Parton Distributions in Nuclei

Simonetta Liuti, University of Virginia

Les Rencontres de Physique de la Vallee D'Aoste

March 6-11, 2006

- Swadhin K. Taneja (graduate student)
- Heli Honkanen (post-doctoral fellow)
- Saeed Ahmad (graduate student)

Motivation

 \Rightarrow ... "a necessary evil" ... (*Jon Pumplin, DIS 2005*)

Simonetta Liuti

What we do know about PDFs in Nuclei

- 1983 discovery of the EMC effect: 20% deviations of nuclear $F_2^A(x,Q^2)$ from free nucleon one.
- Through 1980's and 90's measurements of different kinematical regions
 - low Bjorken x: shadowing and anti-shadowing (NMC, BCDMS, E665)
 - A-dependence (SLAC, NMC, E665, BCDMS, HERMES)
 - isospin dependence (NMC)
 - Q^2 dependence (HERMES)
 - separation of valence, sea, and gluon distributions (E772,E866)

Open Questions

- Universality: F_3^A vs. F_2^A
- Isospin dependence
- F_L^A
- Gluons are poorly known in whole x range
- Meaning of all this in terms of QCD

Relevance for QCD: A Missing Piece of the Spin Puzzle

In order to understand the role of orbital angular momentum in the proton one needs to understand transverse motion in hadrons and its relation to Final State Interactions (problem first studied within QCD, perhaps, by Ellis, Furmanski, Petronzio, Efremov and Radyushkin, '80s)

 \Rightarrow Need to explore the connection between:

 $k_T \Rightarrow$ observable through azimuthal asymmetries involving transverse polarization

 $b \Rightarrow$ observable through DVCS and related processes.

 \Rightarrow Need a consistent treatment of a number of reactions: SIDIS, DVCS, hadro-production (DY, $\Lambda,$...)

Main idea: Use nuclei as laboratories to "trigger" modifications of transverse d.o.f.

What is the physical origin of the transverse degrees of freedom investigated through either GPDs or TMDs?

 \rightarrow Initial/Final State Interactions?

- \rightarrow Confinement/Hadronization?
- \rightarrow Or else ... ?

\Rightarrow Phenomenology

(1) GPDs are most easily visualized as the soft parts in the amplitude for e.g. DVCS

$$\mathcal{A} \propto \int_{-1}^{i} dx \left[\frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right] \overline{U}(P') \left\{ H(x, \xi, t)\gamma^{+} + E(x, \xi, t) \frac{-i}{2M} \sigma^{+\rho} \Delta_{\rho} \right\} U(P)$$

Simonetta Liuti

\Rightarrow Form factors from GPDs

•
$$F_1^q(t) = \int_0^1 dx \, H_q(x, \xi, t \equiv -\Delta^2) \, q = u, d, s, ...$$

• $F_2^q(t) = \int_0^1 dx \, E_q(x, \xi, t \equiv -\Delta^2) \, q = u, d, s, ...$
 $F_{1(2)}^p(t) = \frac{2}{3} F_{1(2)}^u(t) - \frac{1}{3} F_{1(2)}^d(t) - \frac{1}{3} F_{1(2)}^s(t)$
 $F_{1(2)}^n(t) = -\frac{1}{3} F_{1(2)}^u(t) + \frac{2}{3} F_{1(2)}^d(t) - \frac{1}{3} F_{1(2)}^s(t)$

Les Rencontres de Physique de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson Laborato _

___Simonetta Liuti ____

\Rightarrow DIS Structure Functions from GPDs

 $q(x) = H_q(x, 0, 0) \quad q = u, d, s, \dots$

__Simonetta Liuti _____

\Rightarrow Quarks' Transverse Location

Soper (1977), Ralston and Pire (2000), Burkardt (2000), Diehl (2003)

b measured with respect to "longitudinal center of momentum": $\mathbf{R} = \sum_i x_i \mathbf{r}_i$

$$q(x,\mathbf{b}) = \int \frac{d^2 \mathbf{\Delta}}{(2\pi)^2} e^{-i\mathbf{b}\cdot\mathbf{\Delta}} H_q(x,0,-\mathbf{\Delta}^2) \rightarrow \langle \mathbf{b}^2(x) \rangle = \mathcal{N}_b \int d^2 \mathbf{b} \, q(x,\mathbf{b}) \, \mathbf{b}^2$$

Simonetta Liuti

Les Rencontres de Physi<mark>que de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson La</mark>borato <u>____</u>

⇒ Quarks' Transverse Momentum

Cahn ('78), Sivers ('90s), Boer, Mulders ('90s) Brodsky, Hwang, Ji, Collins (2002)

8 TMDs of which:

 $f_1(x, \mathbf{k}), h_1^{\perp}(x, \mathbf{k})$ unpolarized!!

$$\int d^2 \mathbf{k} f_1(x, \mathbf{k}) = f(x) \equiv PDF$$

Simonetta Liuti

⇒ Relation between Quarks' Transverse Momentum and Transverse Location

Burkardt (2004), Diehl and Hägler (2005), Liuti and Taneja (2004)

Burkardt, PRD 72, 094020 (2005)

$$f(x,\mathbf{k}) = \int d^2\mathbf{b} \int d^2\mathbf{b}' \, e^{i\mathbf{k}\cdot(\mathbf{b}-\mathbf{b}')} \, q(x,\mathbf{b},\mathbf{b}') \ \rightarrow \langle \mathbf{k}^2(x) \rangle = \mathcal{N}_k \int d^2\mathbf{k} \, f(x,\mathbf{k}) \, \mathbf{k}^2$$

Liuti and Taneja PRD 70 074019 (2004)

Simonetta Liuti _

\Rightarrow Phenomenology

(2) Constraints on $\xi = 0$ GPDs from Nucleon Form Factors and PDFs

Understanding Nuclear Medium Modifications: Off-forward EMC Effect

S.L., S.K. Taneja, hep-ph/0504027; hep-ph/0505123

• Extend logics behind forward EMC effect to the off-forward case ⇒ Few important modifications

The forward EMC effect

Basic idea: transverse degrees of freedom/particle off-shellness do not decouple naively from LC variables, but play an explicit role in deep inelastic scattering from nuclei, at leading order.

(1) k_T and/or k_{μ}^2 dependent parton reinteractions, involving the exchange of Pomeron, Odderon, and other Reggeon exchanges, generate nuclear shadowing and antishadowing at $x_{Bj} \leq 0.2$ (Brodsky, Schmidt and Yang, Muller, N.Nikolaev)

(⇒ study of transversity in nuclei can shed light on role of ISI/FSI and rotational symmetry breaking)

(2) "Active k_T " effects enhance the relatively small binding correction and produce further "kinematical type" x_{Bj} -rescaling at $x \ge 0.2$.

Forward EMC effect: The Signal of Medium Effects in DIS

Simonetta Liuti _

Off-forward EMC Effect \rightarrow Spin 0 Nuclei

$$T^{A}_{\mu\nu}(P_{A},\Delta) = \int \frac{d^{4}P}{(2\pi)^{4}} T^{N}_{\mu\nu}(k,P,\Delta) \mathcal{M}^{A}(P,P_{A},\Delta),$$

$$\mathcal{M}_{ij}^{A}(P, P_A, \Delta) = \int d^4 y \, e^{iP \cdot y} \langle P_A' | \overline{\Psi}_{A,j}(-y/2) \Psi_{A,i}(y/2) | P_A \rangle.$$

____Simonetta Liuti ______ Les Rencontres de Physique de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson Laborato

Modified nucleon GPD: Model

Large X, $k_X^2 \equiv M_X^2$: two component model

$$\rho_q[k^2(P^2), k'^2(P^2), k_X^2)] \propto \operatorname{Tr}\{\gamma^+ \mathcal{M}\} = \frac{g(k^2)}{D(x, \mathbf{k})} \frac{g(k'^2)}{D(x, \mathbf{k}')}$$

Low X, $k_X^2 \propto 1/X$: t-channel exchanges

$$\rho_q[k^2(P^2), k'^2(P^2), k_X^2)] \propto T_{qN}(t \neq 0);$$

• We extend the shadowing/antishadowing model using the analitic properties of T_{qN} , to the $t \neq 0$ case. Model valid at $\zeta = 0$.

• T_{qN} is subsequently inserted, as usual, in the Glauber series

__Simonetta Liuti ______ Les Rencontres de Physique de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson Laborato

Off-forward: X & t-dependences

 $R_A = [H_A(X, t) / F_A(t)] / [H_N(X, t) / F_N(t)]$

Simonetta Liuti _

Form Factor in Nuclei

$$F_A(t)=\int_0^A dx H_A(x,t)$$

$$F_A^{LC}(t) = F_A^{point}(t)F_N(t) \Rightarrow \text{Longitudinal Convolution}$$

$$F_A(t) = \int_X^A dY \int dP^2 \rho_A(Y,t;P^2) H_N\left(\frac{X}{Y},t;P^2\right) \implies \text{Active } k_T$$

$$\hat{F}_1^N(t) = \left[\frac{F^A(t)}{F^A_{LC}(t)}\right] F_1^N(t)$$

___Simonetta Liuti ______ Les Rencontres de Physique de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson Laborato

There is more: GPDs provide model independent insight!

Example: Color Transparency

S.L., S.K. Taneja, Phys. Rev. D70, 074019, (2004)

$$T_A(\Delta^2) = \frac{\left[\int_0^1 dx H_A(x,\Delta)\right]^2}{\left[\int_0^1 dx H(x,\Delta)\right]^2}$$

$$H_A(x,\Delta) = \int_0^{bmax(A)} db \, b \, q(x,b) J_0(b\Delta)$$

 $b_{max}(A) =$ size of the filter given by a square function

$$\Rightarrow$$
 By assuming: $q(x, b) = A(x) \exp(-\alpha(x) b)$

i) $\alpha \propto (1-x)/x \Rightarrow$ soft in k_{\perp}

ii) $lpha \propto (1-x)^2/x \Rightarrow$ hard in k_\perp

predict both damping and oscillations of the transparency ratio

_Simonetta Liuti _____

Simonetta Liuti

Spatial dependence in nuclei: overlapping volumes

Single Nucleon

_Simonetta Liuti _____

... in a nucleus

____Simonetta Liuti ______ Les Rencontres de Physique de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson Laborato

Impact Parameter Dependent Nuclear Parton Distributions

____Simonetta Liuti _____

Transverse "Area Overlap" for a hard nuclear process

$$\langle b_A^2(X) \rangle = \frac{1}{q_A(X)} \left[\int_X^A dY \langle b_N^2(X/Y) \rangle q_N(X/Y) f_A(Y) \right. \\ \left. + \int_X^A dY \langle \beta^2(Y) \rangle q_N(X/Y) f_A(Y) \right].$$

$$A_{op} = \frac{\langle b_N^2(X) \rangle}{\langle b_A^2(X) \rangle} = \frac{1}{1 + \frac{\langle \beta^2(X) \rangle}{\langle b_N^2(X) \rangle}}$$

Overlap volume previously calculated with "semi-empirical" models!

Les Rencontres de Physique de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson Laborato _

_Simonetta Liuti _____

Transverse "Area Overlap"

Impact Parameter for in medium proton

Overall (integral) increase of $\approx 6\%$ with respect to free proton!

Simonetta Liuti 🗕

New Parameterization at $\zeta \neq 0$!

Conclusions

• GPDs provide a whole new dimension for studying transverse d.o.f in hadrons through the interplay between k_T and b

• More constraints on GPDs from nuclei ...

• ... and at the same time: New insight on nuclear medium modifications from GPDs

• Our exploratory study includes both k_T and b dependent observables, vast phenomenology!

• Diquark Model + Color Transparency, S.L. and S.K. Taneja, Phys. Rev. **D70**, 074019, (2004); Off-forward EMC Effect, S.L. and S.K. Taneja, hep-ph/0504027, to be published in Phys. Rev. **C**; Coherent vs. Incoherent Scattering, S.L. and S.K. Taneja, hep-ph/0505123; In medium Form factors, S.L., hep-ph/0601125.

____Simonetta Liuti ______ Les Rencontres de Physique de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson Laborato

Outlook

- More systematic studies are needed:
 - Treatment of Longitudinal Distances \Rightarrow modeling dependence on skewedness ζ
 - Q^2 Evolution of $\langle b^2 \rangle$, $\langle k_T \rangle$.
- Extend studies to other GPDS: $H_T E_T$ (connected to transversity) and their "coordinate space" counterparts.
- Extend studies to time-like region.

Interpretations of results

Nuclear functions are peaked around Y = 1, and $P^2 = M^2$

 $H^A(X,t) \approx AH_N(X/\langle Y_1^A(t)\rangle) < AH_N(X)$

t-dependent "dynamical" X-rescaling

$$\langle Y_1^A(t) \rangle = \int_0^A dY \,\rho_A(Y,t)(1-Y) \approx \frac{\langle E(t) \rangle_A/M}{F^{A,point}(t)}$$

 $\langle E(t) \rangle_A$ is a "t-dependent nuclear binding"

Role of nucleon off-shellness is same as in forward case \Rightarrow it affects the k_T dependence

____Simonetta Liuti _____

$$F^{A,point}(t) = \int_0^A dY \,\rho_A(Y,t)$$

$$\langle Y_1(A,t) \rangle = \int_0^A dY \,\rho_A(Y,t)(1-Y)$$

$$\langle Y_2(A,t) \rangle = \int_0^A dY \,\rho_A(Y,t)(1-Y)^2,$$

____Simonetta Liuti ______ Les Rencontres de Physique de la Vallee D'Aoste, March 6-11, 2006Theory Group Seminar, Jefferson Laborato

Simonetta Liuti