

Searching for Gravitational Waves

Nelson Christensen

Carleton College, Northfield, Minnesota USA (on sabbatical 2005-06 with Virgo at the European Gravitational Observatory, Cascina, Italy)

LIGO Scientific Collaboration

The EM Window on the New Window on Universe Universe

x-ray

Adv. LIGO band: 10 Hz < f < 8 kHz

LISA band: 100 mHz < f < 10 mHz

GRAVITATIONAL WAVES WILL GIVE A NEW AND UNIQUE VIEW OF THE DYNAMICS OF THE UNIVERSE.

EXPECTED SOURCES:

BLACK HOLES,

SUPERNOVAE, PULSARS AND

LIGOThe LIGO Observatories

Interferometers are aligned along the great circle connecting the sites

The LIGO Scientific 500 scientists at 42 institutions Collabor attonal

- Aluminum cylinder, suspended in middle
- GW causes it to ring at one or two resonant frequencies near 900 Hz
- Sensitive in fairly narrow band (up to ~100 Hz)

AURIGA detector (open)

EXPLORER AURIGA

ALLEGRO

NAUTILUS

Planning joint analysis as IGEC-2 Collaboration Continuation of previous IGEC, which included NIOBE in Australia

LIGO is embarking on an important observational

- Campaign We have honed but analysis methods on a series of science runs that have produced 12 0 (10 PRD + 2 PRL) published results to date
 - Many more publications are in the pipeline
- Scientific output of LIGO is ramping up 0
- Advanced LIGO start expected for FY2008 0

OPPORTUNITIES for the Collaboration:

- The current S5 science run will provide at least **1** year of integrated science data at design 0
- There will be time for one or more additional long observations 0
- Operation in coincidence with other detectors to corroborate detections 0
 - Virgo (French-Italian 3km interferometer)
 - GEO600 (UK/German 600m interferometer part of LSC)
- Coordination with gray observatories (HETE 2, Swift) 0

CHALLENGES for the Collaboration :

Maintaining the impetus of a 24x7 campaign of production analysis that will enable timely discovery

- Direct verification of two of most dramatic predictions of Einstein's general relativity
 - » Existence of gravitational waves
 - » Direct observation of black holes
- Physics
 - » Detailed tests of properties of gravitational waves including speed, polarization, strength, graviton mass,
 - » Probe strong field gravity around black holes and in the early universe
 - » Probe the neutron star equation of state
- Astronomy
 - » By performing routine astronomical observations, understand compact binary populations, rates of supernovae explosions, test gamma-ray burst models
- LIGO provides a new window on the Universe

Astrophysical Sources of Gravitational Waves

- Compact binary systems
 - » Black holes and neutron stars
 - » Inspiral and merger
 - Probe internal structure, populations, and spacetime geometry
- Spinning neutron stars
 - » LMXBs, known & unknown pulsars
 - » Probe internal structure and populations
- Neutron star birth
 - » Tumbling and/or convection
 - » Correlations with EM observations
- Stochastic background
 - » Big bang & other early universe
 - » Background of GW bursts

LIGOGravitational waves

- Transverse distortions of the space-time itself → ripples of space-time curvature
- Propagate at the speed of light
- Push on freely floating objects
 Stretch and squeeze
 the space transverse to
 direction of propagation

 Energy and momentum conservation require that the waves are quadrupolar → aspherical mass distribution

LIGOAstrophysics with GWs vs. E&M

E&M	GW
Accelerating charge	Accelerating aspherical mass
Wavelength small compared to sources -> images	Wavelength large compared to sources → no spatial resolution
Absorbed, scattered, dispersed by matter	Very small interaction; matter is transparent
10 MHz and up	10 kHz and down

- Very different information, mostly mutually exclusive
- Difficult to predict GW sources based on EM observations

• Gravitational wave amplitude (strain) $h_{\mathbf{m}} = \frac{2G}{c^4 r} \ddot{I}_{\mathbf{m}} \Rightarrow h \approx \frac{4\mathbf{p}^2 GMR^2 f_{orb}^2}{c^4 r}$

• For a binary neutron star pair

$$M \approx 10^{30} \text{ kg}$$

$$R \approx 20 \text{ km}$$

$$f \approx 400 \text{ Hz} \implies h \sim 10^{-21}$$

$$r \approx 10^{23} \text{ m}$$

Effect of a GW on matter

LigoInterferometer Response to a GW

 Response depends on direction and polarization of incoming wave

LSC

LIGOMeasurement and the real world

- How to measure the gravitational-wave?
 - » Measure the displacements of the mirrors of the interferometer by measuring the phase shifts of the light
- What makes it hard?
 - » GW amplitude is small
 - » External forces also push the mirrors around
 - » Laser light has fluctuations in its phase and amplitude

GW detector at a glance

LIGO Optical Layout

Initial LIGO Sensitivity Goal

LSC

Strain sensitivity < 3x10⁻²³ 1/Hz^{1/2} at 200 Hz Have achieved strain RMS of 10^-21 in a 100 Hz bandwidth Displacement Noise » Seismic motion » Thermal Noise

» Radiation Pressure

Sensing Noise

- » Photon Shot Noise
- » Residual Gas

Facilities limits much lower

G050027-00-Z

LIGOReaching LIGO's Science Goals

• Interferometer commissioning

» Intersperse commissioning and data taking consistent with obtaining one year of integrated data at $h = 10^{-21}$ by end of 2006

• Science runs and astrophysical searches

- » Science data collection and intense data mining interleaved with commissioning
 - S1 Aug 2002 Sep 2002
 - S2 Feb 2003 Apr 2003
 - S3 Oct 2003 Jan 2004
 - S4 Feb 2005 Mar 2005
 - S5 Nov 2005 ...
- Advanced LIGO

- duration: 2 weeks
- duration: 8 weeks
- duration: 10 weeks
- duration: 4 weeks
- duration: 1 yr integrated

History of science runs

LIGOVIRGO Sensitivity

History

G050027-00-Z

• Schedule

- » Started in November, 2005
- » Get 1 year of data at design sensitivity
- » Small enhancements over next 3 years
- Typical sensitivity (in terms of inspiral distance)
 - » H1 10 to 12 Mpc (33 to 39 million light years)
 - » H2 5 Mpc (16 million light years)
 - » L1 8 to 10 Mpc (26 to 33 million light years)
- Sample duty cycle (Nov. 2005 to Jan. 2006)
 - » 55% (L1), 68% (H1), 83% (H2) individual
 - » 45% triple coincidence

LIGOExample of figures of merit

G050021-00-2

gravitational wave detection

- The initial LIGO detectors have reached their target sensitivity
 » Incredibly small motion of mirrors → 10⁻¹⁹ m (less than 1/1000 the size of a proton)
- LIGO has begun its biggest and most sensitive science data run
- Unprecedented sensitivity prospects for new science are very promising
 - » On Science magazine's list of things to watch out for in 2006
- Growing international collaborative effort (LIGO, GEO, Virgo, TAMA) in the mutual search for events
- Design of an even more sensitive next generation instrument is progressing rapidly

LIGO Inspiral and Merger of Compact Binaries

- Gravitational waves from binary systems containing neutron stars & stellar mass black holes
- Last several minutes of inspiral driven by GW emission
- Clean systems, accurate modeling shows that GW's depend on masses/spins only
- Binary Neutron Star Rates
 - Theoretical estimates give upper bound of 1/3yr for LIGO S5
- Binary Black Hole Rates
 - Theoretical estimates give upper bound of 1/yr for LIGO S5

time

How to detect inspiral

waves

- Use template based matched filtering algorithm
- Search for non-spinning binaries
 - » 2.0 post-Newtonian waveforms

 $s(t) = (1Mpc/D) x [sin(a) h_{s}^{l} (t-t0) + cos(a) h_{c}^{l} (t-t0)]$

• D: effective distance; a: phase

Discrete set of templates labeled by I=(m1, m2)

» 1.0 Msun < m1, m2 < 3.0 Msun

Active Inspiral Searches

Binary Neutron Star Inspiral (S2)

- Upper limit on binary neutron star coalescence rate
 - Express the rate as a rate per Milky-Way Equivalent Galaxies (MWEG)

$$R_{90\%} = \frac{2.3}{T_{obs}N_G} = \frac{2.3}{355 \text{ hrs } \times 1.14} < 50 / \text{year/MWEG}$$

Theoretical prediction: $R < 2 \times 10^{-5} / yr/MWEG$

- Express as the **distance** to which radiation from a 1.4 M_{sun} pair would be detectable with a SNR of 5

$$D = 2 \text{ Mpc} \approx 10^{22} \text{ m}$$

Important to look out further, so more galaxies can contribute to population of NS

New rate predictions from SHBs?

- 4 Short Hard gamma ray Bursts since May 2005
 - » Detected by Swift and HETE-2, with rapid follow-up using Hubble, Chandra, and look-back at BATSE
 - » Find that SHB progenitors are too old (>5 Gyr) to be supernova explosions (cause of long GRBs)
 - » Remaining candidates for progenitors of SHBs: old double neutron star (DNS) or neutron star-black hole (NS-BH) coalescences
 - » Predicted rates for Initial LIGO (S5) could be as high as

 $R_{NS-BH} \sim 30 \text{ yr}^{-1}$

RD_{NS-NS}~3 yr⁻¹

Nakar, Gal-Yam, Fox, astro-ph/0511254

» But great uncertainty in rate estimates

LIGOBinary Neutron Star Search: LIGO S5 Range

Binary Inspiral Searches: LIGO Approximate S5 Ranges

- General Properties
 - » Duration << observation time
- Promise
 - » Unexpected sources and serendipity
 - » Search techniques must use minimal information

La Thuile 2006

• Examples

- » Black hole and neutron star merger
- » Supernovae & gamma-ray bursters
- » Instabilities in nascent neutron stars
- » Kinks and cusps on cosmic strings

Image: Baumgarte, Shapiro, Shibata

- Search for bursts of unknown origin/waveform
 - » Generate event triggers for each instrument
 - » Veto triggers due to instrumental artifacts
 - » Determine upper limit on rate as function of strain
 - » Monte Carlo by simulated injections of astrophysical motivated signals and other model burst waveforms
- Ongoing activities
 - » Search for bursts associated with GRB's and other EM triggers
 - » Untriggered searches by broad range of methods (cast wide net)
 - » Inpiral-burst-ringdown coincidence searches
 - » Cosmic string burst search
- Other Activities:
 - » LIGO-TAMA Joint Analysis of S2 Data (complete)
 - » LIGO-VIRGO Working Group

Search Method: Time-frequency decompositions

Requires coincidence between at least two interferometers & detailed examination of instrumental & environmental behavior

Burst search results

Phys. Rev. D. 72, 062001 (2005)

- Raw results are reported
- Interpreted upper limit on representative waveform families is also report

Burst search triggers

- » Blind search procedure provide list of coincident triggers
- » Auxiliary and environmental channels provide important information which can veto a trigger – very important to burst searches.
- » Example:

LIGOTriggered search around GRB030329

Physical Review D 72 042002 (2005)

Root sum square

sensitivity $< 6x10^{-21}$

Cross-correlate data around time of GRB trigger

- Estimate background from off-source times around GRB
- Estimate background from time-slides
- S3/S4 analysis will cover ~20-30 GRB's

Continuous wave searches: target sources

Credit: Dana Berry/NASA

Credit: M. Kramer

Bumpy Neutron Star

e 2006

G050027-00-Z

LIGOContinuous Wave Group Activities

- Known pulsar searches
 - » Catalog of known pulsars
 - » Heterodyne narrow bandwidth folding data
 - » Coherent frequency domain search using Hough transform
- All sky unbiased
 - » Sum short power spectra (no Doppler correction)
- Wide area search
 - » Hierarchical Hough transform code is under development

LIGO Summary of pulsar searches

- S1 → Setting upper limits on the strength of periodic gravitational waves from PSR J1939 2134 using GEO600 and LIGO data
 - » Phys. Rev. D 69 (2004) 082004
- S2 \rightarrow Limits on GW emission from 28 selected pulsars using LIGO data
 - » Phys. Rev. Lett. 94 (2005) 181103

LigoProbing the early

LIGOStochastic Background of Gravitational Waves

Given an energy density spectrum $\Omega_{qw}(f)$, there is a GW strain power spectrum

$$\Omega_{GW}(f) = \frac{1}{\mathbf{r}_{critical}} \frac{d\mathbf{r}_{GW}}{d(\ln f)} \implies S_{gw}(f) = \frac{3H_0^2}{10\pi^2} f^{-3}\Omega_{gw}(f)$$

For standard inflation (ρ_c depends on present day Hubble constant)

$$h(f) = S_{\rm gw}^{1/2}(f) = 5.6 \times 10^{-22} h_{100} \sqrt{\Omega_0} \left(\frac{100 \text{Hz}}{f}\right)^{3/2} \text{Hz}^{1/2}$$

Search by cross-correlating output of two GW detectors: L1-H1, H1-H2, L1-ALLEGRO

The closer the detectors, the lower the frequencies that can be searched (due to overlap reduction function)

La mune 2000

LiebIGO results for $\Omega_0 h_{100}^2$

LIGOStochastic Background Search (S3)

Advanced LIGO Why a better detector?

Factor 10 better amplitude sensitivity

» $(Reach)^3 = rate$

• Factor 4 lower frequency bound

• Tunable

- Hope for NSF funding in FY08 ≤
- Infrastructure of initial LIGO but replace many detector components with new designs
- Expect to be observing 1000x more galaxies by 2013

Through these features:

- Fused silica multi-stage suspension
- ~20x higher laser power
- Active seismic isolation
- Signal recycling
- Quantum engineering rad'n pressure vs. shot noise

G050027-00-Z

- Neutron star binaries
 - Range =350Mpc
 - N ~ 2/(yr) 3/(day)
- Black hole binaries
 - Range=1.7Gpc
 - N ~ 1/(month) 1/(hr)
- BH/NS binaries
 - Range=750Mpc
 - $N \sim 1/(yr) 1/(day)$

Large Interferometers

Advanced LIGO

- » Order-of-magnitude sensitivity improvement
- » Received scientific approval from National Science Board
- » NSF planning to request funding starting in FY 2008
- » Three advanced detectors observing by 2013?
- VIRGO upgrade Being discussed
- LCGT (Japan)
 - » Two 3-km interferometers in Kamioka mountain
 - » Sensitivity comparable to Advanced LIGO
 - » Hope for funding beginning in FY 2007 ; begin observations in 2011 ?
- AIGO (Australia)
 - » Considering adding 2 km arms to current facility at Gingin
- CEGO (China) ?

Short burst GRB050709

HST Image Credit: Derek Fox

Long burst GRB030329

NASA Image

Possible scenario for short GRBs: neutron star/black hole collision

Credit: Dana Berry/NASA La Thuile 2006

