

High precision study of charge asymmetry in $K^{\pm} \rightarrow 3\pi^{\pm}$ decays by NA48/2 at CERN SPS

Evgueni Goudzovski (JINR, Dubna)

on behalf of the NA48/2 Collaboration: Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, March 9th, 2006

Overview

• Direct CP violation in $K^{\pm} \rightarrow 3\pi$ decays; NA48/2 experimental setup; Measurement principle; Systematic effects; • The preliminary result in the $K^{\pm} \rightarrow 3\pi^{\pm}$ mode based on the full collected statistics; • Status of the $K^{\pm} \rightarrow \pi^{0} \pi^{0} \pi^{\pm}$ analysis; Conclusions.

Measurements before NA48/2

- <u>"Charged" mode</u> $(K^{\pm} \rightarrow 3p^{\pm})$
 - Ford et al. (1970) at BNL: A_g=(-7.0±5.3)×10⁻³
 Statistics: 3.2M K[±]
 - HyperCP prelim. (2000) at FNAL: A_g=(2.2±1.5±3.7)×10⁻³ Statistics: 41.8M K⁺, 12.4M K⁻ Systematics due to knowledge of magnetic fields Published as PhD thesis W.-S.Choong LBNL-47014 Berkeley 2000

• <u>"Neutral" mode</u> $(K^{\pm} \rightarrow p^{\pm} p^{0} p^{0})$

- Smith et al. (1975) at CERN-PS: A_g⁰=(1.9±12.3)×10⁻³ Statistics: 28000 K[±]
- TNF (2005) at IHEP Protvino: A_g⁰=(0.2±1.9)×10⁻³ Statistics: 0.62M K[±]

Theoretical expectations

The NA48 detector

Main detector components:

- Magnetic spectrometer (4 DCHs):
 4 views/DCH: redundancy ⇒ efficiency;
 ?p/p = 1.0% + 0.044%*p [GeV/c]
- Hodoscope fast trigger; precise time measurement (150ps).
- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious; $\sigma_E/E = 3.2\%/v E + 9\%/E + 0.42\%$ [GeV].
- Hadron calorimeter, muon veto counters, photon vetoes.

NA48/2 data taking: completed

A view of the NA48/2 beam line

2003 run: ~ 50 days 2004 run: ~ 60 days

Total statistics in 2 years: K[±] ® p⁻p⁺p[±]: ~3-10⁹ K[±] ® p⁰p⁰p[±]: ~1-10⁸

> Rare K[±] decays: BR's down to 10⁻⁹ can be measured

>200 TB of data recorded

Selected statistics

Ag measurement: fitting method
analysis of 1-dimensional U spectra
If K⁺ and K⁻ acceptances are made sufficiently similar,
in general case
$$\Delta g$$
 can be extracted fitting the
2D-ratio R(u,v) with a non-linear function:
$$R_2(u,v)=N^+(u,v)/N^-(u,v) \qquad (normalization is a free parameter)$$
$$f(u,v) = n \frac{1 + (g + \Delta g)u + hu^2 + kv^2}{1 + gu + hu^2 + kv^2}$$

However, given the (small) slopes in the "charged" mode, <u>1D-ratio</u> **R(u)** and <u>linear function</u> are sufficient approximations:

$$R_1(u) = N^+(u)/N^-(u)$$
$$f(u) = N \cdot (1 + \Delta g u)$$

The "charged" mode: g = -0.2154±0.0035 |h|, |k| ~ 10⁻²

Addressing the acceptance

Magnetic fields present in both beam line and spectrometer:

- This leads to residual charge asymmetry of the setup;
- Supersample data taking strategy:
 - Beam line (achromat) polarity (A) reversed on weekly basis;
 - Spectrometer magnet polarity (B) reversed on a more frequent basis (<u>~daily</u> in 2003, <u>~3 hours</u> in 2004)

Example: Data taking from August 6 to September 7, 2003

Acceptance cancellation within supersample

Detector left-right asymmetry cancels in 4 ratios of K⁺ over K⁻ U-spectra:

- same deviation direction by spectrometer magnet in numerator and denominator;
- data from 2 different time periods used at this stage.

More cancellations

(1) **Double ratio:** cancellation of **global time instabilities** (rate effects, analyzing magnet polarity inversion): [IMPORTANT: SIMULTANEIOUS BEAMS]

$$R_{U} = R_{US} \times R_{UJ} \qquad \Longrightarrow \qquad f_{2}(u) = n \cdot (1 + ? g_{U} \cdot u)^{2}$$
$$R_{D} = R_{DS} \times R_{DJ} \qquad \Longrightarrow \qquad f_{2}(u) = n \cdot (1 + ? g_{D} \cdot u)^{2}$$

(2) <u>Double ratio</u>: cancellation of local beam line biases effects (slight differences in beam shapes and momentum spectra):

 $R_{S} = R_{US} \times R_{DS} \qquad \Longrightarrow \qquad f_{2}(u) = n \cdot (1 + ?g_{S} \cdot u)^{2}$ $R_{J} = R_{UJ} \times R_{DJ} \qquad \Longrightarrow \qquad f_{2}(u) = n \cdot (1 + ?g_{J} \cdot u)^{2}$

(3) <u>Quadruple ratio</u>: both cancellations $R = R_{US} \times R_{UJ} \times R_{DS} \times R_{DJ} \quad \Longrightarrow \quad f_4(u) = n \cdot (1 + \Delta g \cdot u)^4$ The method is independent of K+/K- flux ratio and relative sizes of the samples collected relative sizes of the samples collected relative sizes of the samples collected

Beam spectra difference (an example of cancellation)

Beam line polarity reversal almost reverses K⁺ and K⁻ beam spectra

Systematic differences of K⁺ and K⁻ acceptance due to beam spectra <u>mostly cancel</u> in R_U×R_D

Systematic check: Reweighting K⁺ events so as to equalize momentum spectra leads to a negligible effect $\delta(?g)=0.03\times10^{-4}$

Monte-Carlo simulation

Due to acceptance cancellations, the analysis does not rely on Monte-Carlo to calculate acceptance

Still Monte-Carlo is used to study systematic effects.

- Based on GEANT;
- Full detector geometry and material description;
- Local DCH inefficiencies simulated;
- Variations of beam geometry and DCH alignment are followed;
- Simulated statistics similar to experimental one.

Systematics: spectrometer

Transverse alignment

<u>Time variations of spectrometer geometry</u>: do not cancel in the result. Alignment is fine-tuned by scaling momenta (charge-asymmetrically) to equalize the reconstructed average K⁺,K⁻ masses

Systematics: beam geometry

- Acceptance largely defined by central hole edge (R≈10cm);
- Geometry variations, non-perfect superposition: asymmetric acceptance.
- Additional acceptance cut defined by a "virtual pipe" (R=11.5cm) centered on averaged reconstructed beam position as a function of charge, time and K momentum Statistics loss: 12%
 [Special treatment of permanent magnetic fields effect on measured beam positions]

Other systematics

-0.4

-0.8

-1.2

Residual effects of stray magnetic fields (magnetized vacuum tank, earth field) minimized by explicit field map correction

Further systematic effects studied:

- Accuracy of beam tracking, variations of beam widths;
- Bias due to resolution in u;
- Sensitivity to fitting interval and method;
- Coupling of $\pi \rightarrow \mu \nu$ decays to other effects;
- Effects due to event pile-up;
- π^+/π^- interactions with the material.

Supersamples collected

Supersample: a minimal independent self-consistent set of data

(including all magnetic field polarities)

Run	Supersample	Dates	Subsamples	K _{3π} events selected (millions)
2003	0	22/06 – 25/07	26	697.69
	1	06/08 – 20/08	12	421.50
	2	20/08 – 03/09	12	413.37
	3	03/09 – 07/09	4	134.13
2004	4	16/05 – 07/06	87	362.07
	5	27/06 – 07/07	48	221.74
	6	07/07 – 19/07	86	301.83
	7	24/07 – 01/08	66	304.98
	8	01/08 – 11/08	62	255.29
		Total	349	3112.59

E. Goudzovski / La Thuile, March 9th, 2006

∆g fits in supersamples (quadruple ratios corrected for L2 trigger efficiency)

10.4

10.3

10.2

Results in supersamples

Run	Supersample	∆g x10 ⁴ "raw"	∆g x10 ⁴ L2-corrected	χ ² of the R ₄ (u) fit (L2-corrected)
2003 Accepted by PLB; hep-ex/0602014	0	0.5 ± 1.4	-0.8±1.8	30/26
	1	-0.4 ± 1.8	-0.5±1.8	24/26
	2	-1.5 ± 2.0	-1.4 ± 2.0	28/26
	3	0.4 ± 3.2	1.0 ± 3.3	19/26
2004 [NEW]	4	-2.8±1.9	-2.0±2.2	18/26
	5	4.7 ± 2.5	4.4 ± 2.6	20/26
	6	5.1±2.1	5.0±2.2	26/26
	7	1.7 ± 2.1	1.5±2.1	10/26
	8	1.3±2.3	0.4 ± 2.3	23/26
Combined		0.7±0.7	0.6±0.7	

Systematics summary

Systematic effect	Effect on ∆g×10 ⁴	
Spectrometer alignment	±0.1	
Momentum scale	±0.1	
Acceptance and beam geometry	±0.2	
Pion decay	±0.4	
Accidental activity (pile-up)	±0.2	
Resolution effects	±0.3	
Total systematic uncertainty	±0.6	
L1 trigger: uncertainty only	±0.3	
L2 trigger: correction	-0.1±0.3	
Total trigger correction	-0.1±0.4	
Systematic & trigger uncertainty	±0.7	
Raw ∆g	0.7±0.7	
Δg corrected for L2 inefficiency	0.6±0.7	

The preliminary result

A NEW RESULT based on the full statistics accumulated in 2003 and 2004 runs

- More than an order of magnitude better precision that the previous measurements;
- Uncertainties dominated by those of statistical nature;
- Result compatible with the Standard Model predictions;
- The design goal reached!
 There is still some room to improve
 the systematic uncertainties. 25

The "neutral" mode analysis (will be presented at Moriond'06) $\sigma_{\rm M}$ =1.1 MeV/c² $R_4(u)$ 0.4837± 0.2Te1E-8 1.2 Super-sample I: $\chi^2/n.d.f. = 97/104$ ┼_┇╪_{╽╻╋}[┿]╪┼_╅╪_{┪╋┥}╪[┿]╅┥┿╪[┿]╋╡┥┿[┿]┿[┿]╪┿┥┯┯╤^{┿┿┿}╈^{┿╸}┿[┿]┿[┿]╵┿_┺┿╵┿_┻┿╵┿_╋┿[┿]┿┿ 0.9 ratios 0.8 -0.5 -1 0.5 1.2 Super-sample II: $\chi^2/n.d.f. = 88/104$ 1.1 Duadruple 0.9 0.8 -0.5 0.5 1.2 uper-sample III: $\chi^2/n.d.f. = 85/104$ 1.1 +...+...+++++.+. 1 0.9 0.496 0.50 0.488 0.492 0.8 M(3p), GeV/c^2 -1 -0.5 0.5 Statistical precision in A_a^o similar to "charged" mode: Ratio of "neutral" to "charged" statistics: $N^0/N^{\pm} \sim 1/30$; Ratio of slopes: |g⁰/g[±]|≈1/3; More favourable Dalitz-plot distribution (gain factor $f \sim 1.5$). The final result with the 2003 sample (based on $\sim 48 \times 10^6$ events)

Events w T

1205

1005

808

605

40.0

205

 \geq

2.5

2

1.5

1

0.5

-1.5

-1

-0.5

E. Goudzovski / La Thuile, March 9th, 2006

0.5

1.5

[a new result superseding the old one!]

 $A_{a}^{0} = (1.8 \pm 2.6) \times 10^{-4}$

Conclusions

New NA48/2 results on direct CP-violating charge asymmetry in $K^{\pm} \rightarrow 3\pi$ slopes:

"Charged" mode $K^{\pm} \rightarrow 3\pi^{\pm}$ Full data set, preliminary

$$A_{g} = (-1.3 \pm 1.5_{stat} \pm 0.9_{trig} \pm 1.4_{syst}) \times 10^{-4}$$

= (-1.3 ± 2.3) × 10⁻⁴

"Neutral" mode $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm} \sim \frac{1}{2}$ of data set, final result

$$A_g^{0} = (1.8 \pm 2.2_{stat} \pm 1.0_{trig} \pm 0.8_{syst} \pm 0.2_{ext}) \times 10^{-4}$$

= (1.8 ± 2.6) × 10⁻⁴

- ~10 times better precisions than previous measurements, still dominated by statistical contributions;
- The NA48/2 design goal reached, however further improvements of the analysis possible.

Consistency of 2003 & 2004 results

Slope difference

2003: $\Delta g = (-0.7 \pm 0.9_{stat} \pm 0.6_{trig} \pm 0.6_{syst}) \times 10^{-4} = (-0.7 \pm 1.3) \times 10^{-4}$ 2004: $\Delta g = (1.8 \pm 1.0_{stat} \pm 0.5_{trig} \pm 0.6_{syst}) \times 10^{-4} = (1.8 \pm 1.2) \times 10^{-4}$

Slope asymmetry 2003: $A_g = (1.6 \pm 2.1_{stat} \pm 1.4_{trig} \pm 1.4_{syst}) \times 10^{-4} = (1.6 \pm 2.9) \times 10^{-4}$ 2004: $A_g = (-4.1 \pm 2.2_{stat} \pm 1.1_{trig} \pm 1.4_{syst}) \times 10^{-4} = (-4.1 \pm 2.8) \times 10^{-4}$

