections (probe for the murky hadron)

Outline — new/recent results on...

Flavor changing neutral current (FCNC)

Unique tool to study quark-level couplings (search for new physics) Unique tool to study QCD corrections (probe for the murky hadron)

Outline — new/recent results on...

- First observation of the $b \rightarrow d\gamma$ process
- Inclusive $b \rightarrow s\gamma$ precision measurements
- Searches for CPV in $b \rightarrow s\gamma$ and exotic radiative modes

(note the studies on radiative decays are not limited to the topics above)

 $b \to d\gamma$ The first observation

$b \rightarrow d\gamma$ in exclusive processes

• Three major roles of $b \rightarrow d\gamma$

- Sensitive to $|V_{td}|$, or to $|V_{td}/V_{ts}|$ w.r.t. corresponding $b \rightarrow s\gamma$
- Sensitive to new physics assuming $|V_{td}|$ from CKM fits could be very sensitive since the SM amplitude is suppressed
- Large direct CPV is expected

$b \rightarrow d\gamma$ in exclusive processes

• Three major roles of $b \rightarrow d\gamma$

- Sensitive to $|V_{td}|$, or to $|V_{td}/V_{ts}|$ w.r.t. corresponding $b \rightarrow s\gamma$
- Sensitive to new physics assuming $|V_{td}|$ from CKM fits could be very sensitive since the SM amplitude is suppressed
- Large direct CPV is expected
- Exclusive processes: $B^- \rightarrow \rho^- \gamma, \overline{B}^0 \rightarrow \rho^0 \gamma,$ $\overline{B}^0 \rightarrow \omega \gamma$

$b \rightarrow d\gamma$ in exclusive processes

• Three major roles of $b \rightarrow d\gamma$

- Sensitive to $|V_{td}|$, or to $|V_{td}/V_{ts}|$ w.r.t. corresponding $b \rightarrow s\gamma$
- Sensitive to new physics assuming $|V_{td}|$ from CKM fits could be very sensitive since the SM amplitude is suppressed
- Large direct CPV is expected
- Exclusive processes: $B^- \rightarrow \rho^- \gamma, \overline{B}^0 \rightarrow \rho^0 \gamma,$ $\overline{B}^0 \rightarrow \omega \gamma$

- Pros and cons of exclusive modes
 - Straightforward reconstruction standard technique ($M_{bc(ES)}, \Delta E$)
 - Hadronic uncertainty (~ 30%) no way to reduce? (inclusive $P \rightarrow V$ at only for future (> 1 ch⁻¹))
 - $B \rightarrow X_d \gamma$ only for future (> 1 ab⁻¹))

$B \rightarrow \rho \gamma$ and $B \rightarrow \omega \gamma$ analysis challenges

Many background sources due to the smallness of the signal!

- $B \rightarrow K^* \gamma$ backgrounds (×30 than the signal!) Particle ID (~ 1/10), $M("K"\pi)$, separation in ΔE Good control sample: signal shape, analysis cross-check
- Other $B \to X_s \gamma$
- $B \rightarrow (\rho, \omega)\pi^0$ and $B \rightarrow (\rho, \omega)\eta$ π^0/η rejection, decay helicity angle of (ρ, ω)
- \bullet Other rare B decays with ρ or ω
- Huge continuum background Event shape, Δz , *B* meson direction \Rightarrow likelihood ratio Flavor-tag algorithm to suppress continuum (not *B*/ \overline{B} like)

Maximize $N_S / \sqrt{N_B}$ where N_B is the sum of all backgrounds

$B \rightarrow \rho \gamma$ and $B \rightarrow \omega \gamma$ signal

Combined fit — isospin relation

Combined branching fraction to establish the $b \rightarrow d\gamma$ signal:

$$\Gamma(B \to (\rho, \omega)\gamma) \equiv \Gamma(B^- \to \rho^- \gamma) = 2 \times \Gamma(\overline{B}{}^0 \to \rho^0 \gamma) = 2 \times \Gamma(B \to \omega \gamma)$$

Simultaneous fit (Belle), first observation!

 $\mathcal{B}(B \to (\rho, \omega)\gamma) = (1.32^{+0.34}_{-0.31}(\text{stat.})^{+0.10}_{-0.09}(\text{syst.})) \times 10^{-6} \text{ (5.1$$$$}\text{(5.1$$$$$$$$$)}$

 $\mathcal{B}(B \to (\rho, \omega)\gamma) = (0.6 \pm 0.3 \pm 0.1) \times 10^{-6} \text{ (2.1s)} < 1.2 \times 10^{-6} \text{ (90\% CL)}$

$|V_{td}/V_{ts}|$ from branching fraction ratio

• Relation between branching fraction ratio and $|V_{td}/V_{ts}|$

$$\frac{\mathcal{B}(B \to (\rho, \omega)\gamma)}{\mathcal{B}(B \to K^*\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \frac{(1 - m_{(\rho,\omega)}^2 / m_B^2)^3}{(1 - m_{K^*}^2 / m_B^2)^3} \zeta^2 [1 + \Delta R]$$

(form factor ratio $\zeta = 0.85 \pm 0.10$, SU(3)-breaking correction $\Delta R = 0.1 \pm 0.1$)

- Ratio from a simultaneous fit to $B \rightarrow K^*\gamma$ and $B \rightarrow (\rho, \omega)\gamma$ • Belle result: ratio = 0.032 ± 0.008 ± 0.002 • BaBar result: ratio < 0.029 (90%CL)
- Complementary to $B_s^0 \overline{B}_s^0$ mixing at LEP/Tevatron/LHCb No lattice-QCD involved (although lattice may help on the form factor)
- Cautions:
 - Theory errors above may be underestimated (similarly predicted $B \rightarrow K^* \gamma$ rate is a lot higher than measurement)
 - Isospin relation is controversial for precise determination

$|V_{td}/V_{ts}| = 0.199^{+0.026}_{-0.025}(exp.)^{+0.018}_{-0.015}(theo.)$ (Belle)

 $0.142 < |V_{td}/V_{ts}| < 0.259$ (Belle 95% CL)

 $|V_{td}/V_{ts}| < 0.19$ (BaBar 90% CL)

|V_{td}/V_{ts}| is as expected
No hint of new physics
Mode for future CPV study

B_s mixin 0.8 Β_→(ρ,ω)γ sin20, 0.6 0.4 0.2 Г -0 -0.2 -0.4 -0.6 -0.8 -0.2 0.2 -0.6 0 0.4 0.6 0.8 ρ

SM has passed another non-trivial test in $b \rightarrow d$ transition!

Inclusive $b \rightarrow s\gamma$ precision measurements

Inclusive $b \rightarrow s\gamma$ measurement

• Three major roles of $b \rightarrow s\gamma$

- Photon as a probe for *B* decay properties (universal parameters to improve V_{cb} , V_{ub} and $b \rightarrow s\gamma$)
- Sensitive to new physics (Charged Higgs, SUSY, Left-right symmetric model...)

To measure $|V_{ts}|$ (without assuming CKM unitarity)

Inclusive $b \rightarrow s\gamma$ measurement

• Three major roles of $b \rightarrow s\gamma$

- Photon as a probe for *B* decay properties (universal parameters to improve V_{cb} , V_{ub} and $b \rightarrow s\gamma$)
- Sensitive to new physics (Charged Higgs, SUSY, Left-right symmetric model...)
 - To measure $|V_{ts}|$ (without assuming CKM unitarity)

- Plenty of inclusive $B \rightarrow X_s \gamma$ events now
 - more than 10 years since first measured by CLEO ('95)
 Precise measurements, and precise theories in NLO

Two inclusive $B \rightarrow X_s \gamma$ methods

Full-inclusive

- Photon only, no B reconstruction
- Off-resonance subtraction
 (huge continuum background)
- $B \to X\pi^0, \pi^0 \to \gamma\gamma$ subtraction
- Smeared by B momentum

Semi-inclusive

- Standard $M_{
 m bc(ES)}$ - ΔE reconstruction $M_{
 m bc(ES)}$
- Sum up as many modes
 - (e.g., $B \rightarrow K\pi\pi\pi\gamma$)
- Still many modes are not included

• Trade-off on the minimum photon energy cut Large background \Leftrightarrow reduced model dependence as E_{γ} cut is lowered

E_{γ} spectrum (full-inclusive)

CLEO $E_{\nu} > 2.0 \, {\rm GeV}$ (PRL87,251807(2001))

BaBar 9.1 fb⁻¹ on $\Upsilon(4S)$ 81.5 fb⁻¹ on $\Upsilon(4S)$ -4.4 fb^{-1} off-resonance -9.6 fb^{-1} off-resonance -15 fb^{-1} off-resonance $E_{\gamma} > 1.9 \text{ GeV}$ (hep-ex/0507001)

Belle 140 fb⁻¹ on $\Upsilon(4S)$ $E_{\nu} > 1.8 \, \text{GeV}$ (PRL93,061803(2004))

More data, lower photon energy cut

E_{γ} spectrum (semi-inclusive)

BaBar 81.5 fb⁻¹ $B \to K\pi\gamma, K\pi\pi\gamma,$ $K\pi\pi\pi\gamma, K\pi\pi\pi\gamma,$ $K\eta(\pi(\pi))\gamma, KKK(\pi)\gamma$ $E_{\gamma} > 1.9 \text{ GeV}$ $(M(X_s) < 2.8 \text{ GeV})$ (PRD72,052004(2005))

Belle measured \mathcal{B} with 6 fb⁻¹ for $M(X_s) < 2.1$ GeV

- Spectrum measured in 0.1 GeV bin of $M(X_s)$ \Rightarrow equivalent to E_{γ} in B rest frame
- Much better resolution (1–5 MeV) compared with E_{γ} from calorimeter (~ 40 MeV), no p(B) smearing
 - Large fragmentation uncertainty (due to missing modes)

Moments

Minimum Photon Energy (GeV)

1st moment: $\langle E_{\gamma} \rangle$

2nd moment: $\langle (\langle E_{\gamma} \rangle - E_{\gamma})^2 \rangle$ (3rd moments are also measured by BaBar)

• Observables to be directly compared with predictions

- Universal parameters in operator product expansion (OPE) (several available schemes: kinetic scheme, shape function scheme...)
- Kinetic scheme: m_b (b quark mass), μ_{π}^2 (Fermi momentum)²

A fit of OPE parameters (kinetic scheme)

Global fit (CLEO, Belle, BaBar data) to the moments from $B \to X_s \gamma$ to the moments from $B \to X_c \ell \nu$

Parameters are universal

- Fits to $B \to X_c \ell \nu$ and $B \to X_s \gamma$ are complimentary
- Input to V_{ub} from $B \rightarrow X_u \ell v$ that recently reduced the $|V_{ub}|$ error significantly

• Combined fit results — m_b to less than 1% accuracy!

 $m_b = 4.590 \pm 0.025(\text{exp}) \pm 0.030(\text{OPE}) \text{ GeV}, \ \mu_{\pi}^2 = 0.401 \pm 0.019(\text{exp}) \pm 0.035(\text{OPE}) \text{ GeV}^2$

E_{γ} extrapolation

Nevertheless, lower E_{γ} cuts are crucial to verify the predictions

$B \rightarrow X_s \gamma$ branching fraction

- All measurements are scaled to $E_{\gamma} = 1.6 \text{ GeV}$
- Then, average branching fraction is calculated (Heavy Flavor Averaging Group (HFAG), hep-ex/0603003)

Very consistent with SM expectations, e.g., $(357 \pm 30) \times 10^{-6}$

An example of constraint on new physics

Branching fraction in 10^{-4} : 2001: $3.23 \pm 0.42_{(exp)} - 3.73 \pm 0.31_{(th)} = -0.50 \pm 0.52$ (for full E_{γ} spectrum) 2006: $3.55 \pm 0.26_{(exp)} - 3.57 \pm 0.30_{(th)} = -0.02 \pm 0.40$ (for $E_{\gamma} > 1.6$ GeV) (caution: depends on the choice of the SM value/error)

- Still worthwhile decreasing the experimental error
- Need to squeeze the theory error NNLO calculation

More searches for new physics CPV in $b \rightarrow s\gamma$ and exotic radiative modes

Direct CP asymmetry

- Precisely measured: HFAG $A_{CP}(B \rightarrow X_s \gamma) = (5 \pm 36) \times 10^{-3}$ Belle 140 fb⁻¹: $(2 \pm 50 \pm 30) \times 10^{-3}$, BaBar 82 fb⁻¹: $(25 \pm 50 \pm 15) \times 10^{-3}$ but extremely small in SM: e.g., $A_{CP} = (4.2^{+1.7}_{-1.2}) \times 10^{-3}$ (T.Hurth et al) Only up to a few percent even in SUSY (with EDM constraints)
- BaBar 82 fb⁻¹: $A_{CP}(B \rightarrow X_{(s+d)}\gamma) = (-110 \pm 115 \pm 17) \times 10^{-3}$ $b \rightarrow s\gamma$ and $b \rightarrow d\gamma$ are not separated — even smaller SM CPV (canceling)

Time dependent CP asymmetry

• Error on S is ~ 0.4 , still long way to the precision of the SM

Exotic radiative decays

Simple signal topology, heavily suppressed in the SM

• $B \rightarrow \gamma \gamma$ SM expects $\mathcal{B} \sim 3 \times 10^{-8}$ Belle finds $\mathcal{B} < 6.2 \times 10^{-7}$ (90% CL) (104 fb⁻¹, hep-ex/0507036)

• $B \rightarrow \phi \gamma$ SM expects $\mathcal{B} \sim 4 \times 10^{-12}$ BaBar finds $\mathcal{B} < 8.5 \times 10^{-7}$ (90% CL) (113 fb⁻¹, PRD72,091103(2005))

• $B \to D^{*0}\gamma$ SM expects $\mathcal{B} \sim O(10^{-6})$ BaBar finds $\mathcal{B} < 2.5 \times 10^{-5}$ (90% CL) (80 fb⁻¹, PRD72,051106(2005))

Summary

• First observation of $b \rightarrow d\gamma$ by Belle in the combined $B \rightarrow \rho\gamma$ and $B \rightarrow \omega\gamma$ exclusive modes.

 $\mathcal{B}(B \to (\rho, \omega)\gamma) = (1.32^{+0.34}_{-0.31}(\text{stat.})^{+0.10}_{-0.09}(\text{syst.})) \times 10^{-6}$

 $|V_{td}/V_{ts}|$ is in agreement with the SM unitarity triangle

• Huge efforts and new developments on inclusive $b \rightarrow s\gamma$ A new HFAG average in very good agreement with SM

 $\mathcal{B}(B \to X_s \gamma; E_{\gamma} > 1.6 \,\text{GeV}) = (355 \pm 24^{+9}_{-10} \pm 3) \times 10^{-6}$

• Search for new physics continues in $b \rightarrow s\gamma$ asymmetries in other decay modes with more data coming

Backup slides

Dataset

02/26/2006 04:21

1 fb⁻¹ ~ 1.1M $B\overline{B}$ events, ~10% off-resonance taken

Exclusive *B* decay analysis

- Reconstruction: photon, tracking, π/K id
- $\Upsilon(4S)$ constraint: $M_{bc(ES)} = \sqrt{E_{beam}^* p_B^2}$, $\Delta E = E_B E_{beam}^*$ Unbinned fit to M_{bc} - ΔE to extract the signal

Continuum suppression: event topology for discrimination (Fisher discriminant)

$B \rightarrow \rho \gamma$ and $B \rightarrow \omega \gamma$ analysis

More specific background suppression (Belle's analysis)

- 1. π^0 and $\eta \rightarrow \gamma \gamma$ rejection (copious!)
- 2. K^* veto in $M(K''\pi)$ (to suppress $B \to K^*\gamma$)
- 3. Helicity angle of ρ/ω decay (discriminate $\rho\gamma vs \rho\pi^0$, etc)
- 4. B meson direction $(1 \cos^2 \theta_B \text{ for } \Upsilon(4S) \rightarrow B\overline{B})$
- 5. Vertex displacement (Δz) from other B ($\Delta z \sim 0$ for $q\bar{q}$)
- 6. Flavor-tag algorithm of the other B ($q\overline{q}$ is neither B or \overline{B} -like)
- Combine 4, 5 and event-shape Fisher into a likelihood ratio, and flavor-tag quality dependent cut on it (BaBar uses neural net)

 $\leftarrow \Delta z \text{ for signal} \\ and \text{ continuum}$

Flavor-tag quality \Rightarrow

Belle's $b \rightarrow d\gamma$ analysis finalized since LP05

- Belle has reported the observation of $b \rightarrow d\gamma$ at LP05 (hep-ex/0506079v1), with a 5.5 σ significance
- Systematic errors are finalized:
 - Control sample fit ($B \rightarrow K^* \gamma$) was redone for the signal shape
 - Further sub-divisions of the B decay backgrounds
 - Efficiency correction factors were updated
 - A few more missing small systematic errors were added
- More conservative systematic error in the significance
 - Statistical error is assumed to be Gaussian and convolved in the likelihood function
 - Significance drops from 5.4 σ (stat only) to 5.1 σ

Systematics tests on Belle's $b \rightarrow d\gamma$

Possible isospin violation effect?

• $\mathcal{B}(\overline{B}{}^0 \to \rho^0 \gamma) \sim 2\mathcal{B}(B^- \to \rho^- \gamma)$ while $\mathcal{B}(B^- \to \rho^- \gamma) \sim 2\mathcal{B}(\overline{B}{}^0 \to \rho^0 \gamma)$ is expected

 $\mathcal{B}(\overline{B}{}^0 \to \rho^0 \gamma) \sim 2\mathcal{B}(B \to \omega \gamma)$ while $\mathcal{B}(\overline{B}{}^0 \to \rho^0 \gamma) \sim \mathcal{B}(B \to \omega \gamma)$ is expected

• Using a toy MC study assuming isospin symmetry, the probability to observe a deviation equal to or larger is 4.9% (2σ effect)

Consistency with the previous results? (253 fb⁻¹, PRD72,011101)

- Due to the changes in the continuum suppression variables, the overlap of the events are rather small (especially for background)
- For the same sample, $\overline{B}{}^0 \to \rho^0 \gamma$ has the largest deviation of about 2σ , after the overlapped events are taken into account
- Newly added data includes more $\overline{B}{}^0 \to \rho^0 \gamma$ signal events, and makes the deviation for $\overline{B}{}^0 \to \rho^0 \gamma$ larger
 - Other modes and combined results are consistent

Flowchart to average $B \rightarrow X_s \gamma$

$B \rightarrow X_s \gamma$ branching fraction table

Correction factor for the E_{γ} spectrum is obtained from fit to the $b \to s\gamma$ and $b \to c\ell^-\overline{\nu}$ data \Rightarrow corrected for \mathcal{B} with $E_{\gamma} > 1.6$ GeV

	E_{γ}^{\min}	Reported \mathcal{B} (10 ⁻⁴)	Corrected \mathcal{B} (10 ⁻⁴)
CLEO full	2.0	$321 \pm 43 \pm 27 {}^{+18}_{-10}$	$329 \pm 44 \pm 28 \pm 6 \pm 6$
Belle semi	2.24	$336 \pm 53 \pm 42 {}^{+50}_{-54}$	$369 \pm 58 \pm 46 {}^{+56}_{-60}$
Belle full	1.8	$355 \pm 32 {}^{+30}_{-31} {}^{+11}_{-7}$	$350 \pm 32 {}^{+30}_{-31} \pm 2 \pm 2$
BaBar semi	1.9	$335 \pm 19 {}^{+56}_{-41} {}^{+9}_{-9}$	$349^{+2}_{-0}{}^{+59}_{-46}{}^{+4}_{-9}$
BaBar full	1.9	_	$392 \pm 31 \pm 36 \pm 30 \pm 4 \pm 6$

Then, average branching fraction is calculated

 $\mathcal{B}(B \to X_s \gamma; E_{\gamma} > 1.6 \text{ GeV}) = (355 \pm 24^{+9}_{-10} \pm 3) \times 10^{-6}$ (Heavy Flavor Averaging Group (HFAG), hep-ex/0603003)

Time dependent CPV in $b \rightarrow s\gamma$

- $K^{*0}\gamma(\overline{K}^{*0}\gamma) \to K^0_S\pi^0\gamma$ final state, from both *B* and \overline{B}
- Not necessarily to be from the K^* resonance
- Experimental challenges:
 - Small $K^{*0} \rightarrow K^0_S (\rightarrow \pi^+ \pi^-) \pi^0$ fraction (11%)
 - Extrapolating *B*-vertex from displaced K_S^0 decay

