Semileptonic *B* Meson Decays At The *B* Factories

Michael H. Kelsey

Stanford Linear Accelerator Center

XXme Rencontres de Physique de la Vallée d'Aoste

9 March 2006

Semileptonic *B* Decays

Access to many features of hadronic physics

- CKM matrix elements $|V_{ub}|$, $|V_{cb}|$
- Non-perturbative QCD, form factors
- *B* meson properties: lifetimes, mixing

New approaches, new results

Semileptonic B decays have been a fertile field for two decades.

B-Factories have fed an explosion of results since 1999.

Far too many to be both comprehensive and coherent. \implies Focus on few results since Summer 2005:

- $|V_{ub}|$ from $b \rightarrow u$ decays
- $|V_{cb}|$ and $B \rightarrow D^*$ form factors
- B^0 lifetime and mixing

For comprehensive background, see Richman & Burchat's 1995 review (RMP 67 (893); hep-ex/9508250).

 $B \to X_u \ell \nu$: $|V_{ub}|$

See M. Rotondo's talk at 19.10 for BaBar results

Several complementary approaches

Exclusive final states $(X_u = \pi, \rho, \omega, \text{ etc.})$

- Large kinematic range; form-factor dependence
- Tagged (reconstructed *B*) or untagged methods
- Trade-off efficiency vs. purity

Inclusive lepton momentum spectrum

- High purity when tagged with reconstructed B
- Full event ID allows ν kinematics from $p_{\rm miss}, E_{\rm miss}$
- Large backgrounds from $b \rightarrow c$: restricts p_l
- V_{ub} extraction exploits $B \rightarrow s\gamma$ spectrum and QCD

Discrepancy? between $|V_{ub}|$ from inclusive and exclusive $(4.38 \pm 0.19 \pm 0.27) \times 10^{-3}$ [incl] vs. $(3.76 \pm 0.16 \substack{+0.87 \\ -0.51}) \times 10^{-3}$ [excl]

HFAG EPS 2005 summary

 $B \rightarrow \rho \ell \nu$ (b)

Exclusive $B \to X_u \ell \nu$: **BaBar**

See M. Rotondo's talk at 19.10

Select $B^{0,\pm} \to \pi \ell \nu$ and $\rho \ell \nu$ without reconstructing other B

- Well-identified lepton matched with π^{\pm} , $\pi^{0}(\gamma\gamma)$, $\rho^{0}(\pi^{+}\pi^{-})$, $\rho^{\pm}(\pi^{\pm}\pi^{0})$
- Remaining tracks/neutrals constrain missing E, p to ν

Five q^2 bins with partial BFs Simultaneous fit for all modes

Compare form-factor models

- \Rightarrow LCSR, $q^2 < 16$ GeV
- \Rightarrow LQCD, $q^2 > 16$ GeV

Can also fit directly to data

 $f_{+}(q^{2}) = \frac{c_{B}(1-\alpha)}{(1-q^{2}/m_{D*}^{2})(1-\alpha q^{2}/m_{D*}^{2})}$ (Becirevic-Kaidalov)

$$\begin{array}{c} & & & \\ &$$

 $B \rightarrow \pi \ell \nu \qquad B \rightarrow \\ 0.3 \quad 1 \quad 1 \quad (a) \quad 0.6 \quad (b) \quad (b$

 $|V_{ub}| = (3.82 \pm 0.14 \pm 0.22 \pm 0.11 \stackrel{+0.88}{_{-0.52}}) \times 10^{-3}$

$$|V_{ub}| = \left(3.76 \pm 0.16 \frac{+0.87}{-0.51}\right) \times 10^{-3} \text{ (HFAG)}$$

Phys.Rev. D72(051102), hep-ex/0507003

Michael H. Kelsey

La Thuile 2006 —

Exclusive $B \to X_u \ell \nu$: **Belle**

Select $B \to D^* \ell \nu$ events, look for lepton (e, μ) and π or ρ in recoil, with matching charge to tag.

Similar to BaBar analysis.

Partial rates for each channel in bins of q^2 .

Compare with form-factor models.

Average $B^0 \to \pi^+ \ell \overline{\nu}$ and $B^- \to \pi^0 \ell \overline{\nu}$, use LQCD calculations to extract $|V_{ub}|$

$$|V_{ub}| = (4.50 \pm 0.52 \pm 0.27 {+0.70 \atop -0.48}) \times 10^{-3}$$
 (HPQCD)
 $|V_{ub}| = (3.81 \pm 0.44 \pm 0.23 {+0.66 \atop -0.43}) \times 10^{-3}$ (FNAL)

$$|V_{ub}| = \left(3.76 \pm 0.16 \stackrel{+0.87}{-0.51}\right) \times 10^{-3} \text{ (HFAG)}$$

EPS 2005 Proceedings, hep-ex/0508018

La Thuile 2006

8

Michael H. Kelsey

Exclusive $B \to X_u \ell \nu$: **HFAG**

Inclusive $B \to X_u \ell \nu$: BaBar

See M. Rotondo's talk at 19.10

Select "fast" electron ($p_e > 1.1 \text{ GeV}$) in " $B\overline{B}$ -like" events

high multiplicity (a) $\Upsilon(4S)$, off-res • spherical ($\mathcal{R}_2 < 0.5$) • high $p_{\rm miss}$ away from e(a) subtracted (b) Subtract backgrounds vs. $B\overline{B}$ bkg , ti^tt∔ • data below $\Upsilon(4S)$ **Bkg-subtracted** (c) • events with $p_e > 2.8 \; {\rm GeV}/c$ $B \to X_u e \nu$ • Fit $B \to X_c \ell \nu$ composition 1.9 1.1 1.5 2.3 2.7 3.1 3.5 in bkg subtraction Electron Momentum (GeV/c)

Combine partial rate with shape function parameters, moments from $B \to s\gamma$ spectrum, hadron mass & energy moments from $B \to X_c \ell \nu$

$$|V_{ub}| = \left(4.44 \pm 0.25 \,{}^{+0.42}_{-0.38} \pm 0.22\right) \times 10^{-3}$$

 $|V_{ub}| = (4.38 \pm 0.19 \pm 0.27) \times 10^{-3}$ (HFAG) Phys.Rev. **D73**(012006), hep-ex/0509040

Michael H. Kelsey

La Thuile 2006 — 11

Inclusive $B \to X_u \ell \nu$: Belle

Compute $P_+ \equiv E_X - |\vec{p}_X|$

 \Rightarrow non-B tag, non-lepton tracks and neutrals in event

Subtract $b \rightarrow c\ell\nu$ via simulation

 $|V_{ub}|^2 \propto \Delta \Gamma_{b
ightarrow u \ell
u}$ in region(s) with low b
ightarrow c background $P_+ < 0.66 \text{ GeV}/c \text{(quoted result)}$ All consistent $M_X < 1.7 \,\,{
m GeV}/c^2$ $M_X < 1.7 \ {
m GeV}/c^2 \oplus q^2 > 8 \ {
m GeV}^2/c^2$

$$|V_{ub}| = (4.09 \pm 0.19 \pm 0.20 \,{}^{+0.14}_{-0.15} \pm 0.18) \times 10^{-3}$$

 $|V_{ub}| = (4.38 \pm 0.19 \pm 0.27) \times 10^{-3}$ (HFAG) Phys.Rev.Lett. **95**(241801), hep-ex/0505088

Michael H. Kelsey

La Thuile 2006 — 12

Inclusive $|V_{ub}|$: HFAG

$B \rightarrow D^* \ell \nu$ Form Factors : BaBar

Reconstruct $\overline{B}{}^0 \to D^{*+} e \,\overline{\nu}_e$ $D^{*+} \to D^0 (\to K^- \,\pi^+) \,\pi^+$

No reconstruction of recoil ${\cal B}$

Fit fully differential decay rate $\frac{d\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_V d\chi}$

•
$$w = \frac{M_B^2 + M_{D^*}^2 - q^2}{2M_B M_{D^*}} = E_{D^*}^{(B)} / M_{D^*}$$

- θ_{ℓ} : lepton angle in "W frame" vs. W in B frame
- θ_V : D angle in D^* frame vs. D^* in B frame
- χ : angle between " $D-D^{*\prime\prime}$ and " $W-\ell^{\prime\prime}$ planes

Fn. of helicity amplitudes H_-, H_+, H_0 (~ D^* polarization)

$B \rightarrow D^* \ell \nu$ Form Factors : BaBar

Helicity amplitudes \Rightarrow three form factors A_1, A_2, V

$$A_{2}(w) = \frac{R_{2}}{R^{*2}} \frac{2}{w+1} A_{1}(w)$$

$$V(w) = \frac{R_{1}}{R^{*2}} \frac{2}{w+1} A_{1}(w)$$

$$h_{A1}(w) = \frac{1}{R^{*}} \frac{2}{w+1} A_{1}(w)$$

$$h_{A1}(z) \propto \left[1 - 8\rho^{2}z + (53\rho^{2} - 15)z^{2} - (231\rho^{2} - 91)z^{3}\right]$$

$$z \equiv \frac{(\sqrt{w+1} - \sqrt{2})}{(\sqrt{w+1} + \sqrt{2})}$$

Data vs. MC generated with fitted form-factors

$B \rightarrow D^* \ell \nu$ Form Factors : BaBar

Sufficient data to fit for constant R_1, R_2 parameters.

- $R_1 = 1.396 \pm 0.060 \pm 0.035 \pm 0.027$
- $R_2 = 0.885 \pm 0.040 \pm 0.022 \pm 0.013$
- $\rho^2 = 1.145 \pm 0.059 \pm 0.030 \pm 0.035$

Different theoretical ansaetze result in $1-2\sigma$ variation

Using new FF parameters with previous BaBar technique (Phys.Rev. **D71**(051502), hep-ex/0408027)

$$|V_{cb}| = (37.6 \pm 0.3 \pm 1.3 \,{}^{+1.5}_{-1.3}) \times 10^{-3}$$

 ${\sim}2\sigma$ difference vs. average $|V_{cb}|$ from inclusive $b \to c\ell\nu, b \to s\gamma$

$$(42.0 \pm 0.2 \pm 0.4 \pm 0.6) \times 10^{-3}$$
 (hep-ph/0507253)

$$\begin{split} R_1 &= 1.18 \pm 0.32, R_2 = 0.71 \pm 0.23 \text{ (CLEO,1996)} \\ \rho^2 &= 1.56 \pm 0.14 \text{ , } \mathcal{F}(1) = 0.92 \pm 0.04 \\ |V_{cb}| &= (40.9 \pm 1.8) \times 10^{-3} \text{ (HFAG)} \end{split}$$

Submitted to Phys.Rev.D, hep-ex/0602023

La Thuile 2006 — 17 –

HFAG : $|V_{cb}|$, Form Factors

Existing results and average use 1996 CLEO fit of R_1, R_2 [PRL **76**(3898)] to set $\mathcal{F}(w)$.

BaBar's new result affects extraction of $|V_{cb}|$ from BFs (value and systematics).

Work underway within HFAG to incorporate result with existing and future analyses.

Summary and Outlook

Semileptonic B decays continue to be fruitful and exciting

- Many new measurements improving $|V_{ub}|$
- Differences between inclusive and exclusive $|V_{ub}|$ narrowing?

$$\begin{pmatrix} 4.44 \pm 0.25 \stackrel{+0.47}{_{-0.44}} \rangle \times 10^{-3} \\ (4.09 \pm 0.19 \stackrel{+0.30}{_{-0.31}} \rangle \times 10^{-3} \end{cases}$$
 vs. $(3.82 \pm 0.14 \stackrel{+0.91}{_{-0.58}}) \times 10^{-3}$

Statistically precise (<6%); consistent within uncertainties

- $B \to D^* \ell \nu$ form factor fit is first update in ten years. Results will affect exclusive $|V_{cb}|$ (central value and reduced systematics).
- Inclusive and exclusive $|V_{cb}|$ still seem different at $\sim 2\sigma$ level. $(42.0 \pm 0.2 \pm 0.7) \times 10^{-3}$ vs. $(37.6 \pm 0.3 \substack{+2.0 \\ -1.8}) \times 10^{-3}$

Interesting? or not?

• Single-experiment precisions comparable to previous world averages

Expect more high-precision results, confronting theoretical models and S.M. predictions, over next few years!

The *B* Factories

Asymmetric-energy collisions $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^0\overline{B}{}^0, B^+B^-$

1999 to 2008/2009, \sim 1 ab $^{-1}$ (billion $B\overline{B})$ each

Advantages of *B* Factories

- Very high statistics: few $B\overline{B}$ per second
- Specific production states: at threshold for B^0 , B^{\pm}

• Full event reconstruction: 5–20 tracks per event

- Resolve *B* decay times ($\beta\gamma \sim 0.5 \Rightarrow \Delta z \sim 250 \ \mu m$)
- Low backgrounds, open (unbiased) trigger system

Exclusive $B \to X_u \ell \nu, |V_{ub}|$: **HFAG**

Inclusive $B \to X_u \ell \nu$: BaBar

See M. Rotondo's talk at 19.10

Mass of X_u from reconstructed B, lepton, "neutrino" Partial rates in bins of $m_X \leq \zeta$, corrected for efficiencies Avoid dependence on shape function (LLR, Neubert)

 I_0, I_+ weighted integrals of $B \rightarrow s\gamma$ spectrum

 $|V_{ub}| = (4.43 \pm 0.38 \pm 0.25 \pm 0.29) \times 10^{-3}$

 $|V_{ub}| = (4.38 \pm 0.19 \pm 0.27) \times 10^{-3}$ (HFAG) Submitted to Phys.Rev.Lett., hep-ex/0601046

Michael H. Kelsey

La Thuile 2006 — 13

HFAG : $B \rightarrow D\ell\nu, D^*\ell\nu$

B^0 **Properties : BaBar**

 $\overline{B}{}^0 \to D^{*+} \ell \overline{\nu}, D^{*+} \to \pi^+ D^0$

Lepton and "slow" pion only, not D^0 Recoil *B* identified from lepton only. Fit $\Delta \tau \sim \Delta z$ using ℓ - π vertex, beamspot, $\ell_{\rm recoil}$ -beam-axis constraints.

$$B^0 \overline{B}^0$$
 mixing:
$$\frac{N_{\ell \pm \ell \pm} - N_{\ell + \ell}}{N_{\ell \pm \ell \pm} + N_{\ell + \ell}}$$

$$au(B^0) = 1.504 \pm 0.013 {}^{+0.018}_{-0.013} \text{ ps}$$

 $\Delta(m_d) = 0.511 \pm 0.007 {}^{+0.007}_{-0.006} \text{ ps}^{-1}$

Phys.Rev. D73(012004), hep-ex/0507054

B^0 Mixing : Belle

Search for charge asymmetry in $B^0\overline{B}^0$ mixing.

Reconstruct events with pairs of leptons. Identify same-sign vs. opposite-sign events.

Look for difference in $\ell^+\ell^+$ compared to $\ell^-\ell^-$ (excluding known detector effects)

$$A_{\rm sl} = \frac{N_{\ell^+\ell^+} - N_{\ell^-\ell^-}}{N_{\ell^+\ell^+} + N_{\ell^-\ell^-}} = (-1.1 \pm 7.9 \pm 7.0) \times 10^{-3}$$

Submitted to Phys.Rev.D, hep-ex/0505017