

Physics at the **f** resonance (1)

- SOLIN KLOE
- \diamond Unique facility running at the ϕ peak (DAPNE) $\,s_{f}^{}\sim$ 3.1 mb
- Extensively study all the possible decay channels with a multipurpose detector

Kaon physics _____ $BR(f \otimes K^+K^-) = 49.2\%$ _

 $BR(\mathbf{f} \otimes K^0 \overline{K^0}) = 33.8\%$

[®] K_SK_L and K^+K^- pairs are produced in a pure quantum state ($J^{PC}=1^{--}$) :

$$|i\rangle \propto \frac{1}{\sqrt{2}} (|K_L, \mathbf{p}\rangle | K_S, -\mathbf{p}\rangle - |K_L, -\mathbf{p}\rangle | K_S, \mathbf{p}\rangle)$$

#unique feature is the production of pure and quasi monochromatic $K_{S'}$, K_L , K^+ and K^- beams

@ detection of a $K_S(K_L)$ guarantees the presence of a $K_L(K_S)$ with known momentum and direction (the same for K^+K^-)

precision measurement of absolute BR's
#interference measurements in K_S K_L system

Physics at the **f** resonance (II)

Non-kaon physics

@ Radiative ϕ decays ($\phi = |s\bar{s}\rangle$) $\phi \rightarrow M \gamma$ to probe the quark structure of the meson M

$$\begin{array}{ccc} \eta \\ \eta' \\ \text{mixing angle} \end{array} & \begin{array}{c} a_0 \\ f_0 \\ \end{array} & \begin{array}{c} q\overline{q} \text{ vs } q\overline{q} q\overline{q} \end{array}$$

[®] η factory
$$N_{\eta} \sim 2 \times 10^7$$
/fb-1 (BR($\phi \rightarrow \eta \gamma$) = 1.3%)

• Hadronic cross-section measurement using the Initial State Radiation to vary the energy: $e^+ e^- \rightarrow \pi^+ \pi^- + \gamma$

For the theoretical estimate of the hadronic contribution (a_{μ}^{hadr}) to the anomalous magnetic moment of the muon (a_{μ}) *down to the threshold energy for pp production*

DAINE

- e+e- collider @ \sqrt{s} = 1019.4 MeV
- 2 I P (KLOE DEAR/Finuda)
- Separate e+, e- rings to minimize beam-beam interactions
- Crossing angle: 12.5 mrad
- Residual lab. momentum of ϕ : $p_{\phi} \sim 13 \text{ MeV/c}$

180

160

140

120

100

80

60 40 20 /pb/month

2001

172

Injection during data-taking

Results presented in this talk from 2001/2 data:

ð∠ = 450 pb⁻¹

Grand total (2001/5):

$$\vec{\mathbf{d}}_{\text{peak}} = 2.5 \text{ fb}^{-1}.$$

L peak = 1.3×10³² cm⁻²s⁻¹

2002

320

2005

1256

month since Jan '01

2004

734

The KLOE detector

Drift Chamber

- •4 m diameter × 3.3 m length
- •90% helium, 10% isobutane
- •12582/52140 sense/tot wires
- •All-stereo geometry

$$s_{rf} = 150 \text{ mm } s_z = 2 \text{ mm}$$

 $s_v = 3 \text{ mm } s_p / p = 0.4 \%$

 $l_{s} = 0.6 \text{ cm}$ $l_{L} = 340 \text{ cm}$ $l_{\pm} = 95 \text{ cm}$

> YOKE S.C. COIL

DRIFT CHAMBER

Barrel EMC

7m

Electromagnetic Calorimeter

- Lead/scintillating fiber
- 98% coverage of solid angle
- 88 modules (barrel + end-caps)
- 4880 PMTs (two side read-out)

$$\mathbf{s}_{E} / E = 5.4\% / \sqrt{E(GeV)}$$

 $\mathbf{s}_{t} = 54 \text{ ps} / \sqrt{E(GeV)}$
 $\oplus 50 \text{ ps}(cal)$

– Erika De Lucia -- XX Rencontre de Physique de La Vallée d'Aoste -- March 6-11 2006 . La Thuile

6 m

Unitarity test of CKM matrix – V_{us} & V_{us} / V_{ud}

• Most precise test of unitarity possible at present comes from 1st row: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$ Can test if **D** = 0 at 10⁻³ level:

> from super-allowed nuclear β -decays: $2|V_{ud}|\delta V_{ud} = 0.0005$ from semileptonic kaon decays: $2|V_{us}|\delta V_{us} = 0.0009$

• Extract |V_{us}| from K₁₃ decays. EM effects must be included:

$$\begin{split} \Gamma(K \to \pi l \,\nu(\gamma)) &\propto |V_{us} \, f_{+}^{\ K0\pi\text{-}}(0) \,|^2 \, I(\lambda_t) \, S_{EW}(1 + \delta_{EM} + \delta_{SU(2)}) \\ \textbf{Relative uncertainty:} \quad \frac{\delta |V_{us}|}{|V_{us}|} &= 0.5 \, \frac{\delta \Gamma}{\Gamma} \oplus 0.5 \, \frac{\delta I(\lambda_t)}{I(\lambda_t)} \, \oplus \frac{\delta f_{+}^{\ K0\pi\text{-}}(0)}{f_{+}^{\ K0\pi\text{-}}(0)} \end{split}$$

- Extract $|V_{us}| / |V_{ud}|$ from $\Gamma(K^{\pm} \rightarrow \mu \nu(\gamma)) / \Gamma(\pi^{\pm} \rightarrow \mu \nu(\gamma))$ ratio. Dominated by the theoretical uncertainity on the f_K / f_{π} evaluation from lattice QCD
- KLOE can measure all experimental inputs for neutral and charged kaons: branching ratios, lifetimes, and form factors.

7

Neutral Kaons

- K_s semileptonic decays
- K_L dominant BR's
- K_{Le3} form factor slopes

Tagging of K_s K_Lbeams

Analysis of K_s ? pendecays

- Event selection (410 pb⁻¹)

- K_S tagged by K_L crash
- Two tracks from IP to EmC
- Kinematic cuts to reject background from $K_S \rightarrow \pi \pi$
- Track-cluster association required

 e/π I D from TOF I dentifies charge of final state

Obtain number of signal events from a constrained likelihood fit of multiple data distributions

Normalize using $K_S \rightarrow \pi^+\pi^-(\gamma)$ events in same data set

Fit distributions of 5 variables in data with various MC sources

including $\pi e v \gamma$ and $\pi \pi \gamma$ processes

K_s® pendecay – Results

BR(K_S $\rightarrow \pi^- e^+ v) = (3.529 \pm 0.057 \pm 0.027) \times 10^{-4}$ BR(K_S $\rightarrow \pi^+ e^- v) = (3.518 \pm 0.051 \pm 0.029) \times 10^{-4}$

$BR(K_s \otimes pen) = (7.048 \pm 0.076 \pm 0.050)^{-4}$

BR($\pi e\nu$) [KLOE '02, Phys.Lett.B535, 17 pb⁻¹]:(6.91 ± 0.34_{stat} ± 0.15_{syst}) 10⁻⁴

Charge asymmetry $A_s = A_L$ $A_s \neq A_L$ $A_s - A_L = 4 \operatorname{Re}(d)$ if CPT and $\Delta S = \Delta Q$ signals CPT in mixing and/or decay with $\Delta S \neq \Delta Q$ if CPT holds in decays with $\Delta S \neq \Delta Q$

Accepted by PLB

10

 $A_{S}^{e} = (1.5 \pm 9.6 \pm 2.9)^{-3}$

With 2.5 fb⁻¹: $\delta A_s \sim 3 \times 10^{-3} \sim 2 \text{ Re } \epsilon$

Linear form factor slope $\mathbf{I}_{+} = (33.8 \pm 4.1)^{2} 10^{-3}$

In good agreement with linear fit from K_1 semileptonic form factor [(28.6 ± 0.6)×10⁻³]

Test of DS = DQ rule, CPT ok -

 $\mathbf{\hat{A}}(x_{+}) = (0.4 \pm 3.1 \pm 1.8) \times 10^{-3}$

Factor 2 improvement w.r.t. current most precise measurement (CPLEAR, σ = 6.1×10⁻³)

 $\tau(K_{S}) \qquad PDG \\ \tau(K_{L}) \qquad PDG + KLOE '05 (avg.) \\ BR(K_{L}? pen) \qquad KLOE \end{cases}$

Factor 5 improvement w.r.t. current most precise measurement (CPLEAR, σ = 1.3×10⁻²)

K_s **® pm** first observation

12

Coming soon

Dominant K_L branching ratios

 K_L lifetime, KLOE average : $t_L = 50.84 \pm 0.23$ ns

Vosburg, '72: $\tau_L = 51.54 \pm 0.44$ ns

K_{1e3} form factor slopes

- 328 pb⁻¹, 2 \cdot 10⁶ $K_{\mu3}$ decays
- Accepted by PLB • Kinematic cuts + TOF PID to reduce background ($\sim 0.7\%$ final contamination)
- Separate measurement for each charge state ($e^+\pi^-$, π^+e^-) to check systematics

• t measured from π and K₁ momenta: $\sigma_t/m_{\pi}^2 \sim 0.3$

Erika De Lucia -- XX Rencontre de Physique de La Vallée d'Aoste -- March 6-11 2006 , La Thuile

 $|\mathbf{e}| = (2.216 \pm 0.013)$ '10⁻³

Charged Kaons

K [±] lifetime
 BR(K⁺_{m²})
 K[±] semileptonic decays

Tagging K⁺ K⁻

19

Measurement of absolute BR's: K⁺ beam tagged from K⁻ $\rightarrow \pi^{-}\pi^{0}$, $\mu^{-}\nu^{-}$

- Two-body decays identified as peaks in the momentum spectrum of secondary tracks in the kaon rest frame: 6x10⁵ tags/pb⁻¹
- Given the tag a dedicated reconstruction of K[±] tracks is performed, correcting for dE/dx losses of charged kaons in the DC

Measurement of the K[±] lifetime

20

- \bullet Two different methods to measure τ_{\pm} allow cross checks on the systematic error.
- Common to both methods:

- 2nd method: τ_{\pm} from the K decay time

- Use only $K\pi 2$ decays
- Use tag information to estimate the T_0 i.e. the $\phi \rightarrow K^+K^-$ time.
- Measure the kaon decay time: $t^* = (t_{\gamma} R_{\gamma}/c T_0)g_k$, using the π^0 clusters
- Lorentz factor $\mathbf{g}_{\mathbf{k}}$: slowly changing along the kaon path

(MILC Coll. PoS (LAT 2005) 025,2005)

21

Measurement of BR(K+13)

• The error is dominated by the error on Data/MC efficiency correction and the systematics due to the signal selection efficiency is under evaluation.

Erika De Lucia -- XX Rencontre de Physique de La Vallée d'Aoste -- March 6-11 2006 , La Thuile 22

 V_{us} from KLOE results (BR's and t_L)

	K, e3	<i>Κ</i> , μ3	K _c e3	K±e3	K±u3	Slopes
BR	0.4007(15)	0.2698(15)	7.046(91)×10 ⁻⁴	0.05047(46)	0.03310(40)	- 1 c = 0.02534(30) $1 c = 0.00128(3)$
τ	50.84((23) ns	89.58(6) ps	12.384	(24) ns	(Pole model: KLOE,
	$ V_{us} $ ×	$f_{+}(0)$		$ V _{us}$	997	$l_0 = 0.01587(95)$ (KTeV and Istra+ ave.)
0.21 0.21	8- 6- ×	<u>× <></u>	0.2166 ± 0.0	0005 - 0 - 0 × -).227).225 [Ph • V	From unitarity $(0)=0.961(8)$ atwyler and Roos Z. atys. C25, 91, 1984] -0.97377(27)
0.21	$4 - K_{Le3}$	$K_{L\mu3}$ c ² /dof	$K_{Se3} = 1.9/4$	$K_{\mu3}^{\pm} = 0$	0.223 Ma [Ph	rciano and Sirlin ys.Rev.Lett.96 032002,2006] $f_{us} \times f_{1}(0) = 0.2187(22)$

 $V_{\rm us}$ and Unitarity

- **t**_L = **50.99(20)** ns, average KLOE-PDG
- Including all new measurements for semileptonic kaon decays (KTeV, NA48, E865, and KLOE)

From unitarity • $f_+(0)=0.961(8)$ Leutwyler and Roos Z. [Phys. C25, 91, 1984] • $V_{ud}=0.97377(27)$ Marciano and Sirlin [Phys.Rev.Lett.96 032002,2006] $V_{us} \times f_+(0) = 0.2187(22)$

The V_{us} - V_{ud} plane

Fit result assuming unitarity, $P(\chi^2) = 0.23$: $V_{us} = 0.2264 \pm 0.0009$

Kaon Physics at KLOE - Conclusions (1)

- Completely inclusive measurements of kaon semileptonic BR's with fractional accuracies from ~0.4% to ~1.3%;
- @ First direct measurement of BR(K_S → πµν) coming soon with a statistical accuracy of ~3%.
- @ Two independent measurements of τ_L : 0.5% fractional accuracy.

Significant contribution to determination of $V_{us} f_{+}(0)$ to 0.2%

@ 0.3% fractional accuracy on BR(K μ 2(γ)) measurement

Independent determination of V_{us} at 1% level

- Preliminary result on K[±] lifetime.
- @ Preliminary result on ${
 m K}_{
 m L}$ ightarrow π + π ⁻

Kaon Physics at KLOE – Conclusions (II)

Perspectives with 2.5 fb⁻¹ of collected data:

- In Fractional accuracy of < 1% on the BR for $K_S \rightarrow \pi e \nu$ and for $K^{\pm}13$
- In More and better measurements of form-factor slopes (K_{e3} and $K_{\mu3}$).
- Image Measurement of BR($K_s \rightarrow \pi \mu \nu$), accuracy < 2%

- Improve by a factor 10 the limit **BR**($K_{s} \otimes 3p^{0}$) < 1.2×10⁻⁷ @ 90% C.L. obtained from a direct search on 450 pb⁻¹ [PLB 619 (2005)]
- Image First measurement of BR($K_S \rightarrow \pi^+ \pi^- \pi^0$) from a direct search, with 60% accuracy
- Measure the ratio BR(K → ev)/BR(K → $\mu\nu$) to probe e- μ universality (about 6x10⁴ Ke2 events produced)

SPARES

K_s**®** pendecay – Strategy

- K_{crash} tag
- 2 tracks from IP with associated EmC clusters and with $M_{\pi\pi} < 490 \text{ MeV}$ (reject $K_S \rightarrow \pi\pi(\gamma)$)
- π/e identification using TOF:
 - two possible mass hypothesis

$$(e,\pi) \begin{cases} \mathbf{m}_{-} = \mathbf{m}_{e} \\ \mathbf{m}_{+} = \mathbf{m}_{p} \end{cases} \quad (\pi,e) \begin{cases} \mathbf{m}_{-} = \mathbf{m}_{p} \\ \mathbf{m}_{+} = \mathbf{m}_{e} \end{cases}$$

•two differences between expected flight times

 $\mathbb{D}\mathbf{d}\mathbf{t} (\mathbf{e}, \mathbf{p}) = [\mathbf{t}_{-}^{\mathsf{CLU}} - \mathbf{t}_{+}^{\mathsf{CLU}}] - [\mathbf{L}_{1} / \mathsf{c} \beta(\mathbf{e}) - \mathbf{L}_{2} / \mathsf{c} \beta(\pi)]$

 $Ddt (p,e) = [t_{-}^{CLU} - t_{+}^{CLU}] - [L_{1} / c \beta(\pi) - L_{2} / c \beta(e)]$

- comparing Ddt (e, p) with Ddt (p,e) we can:
 - identify π , e and determine the sign of the charge \Rightarrow A_s accessible
 - reject the background from $\pi\pi$ and $\pi\mu$

– Erika De Lucia -- XX Rencontre de Physique de La Vallée d'Aoste -- March 6-11 2006 . La Thuile

Semileptonic decay amplitudes: definitions

$$\left\langle \boldsymbol{p}^{-}\ell^{+}\boldsymbol{n} \middle| K^{0} \right\rangle = a + b \qquad \left\langle \boldsymbol{p}^{+}\ell^{-}\boldsymbol{\overline{n}} \middle| K^{0} \right\rangle = c + d$$
$$\left\langle \boldsymbol{p}^{+}\ell^{-}\boldsymbol{\overline{n}} \middle| \overline{K}^{0} \right\rangle = a^{*} - b^{*} \qquad \left\langle \boldsymbol{p}^{-}\ell^{+}\boldsymbol{n} \middle| \overline{K}^{0} \right\rangle = c^{*} - d^{*}$$

	СР	Т	СРТ	$\Delta S = \Delta Q$
а	3=0	ℑ=0		
b	ℜ=0	S=0	=0	
С	ℑ=0	S=0		=0
d	ℜ=0	S=0	=0	=0

CPT violation:
$$y = -\frac{b}{a}$$

DS=DQ violation: $x_{+} = \frac{c^{*}}{a}$

1

CPT violation & DS=DQ violation : $x_{-} = -\frac{d^{*}}{a}$

 $K_{s} \otimes pen$: test of **D**S=**D**Q rule

BF

31

$$\Re x_{+} = \frac{1}{4} \begin{pmatrix} BR(K_{s} \rightarrow pen) t_{L} \\ BR(K_{L} \rightarrow pen) t_{s} \end{pmatrix}^{T} \qquad \begin{array}{c} \text{ratio of } \Delta S = \Delta Q \text{ violating and conserving amplitudes (CPT cons.) SM pred.} \\ \text{Conserving amplitudes (CPT cons.) SM pred.} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{K}_{LOE} \text{ (KLOE '05 (avg.)} \\ \hline \mathbf{B} R(K_{L} \rightarrow pen) \text{ (KLOE '05 (avg.)} \\ \hline \mathbf{K}_{LOE} \text{ (avg.)} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8})^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8 + 1.8)^{-1} \mathbf{10^{-3}} \\ \hline \mathbf{A} \mathbf{x}_{+} = (\mathbf{-0.5 \pm 3.1 \pm 1.8$$

• $\mathbf{\hat{A}}\mathbf{x}_{\perp}$: CPT viol., $\mathbf{DS} = \mathbf{DQ}$ viol.

$$\mathbf{A}_{\mathrm{S}} - \mathbf{A}_{\mathrm{L}} = 4 \; (\; \Re \mathbf{x}_{-} + \; \Re \mathbf{d} \;)$$

Factor 5 improvement w.r.t. current most precise measurement (CPLEAR, $\sigma = 1.3 \times 10^{-2}$)

 A_L KTeV $\sigma=0.75\times10^{-4}$ $\Re\delta$ CPLEAR $\sigma=3.4\times10^{-4}$

• $\hat{A}y$: CPT viol., **DS** = **D**Q cons.

 $A_{s}+A_{L}=4$ ($\Re e-\Re y$)

 $\mathbf{\hat{A}}y = (\mathbf{0.4} \pm 2.4 \pm 0.7) \cdot 10^{-3}$

Comparable with best result (CPLEAR from unitarity, $\sigma = 3.1 \times 10^{-3}$)

$$\Re e$$
 from PDG not assuming CPT

 $|\hat{\mathbf{A}}x_{-}| = (-0.8 \pm 2.4 \pm 0.7) \cdot 10^{-3}|$

$K_L \otimes p^+p^- : CP$ violation

CPT test: the Bell-Steinberger relation

Measurements of K_S K_L observables can be used for the CPT test from unitarity :

$$(1 + i \tan \phi_{SW}) [\operatorname{Re} \varepsilon - i \operatorname{Im} \delta] = \frac{1}{\Gamma_S} \sum_f A^*(K_S \to f) A(K_L \to f) = \sum_f \alpha_f$$

$$\alpha_{+-} = \eta_{+-} B(K_{s} \to \pi^{+}\pi^{-})$$

$$\alpha_{00} = \eta_{00} B(K_{s} \to \pi^{0}\pi^{0})$$

$$\alpha_{+-\gamma} = \eta_{+-} B(K_{s} \to \pi^{+}\pi^{-}\gamma)$$

$$\alpha_{+-0} = \tau_{s}/\tau_{L} \eta_{+-0} B(K_{L} \to \pi^{+}\pi^{-}\pi^{0})$$

$$\alpha_{000} = \tau_{s}/\tau_{L} \eta_{000} B(K_{L} \to \pi^{0}\pi^{0}\pi^{0})$$

$$\alpha_{k13} = 2\tau_{s}/\tau_{L} B(K_{L}13) [\text{Re }\varepsilon - \text{Re }y - i(\text{Im }\delta + \text{Im }x_{+})]$$

$$= 2\tau_{s}/\tau_{L} B(K_{L}13) [(A_{s} + A_{L})/4 - i(\text{Im }\delta + \text{Im }x_{+})]$$

CPT test: inputs to the Bell-Steinberger relation

$$\begin{array}{lll} B(K_{S} \rightarrow \pi^{+}\pi^{-})/B(K_{S} \rightarrow \pi^{0}\pi^{0}) = 2.2549 \pm 0.0059 \\ B(K_{S} \rightarrow \pi^{+}\pi^{-}\gamma) < 9 \times 10^{-5} \\ B(K_{L} \rightarrow \pi^{+}\pi^{-}\gamma) = (29 \pm 1) \times 10^{-6} \\ T_{S} = 0.0 \\ T_{L} = 50 \\ B(K_{L} \rightarrow \pi l \nu) = 0.6705 \pm 0.0022 \\ B(K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (3.2 \pm 1.2) \times 10^{-7} \\ B(K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = 0.1263 \pm 0.0012 \\ B(K_{S} \rightarrow \pi^{0}\pi^{0}\pi^{0}) < 1.2 \times 10^{-7} \\ B(K_{L} \rightarrow \pi^{0}\pi^{0}\pi^{0}) < 1.2 \times 10^{-7} \\ \Phi^{SW} = (0.759 \pm 0.001) \\ \Phi^{000} = \Phi^{+-0} = \Phi^{+-\gamma} = [0,2\pi] \\ \end{array}$$

$$\begin{split} \tau_{\rm S} &= 0.08958 \pm 0.00006 \text{ ns} \\ \tau_{\rm L} &= 50.84 \pm 0.23 \text{ns} \\ A_{\rm L} &= (3.32 \pm 0.06) \times 10^{-3} \\ A_{\rm S} &= (1.5 \pm 10.0) \times 10^{-3} \\ B(K_{\rm L} \rightarrow \pi^+ \pi^-) &= (1.963 \pm 0.021) \times 10^{-3} \\ B(K_{\rm L} \rightarrow \pi^0 \pi^0) &= (8.65 \pm 0.10) \times 10^{-4} \\ \varphi^{+-} &= 0.757 \pm 0.012 \\ \varphi^{00} &= 0.763 \pm 0.014 \\ Im \ x_{\perp} &= (0.8 \pm 0.7) \times 10^{-2} \end{split}$$

KLOE measurements

Im x₊ from a combined fit of KLOE + CPLEAR data

CPT test: accuracy on α_i

We get the following results on each term of the sum

$K_s \rightarrow \pi^0 \pi^0 \pi^0$: search for a CP violating decay

Observation of $K_S \otimes 3p^0$ signals CP violation in mixing and/or in decay: SM prediction: $\Gamma_S = \Gamma_L / e + e'_{000} / ^2$, => BR($K_S \rightarrow 3\pi^0$) ~ 2×10⁻⁹ Present published results: BR($K_S \rightarrow 3\pi^0$) < 1.4×10⁻⁵ (direct search, SND, '99)

BR(K_S \rightarrow 3 π^0) < 7.4×10⁻⁷ (interferometry, NA48, '04)

K_{s} **P** $p^{o}p^{o}p^{o}$: test of CPT

A limit on BR($K_S \rightarrow 3\pi^0$) translates into a limit on $|\mathbf{h}_{000}|$

$$\left|\eta_{000}\right| = \left|\frac{A(K_{\rm S} \to 3\pi^0)}{A(K_{\rm L} \to 3\pi^0)}\right| = \sqrt{\frac{\tau_{\rm L}}{\tau_{\rm S}}} \frac{BR(K_{\rm S} \to 3\pi^0)}{BR(K_{\rm L} \to 3\pi^0)} < 0.018 \quad \text{at 90\% C.L.}$$

The CPT test from unitarity was limited by the knowledge of $|\mathbf{h}_{000}|$ at the 10⁻⁵ level; now it is limited by uncertainties on other factors, e.g. **h**_{+ -}

rejection: = BR limit improved by a factor 10

K_{1e3} form factor slopes: Pole Model Results

Search for $K_s \otimes p^o p^+ p^-$

Decay mainly *CP*-conserving ($\Delta I = 3/2$) BR useful to constrain $K \rightarrow 3\pi$ amplitudes from χ^{pt}

PDG '04: BR = $(3.2^{+1.2}_{-1.0}) \rightarrow 10^{-7}$

Based on interference measurements [CPLEAR, E621] New NA48 preliminary Never observed directly

Preselection criteria (e = 7%)

• $K_L \operatorname{crash} + \operatorname{vertex} + 2 \gamma \operatorname{clusters}$

Kinematic fit rejects > 99% of bkg

• 6 constraints + $m(\pi^0) + m(K_S)$

Remaining backgrounds:

- **f** ? K^+K^- Cut on momentum of secondaries at ends of π tracks
- K_S ? $\mathbf{p}^0_{\ \ D} \mathbf{p}^0_{\ \ D)}$
- Associate tracks to clusters, get e/π ID from TOF
- **Both types** Veto on extraneous prompt clusters

Search for $K_S \mathbb{R} p^O p^+ p^-$

Preliminary results with 740 pb^{-1} '01 + '02 + '04 data:

- Signal efficiency:
- Candidates: 6 events
- Background (sidebands): ~ **3.5 events**
- Number of events observed consistent with expectation
- Statistical error: ~ 100%
- Evaluation of systematic error in progress

Scaling these values to 2 fb⁻¹ we expect:

- Measurement of BR($K_S \rightarrow \pi^+ \pi^- \pi^0$) with 60% error About the same precision as interference-based measurements
- First measurement of BR from a direct search

~ 1.5% (including K_L -crash eff)