Recent results of Super-Kamiokande

Y. Koshio Kamioka observatory ICRR, Univ.of Tokyo

- Status of Super-Kamiokande
- Atmospheric neutrinos
- Solar neutrinos
- Summary

Status of Super-Kamiokande

LaThuile 06 2

We are now here 1996 1997 199 04 2005 2006 2007 Flease tell me reconstruction SK-3 and water filling Acrylic 一年一月二十 Fiber glass PMT enclosure 11146 N Ρ 40% ~6 p.e./MeV С 5MeV E SK-3 start **June 2006**

Number of inner det

Atmospheric Neutrinos

Interaction in Super-K

- $\nu + N \rightarrow I + N'$
- $v + N \rightarrow I + N' + \pi$
- $v + N \rightarrow I + N' + multi- \pi$
- ν + ¹⁶O \rightarrow I + ¹⁶O + π

Event categorized

LaThuile 06 Zenith angle distribution in SK-1 and SK-2 5

down-going

L/E distribution in SK-1 and SK-2

3 flavor neutrino oscillation analysis

LaThuile 06

10

LaThuile 06 11

multi-GeV electrons

upward-going multi-GeV electron sample

Future prospect for atmospheric neutrinos in ^{LaThuile 06} SK-3

- Best determination of $sin^2 2\theta_{23}$
 - − The measurement is not systematic limited yet.
 → Improvement with sqrt(exporsure)
 - $-\sin^2 2\theta_{23}$ =1.01± 0.05(68%CL, 1500+630days) → sin²2θ₂₃=1.00± 0.038(1500+800+1350days)
- Search for indication of non-zero θ₁₃
 - Search for upward going multi-GeV ν_e events

Solar neutrinos

 \rightarrow ~40000years radiated from the center to the surface.

Solar neutrino measurement in SK

Solar neutrino flux in SK-1

LaThuile 06 17

Solar neutrino flux in SK-2

Time variation of solar neutrino flux

Energy spectrum

 $tan^2(\Theta)$

Solar neutrino oscillation analysis in SK-1²³

 v_e survival probability for 3 flavor formula can be based on 2 flavor as follows (C.S.Lim et al);

$$P^{(3)}(\mathbf{n}_{e} \to \mathbf{n}_{e}; A(x)) = (1 - |U_{e3}|^{2})^{2} P^{(2)}(\mathbf{n}_{e} \to \mathbf{n}_{e}; (1 - |U_{e3}|^{2})A(x)) + |U_{e3}|^{4}$$

sin² θ_{13} weaken the matter effect

How is the effect ?

 $(\tan^2\theta_{12}=0.38, \Delta m_{12}^2=8.3 \times 10^{-5})$

1-dimintional plot using all solar neutrino experiments.²⁴

Future prospect for solar neutrinos in SK-3²⁵

Significance of spectrum distortion

Assumptions: 4.0 MeV energy threshold Systematic error (energy correlated): x 0.5 4.0-5.5MeV background: x 0.3 (same BG as SK-I above 5.5MeV)

Summary

- The results of atmospheric and solar neutrinos in Super-Kamiokande phase 1 and 2 appear.
- In atmospheric neutrino oscillation analysis, not only zenith angle analysis, but L/E analysis has been done. L/E analysis gives tighter Δm^2 region. The SK-2 results of those are consistent with SK-1.
- The v_{τ} appearance effect is observed about 3σ level.
- In 3 flavor analysis, it is consistent with θ_{13} =0, and gives limit to the θ_{13} parameter.
- In solar neutrino analysis, no significant time variation and energy distortion appear. SK-2 results are consistent with SK-1.
- Solar neutrino oscillation studies in SK-1:
 - The results of SK-1 (flux, spectrum and day/night flux differences) favors Large neutrino mixing angle at 95%C.L.
 - The data combined with all the solar neutrino and KamLAND are constraint to the very small LMA region.
 - 3 flavor analysis in solar neutrino oscillation is done, the upper limit for $sin^2\theta_{13}$ (90%C.L.) is 0.067.
- The spectrum distortion of solar neutrinos are important issue in SK-3.
- SK-3 will start from June 2006.

Zenith angle distribution in SK-2

627 days for FC/PC 609 days for upmu

Preliminary !

NANP 05 11

L/E distribution in SK-1

2 flavor neutrino oscillation in SK-1 -- L/E analysis --

 $1.9x10^{-3} < Dm^2 < 3.0x10^{-3} eV^2$ $0.90 < sin^2 2q$ at 90% C.L.

Spectrum

Consistent between SK-1 and SK-2

Solar neutrino oscillation analysis in SK-1 -- 2 flavor --

Un-binned time variation method

SK excludes all small mixing angles, disfavor LOW

Oscillation parameters from solar neutrino and KamLAND experiments

Analysis method

- Zenith spectrum for SK
 - 8 bins for spectrum and7 bins for zenith angle.
- SK flux constraint by SNO NC salt phase data. 4.94 (1 +0.081 -0.088) x 10⁶ /cm²/sec
 SK/SNO (NC,CC)
 All solar data, Ga and Cl,
- BP2004 neutrino fluxes for pp, pep, CNO and ⁷Be are used.

Significance of spectrum distortion

Assumptions:

Correlated systematic error: x 0.5 4.0-5.5MeV background: x 0.3 (same BG as SK-I above 5.5MeV)

Current breakdown of correlated systematic errors

- Better Energy scale calibration (~± 0.4%) is needed.
- Better ⁸B spectrum shape from nuclear physics is needed.

L/E distribution in SK-1 and SK-2

Search for CC v_{τ} events

LaThuile 06 10

130 ev./kton · yr)

Zenith angle dependence

Zenith angle distribution and fit results

